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Microspores are reprogrammed by stress in vitro toward embryogenesis. This process
is an important tool in breeding to obtain double-haploid plants. DNA methylation is
a major epigenetic modification that changes in differentiation and proliferation. We
have shown changes in global DNA methylation during microspore reprogramming.
5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC
is a useful demethylating agent to study DNA dynamics, with a potential application
in microspore embryogenesis. This work analyzes the effects of short and long AzaC
treatments on microspore embryogenesis initiation and progression in two species,
the dicot Brassica napus and the monocot Hordeum vulgare. This involved the
quantitative analyses of proembryo and embryo production, the quantification of
DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal
microscopy, and the analysis of chromatin organization (condensation/decondensation)
by light and electron microscopy. Four days of AzaC treatments (2.5 µM) increased
embryo induction, response associated with a decrease of DNA methylation, modified
5mdC, and heterochromatin patterns compared to untreated embryos. By contrast,
longer AzaC treatments diminished embryo production. Similar effects were found in
both species, indicating that DNA demethylation promotes microspore reprogramming,
totipotency acquisition, and embryogenesis initiation, while embryo differentiation
requires de novo DNA methylation and is prevented by AzaC. This suggests a role
for DNA methylation in the repression of microspore reprogramming and possibly
totipotency acquisition. Results provide new insights into the role of epigenetic
modifications in microspore embryogenesis and suggest a potential benefit of inhibitors,
such as AzaC, to improve the process efficiency in biotechnology and breeding
programs.

Keywords: microspore culture, epigenetic inhibitors, demethylating agents, totipotency, microspore
reprogramming, Hordeum vulgare, Brassica napus
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Introduction

Microspore embryogenesis is a fascinating process of cellular
reprogramming and totipotency acquisition. In this process, a
differentiating cell, the microspore, abandons its gametophytic
developmental program in response to the application of a
stress treatment in vitro, producing a complete embryo capable
of germinating and regenerating a haploid or double-haploid
mature plant. Microspore embryogenesis has been set up through
isolated microspore cultures in several different plant species
(Touraev et al., 1997; Massonneau et al., 2005; Forster et al.,
2007; Testillano and Risueño, 2009). Microspore embryogenesis
is also a powerful biotechnological tool in plant breeding as a
method for the rapid production of isogenic lines, generation of
new genetic variability and new genotypes, but this technique
has had limited efficiency in many crops that are of particular
interest (Maluszynski et al., 2003; Germana, 2011). Despite
recent advances, there is still little known about the mechanisms
that promote reprogramming of differentiating cells and their
conversion, in response to stress, into totipotent cells capable of
forming an embryo and a plant, without the fusion of the gametes
(Grafi et al., 2011).

Stress-induced plant cell reprogramming and acquisition of
cellular totipotency involves repression and/or activation of
numerous genes associated with the new development program
as well as changes in global genome organization (Finnegan
et al., 2000). Epigenetic marks are involved in the regulation
of global gene expression programs in the genome (Kohler and
Villar, 2008). DNA methylation, by DNA methyltransferases,
constitutes a prominent epigenetic modification of the chromatin
fiber which is associated with gene silencing. This epigenetic
mark changes during plant cell differentiation and proliferation
processes, and regulates gene expression (Finnegan et al., 2000;
Meijón et al., 2010). Recently, work by our group has shown
modifications in global DNA methylation that accompanied the
change of developmental program of the microspore toward
embryogenesis, indicating an epigenetic reprogramming after
microspore induction to a totipotent state and embryogenesis
initiation. This epigenetic reprogramming involved a global DNA
methylation decrease with the activation of cell proliferation,
and a subsequent DNA methylation increase with embryo
differentiation, in very different plant species, like Brassica napus
(Solís et al., 2012; Testillano et al., 2013), Hordeum vulgare (El-
Tantawy et al., 2014), and Quercus suber (Rodriguez-Sanz et al.,
2014a).

In eukaryotic cells, 5-Azacytidine (AzaC), a known analog
of 5-cytosine, inhibits DNA methyl transferase activity leading
to genomic DNA hypomethylation (Friedman, 1981). AzaC has
been used as a demethylating agent in several different plant
systems, leading to a wide range of effects on development
depending on the dose, time, and process (Loschiavo et al., 1989;
Li et al., 2001; Pedrali-Noy et al., 2001; Santos and Fevereiro,
2002; Yamamoto et al., 2005; Yang et al., 2010; Fraga et al., 2012;
Pecinka and Liu, 2014; Teyssier et al., 2014). Treatments with
AzaC have also been reported to affect chromosome behavior
and structure in root cells (Castilho et al., 1999; Vorontsova
et al., 2004). In addition AzaC has been shown to shorten

nucleologenesis by early NOR replication, and may possibly lead
to early entry of root meristematic cells in the next cell cycle (De-
La-Torre et al., 1991; Mergudich et al., 1992). However, there
have been no studies with AzaC treatments in isolated microspore
cultures and its effects on microspore embryogenesis initiation
and progression, in correlation with changes in DNA methylation
levels and distribution patterns.

In this work, the effects of AzaC on microspore embryogenesis
induction and progression, as well as on global DNA methylation
levels, nuclear distribution of methylated DNA and chromatin
organization have been analyzed in two plant species, the dicot
B. napus (rapeseed) and the monocot H. vulgare (barley).

Material and Methods

Plant Material and Growth Conditions
Brassica napus L. cv. Topas (rapeseed) and Hordeum vulgare
L. cv. Igri (barley) were used as donor plants. Barley
seeds were germinated in soil for 1 month at 4◦C. After
that, they were grown at 12◦C with a 12/12 light/dark
cycle (10,000–16,000 lx) for 1 month in a plant growth
chamber (Sanyo; relative humidity about 70%), and then
in a greenhouse under a controlled temperature of 18◦C.
Rapeseed seeds were sown in soil and plants were grown
under controlled conditions at 15/10◦C in a 16/8 h light/dark
cycle in a plant growth chamber (Sanyo) with 60% relative
humidity.

Microspore Isolation and Culture
Rapeseed microspore culture was performed as previously
described (Prem et al., 2012). Selected flower buds containing
microspores at the vacuolated stage [the most responsive stage
for embryogenesis induction (González-Melendi et al., 1995)
were surface-sterilized in 5% commercial bleach for 20 min and
then rinsed 6–7 times with sterile distilled water. Ten to fifteen
buds were crushed using a cold mortar and pestle in 5 ml of
cold NLN-13 medium (Lichter, 1982); Duchefa] containing 13%
sucrose (w/v). The suspension was filtered through a 48 µm
nylon mesh and the filtrate collected in 15 ml falcon centrifuge
tubes. The crushed buds were rinsed with 5 ml NLN-13 to make
up the volume to 10 mL and the filtrate was then centrifuged
at 185 × g for 5 min at 4◦C. The pellet was resuspended in
10 mL of cold NLN-13 and centrifuged as mentioned above. This
process was repeated three times for washing of the microspores.
The final pellet was suspended in the NLN-13, and the cell
density was adjusted to 10,000 cells per mL. After isolation,
cultures were subjected to 32◦C temperature for embryogenesis
induction and checked every 2 days under the stereomicroscope
till development of globular embryos was observed, around
10 days after culture initiation. Thereafter, cultures were shifted
to 25◦C on an orbital shaker at 60 rpm (amplitude of rotation:
20 mm) until complete development and maturation of the
embryos was observed, around 30 days after culture initiation, as
previously described (Prem et al., 2012).

Barley microspore culture was performed as previously
described (Rodríguez-Serrano et al., 2012). Spikes containing
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microspores at the vacuolated stage were collected and surface
sterilized by immersion in bleach at 5% for 20 min, followed
by 3–4 washes with sterile distilled water. The sterilized spikes
were then pre-treated at 4◦C for 23–24 days as stress treatment
to induce embryogenic development. The isolation and culture
of the microspores were performed as previously described
(Rodríguez-Serrano et al., 2012) with final density of 1.1 × 105

cell per mL in an appropriate volume of KBP medium (Kumlehn
et al., 2006). To isolate the microspores, the spikes were
blended in 20 mL of precooled 0.4 M mannitol using a
Waring Blender (Eberbach, Ann Arbor, MI, USA) precooled in
a refrigerator, and the extract was filtered through a 100 µm
nylon mesh (Wilson, Nottingham, UK) into a vessel at 4◦C.
The microspore suspension collected was transferred into a
50 ml tube and centrifuged at 100 × g for 10 min at 4◦C.
After removing the supernatant, the pellet was resuspended in
8 mL of ice-cold 0.55 M maltose. This volume was distributed
between two 15 mL tubes and each aliquot cautiously over
layered with 1.5 mL of mannitol solution. After gradient
centrifugation at 100 × g for 10 min at 4◦C, the interphase
band consisting of an almost pure population of vacuolated
microspores was resuspended in mannitol solution giving a final
volume of 20 mL. The pelleted microspores were diluted in an
appropriate volume of KBP medium to obtain a cell density
of 1.1 × 105 cells per mL. The microspores were incubated
at 25◦C in the dark. Embryos were observed after around
30 days.

Treatments of Microspore Cultures with AzaC
The demethylating agent 5-AzaC (Sigma) was added to the
culture plates at the culture initiation from a freshly prepared
concentrated solution of 500 µM in culture media, after filtering
with a sterile Ministart filter (Sartorius Biotech). In a first
experiment, this solution was added to rapeseed microspore
cultures at three different concentrations, 2.5, 5, and 10 µM,
keeping parallel plates without the drug as control. The rest
of treatments were performed at the selected concentration of
2.5 µM.

Short AzaC treatments were performed from culture initiation
during 4 days, time of the proembryo formation stage in both in
vitro microspore cultures, rapeseed (Prem et al., 2012) and barley
(Rodríguez-Serrano et al., 2012).

Long AzaC treatments were carried out from culture initiation
until the stage of embryo formation (cotyledonar embryos in
rapeseed and coleoptilar embryos in barley), during 30 days in
both systems (Prem et al., 2012; Rodríguez-Serrano et al., 2012).

Quantification of the number of three types of structures,
“proembryos,” “developing embryos,” and “embryos” was
performed at defined time points of the cultures. Quantifications
were carried out using stereomicroscope micrographs randomly
obtained from control and AzaC-treated microspore culture
plates. “Proembryos” were rounded multicellular structures,
still surrounded by the exine, which displayed higher size
and density than microspores. “Developing embryos” were
structures formed after the exine breakdown and much larger
than proembryos; these term “developing embryos” included
embryos at different developmental stages of the two pathways

(monocot and dicot species). Mean percentages of “proembryos”
and “developing embryos,” and total number of “embryos”
(fully developed) per Petri dish were calculated from random
samples of two independent experiments and 10–15 different
culture plates per each in vitro system. A total of 100–140
micrographs and 1000–1800 embryo structures were evaluated
for each culture time point, each treatment, and each plant
species. The results were shown in histograms in which
columns represented mean values and bars represented SEM.
Significant differences between non-treated (control) cultures
and AzaC-treated cultures were tested by Student’s t-test at
P ≤ 0.05.

Cell Death Detection and Quantification
To determine changes in viability of cells, detection of dead
cells in microspore cultures was performed by Evans blue
staining (Rodríguez-Serrano et al., 2012) in control and
AzaC-treated cultures. Culture samples were incubated with
a 0.25% (w/v) aqueous solution of Evans Blue for 30 min
and observed with a light microscope under bright field.
The number of dead (stained by Evans Blue) and live
(unstained by Evans Blue) cells were quantified on random
micrographs from two replicas (Evans blue-stained preparations)
and three independent samples of each culture treatment; mean
percentages of dead cells were calculated. A total of 150–
200 micrographs and 2000–2500 structures were evaluated per
culture treatment. The results were shown in histograms in which
columns represented mean values and bars represented SEM.
Significant differences in the percentage of dead cells between
non-treated (control) cultures and AzaC-treated cultures at
different concentrations were tested by Student’s t-test at
P ≤ 0.05.

Quantification of Global DNA Methylation
Genomic DNA was extracted from samples of microspore
cultures of rapeseed and barley at the stage of proembryo
formation (4 days), in non-treated conditions and after short
treatments with 2.5 µM AzaC. The DNA extraction was
performed using a plant genomic DNA extraction kit (DNeasy
Plant Mini, Qiagen) as previously described (Solís et al.,
2014). A MethylFlash Methylated DNA Quantification Kit
(Colorimetric; Epigentek, Farmingdale, NY, USA) was used for
the quantification of the global DNA methylation according to
the manufacturer’s instruction, using 200 ng of genomic DNA
(Testillano et al., 2013) collected from various culture plates of
each sample (for barley: 20–25 plates of 50 mm diameter and
1.5 mL of culture medium each; for rapeseed: 8–10 plates of
90 mm diameter and 15 mL of culture medium each). Three
biological (independent culture experiments) and two analytical
(DNA methylation colorimetric assays) replicates per sample
were taken and mean percentages of 5-methyl-deoxy-cytidine
(5mdC) of total DNA were calculated. The results were shown in
histograms in which columns represented mean values and bars
represented SEM. Significant differences between non-treated
(control) cultures and AzaC-treated cultures were tested by
Student’s t-test at P ≤ 0.05.
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Fixation and Processing for Light Microscopy
Analysis
Samples from different culture times were collected and fixed
overnight at 4◦C with 4% paraformaldehyde in phosphate
buffered saline (PBS) pH 7.3. Culture samples of the first
stages contained isolated microspores and small multicellular
proembryos, they were previously embedded in gelatine. After
fixation, samples were washed in PBS, dehydrated in an acetone
series, embedded in Historesin Plus at 4◦C and sectioned at
2 µm thickness using an ultramicrotome (Ultracut E Reichert).
Some semithin resin sections were stained with 1% toluidine
blue, for structural analysis, mounted with Eukitt, and observed
under bright field microscopy. Other sections were stained
with 1 mg mL−1 DAPI (4′,6-diamidino-2-phenylindole), specific
staining for DNA, for 10 min, for observation of the nuclei under
UV excitation and epifluorescence microscopy.

5mdC Immunofluorescence and Confocal
Microscopy
Immunolocalization of 5mdC was performed as previously
described (Solís et al., 2012; Testillano et al., 2013).
Historesin semithin sections were mounted on 3-
aminopropyltriethoxysilane- coated slides, denatured with
2N HCl for 45 min, washed in PBS and treated with 5%
bovine serum albumin (BSA) in PBS for 10 min, incubated
with anti-5mdC mouse antibody (Eurogentec) diluted 1/50
in 1% BSA and Alexa-Fluor-488 anti-mouse IgG antibody
(Molecular Probes) diluted 1/25. As negative controls, either
DNA denaturation step or first antibody was omitted. Sections
were counterstained with 1 mg mL−1 DAPI (4′,6-diamidino-
2-phenylindole) for 10 min and analyzed by confocal laser
microscopy (TCS-SP5, Leica). Images of maximum projections
were obtained with software running in conjunction with
the confocal microscope (Leica software LCS version 2.5).
Confocal microscopy analysis was performed using the same
laser excitation and sample emission capture settings in all
immunofluorescence preparations of each species, rapeseed
or barley, allowing an accurate comparison between signals of
control and AzaC-treated cells.

Electron Microscopy and Ultrastructural
Analysis
Samples to be observed for transmission electron microscopy
(TEM) were processed and embedded in Epon 812 or K4M
Lowicryl resin, as previously described (Testillano et al., 2005;
Solís et al., 2014). Samples to be embedded in Epon resin
were fixed in Karnovsky fixative (4% formaldehyde + 5%
glutaraldehyde in 0.025M cacodylate buffer, pH 6.7), dehydrated
in a methanol series for 3 days and slowly embedded in Epon
resin for 2 days. Epon blocks were polymerized at 60◦C for
2 days. Samples to be embedded in K4M Lowicryl were fixed
in 4% formaldehyde in PBS at 4◦C, overnight, dehydrated in a
methanol series by Progressive Lowering of Temperature (PLT)
and embedded in K4M Lowicryl at −30◦C, in an Automatic
Freeze-Substitution unit (AFS, Leica, Vienna). 80 nm thick
ultrathin sections were collected on 75 mesh copper grids,

counterstained with uranyl acetate and lead citrate and observed
in a JEOL 1010 TEM operating at 80 kV.

5mdC Immunogold Labeling for Electron
Microscopy
Immunogold labeling for 5mdC ultrastructural localization was
performed as previously described (Solís et al., 2014). Lowicryl
ultrathin sections were obtained and collected on 200 mesh nickel
grids with a carbon-coated Formvar supporting film. Ultrathin
sections were floated on drops of distilled water, denaturated with
2N HCl for 45 min and washed in PBS before incubation in 5%
BSA. For immunogold labeling, they were incubated with anti-
5mdC antibody (diluted 1:50) for 1 h at room temperature. After
washing with PBS, the sections were incubated with anti-mouse
secondary antibody conjugated to 10 nm gold particles (BioCell)
diluted 1:25 in PBS for 45 min. Then, the grids were washed in
PBS, rinsed in distilled water and air-dried. Negative controls
were performed by omitting either the DNA denaturation step
or the first antibody. Finally, the grids were counterstained with
5% uranyl acetate and 1% lead citrate, and observed with a JEOL
1010 microscope operating at 80 kV.

Results

Effects of Short AzaC Treatments on
Microspore Embryogenesis Initiation
Isolated microspore in vitro cultures were set up and
embryogenesis induction performed, both according to
previously described protocols in B. napus (Prem et al., 2012)
and H. vulgare (Rodríguez-Serrano et al., 2012), as described in
the “Materials and Methods” section. Vacuolated microspores
(Figures 1A,B and 2A,B), the most responsive developmental
stage for embryogenesis induction in both monocot and dicot
species (González-Melendi et al., 1995; Testillano et al., 2002,
2005), were subjected to the corresponding inductive stress
treatment for each system, i.e., 32◦C for B. napus and 4◦C for
H. vulgare. Four days after induction and culture initiation,
responsive microspores that initiated the embryogenesis
pathway had divided and produced multicellular structures
still surrounded by the exine, the so-called microspore-derived
“proembryos” (Figures 1C,D and 2C,D). These proembryos
(arrows in Figures 1E and 2E) were clearly distinguished from
the non-responsive microspores present in the culture, they
were rounded structures displaying higher size and density
than microspores, in both in vitro systems, rapeseed and barley.
Over the following days in culture, microspore embryogenesis
progressed; the exine broke down, and embryos developed
following a pathway similar to the zygotic embryogenesis in
monocot and dicot species. In the case of rapeseed, globular
(Figures 1F,G), heart, torpedo (Figure 1H), and cotyledonary
embryos (Figure 1I) were formed (Prem et al., 2012), while in
barley microspore cultures globular, transitional, scutellar, and
coleoptilar monocot embryos (Figures 2F–H) were developed
(Rodríguez-Serrano et al., 2012).

Firstly, different concentrations of AzaC, 2.5, 5.0, and 10 µM,
were tested during short treatments (4 days) on rapeseed
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FIGURE 1 | Microspore embryogenesis in Brassica napus. (A,B)
Vacuolated microspores at the beginning of the culture. (A) was reproduced
from Figure 1A of Rodriguez-Sanz et al. (2014b) (copyright© 2014 Karger
Publishers, Basel, Switzerland). (C,D) Proembryos formed by four cells, still
surrounded by the exine (the microspore wall). (E) In vitro culture at the
proembryo formation stage (4 days), proembryos are pointed by arrows. (F,G)
Globular embryos. (H) Torpedo embryo. (I) In vitro culture at the embryo

production stage (30 days), most embryos show the typical morphology of
cotyledonary embryos of the dicot embryogenesis pathway, some embryos at
earlier developmental stages (heart and torpedo embryos) are also present.
(A,C,F,H) Micrographs of toluidine blue-stained sections for general structure
visualization. (B,D,G) DAPI staining for nuclei visualization (blue). (E,I) General
views of cultures observed under the stereomicroscope. Bars represent, in
(A–D) 10 µm, in (E) 250 µm, in (F,G) 50 µm, in (H) 100 µm, in (I) 1mm.

microspore cultures, and their effects on both, cell death,
and microspore embryogenesis initiation efficiency (proembryo
formation) were evaluated. The percentage of dead cells,
identified by positive Evans blue staining (Figure 3A), present
in cultures at the proembryo formation stage (Figure 1E) were
quantified. Results showed a high level of dead cells in control
cultures at the proembryo formation stage. Cell death may be
contributed by both the isolation and in vitro culture procedures
and by the application of the stress treatment on non-responsive
mcirospores (Figure 3B). Microspore cultures treated with 2.5
and 5 µM AzaC showed a small but statistically significant
reduction in cell death, in comparison with control cultures
(Figure 3B).

Quantifications of proembryos at the same culture time point
showed significant higher proportion of these multicellular
structures upon 2.5 µM AzaC treatment compared to
control cultures (Figure 3C). By contrast, higher AzaC
concentrations (5 and 10 µM) reduced the proportion of
proembryos. Therefore, the concentration of 2.5 µM was
selected for the subsequent AzaC treatments in microspore
cultures.

Short AzaC treatments were also applied to barley microspore
cultures, at the concentration of 2.5 µM, by adding the drug to
the culture medium from the beginning of the culture until the
proembryo formation stage (4 days). The quantification of the
proembryos formed in untreated and AzaC-treated microspore

cultures of barley revealed that short AzaC treatments also
produced a significantly higher proportion of proembryos in
comparison with non-treated cultures (Figure 3D) in barley, like
in rapeseed.

Effects of Short AzaC Treatments on Global
DNA Methylation Levels and Distribution
Patterns of Methylated DNA
To evaluate whether the presence of AzaC at a concentration
of 2.5 µM affected the DNA methylation of cells in microspore
embryogenesis cultures, global DNA methylation levels were
quantified in control and treated cultures of rapeseed and barley
after short AzaC treatments (4 days), from the beginning of the
culture until the proembryo formation stage (Figures 1E and 2E).
Results showed significant decreases in global DNA methylation
after the AzaC treatments in both plant species (Figure 4). In
B. napus microspore cultures treated by AzaC, DNA methylation
levels reached only half of that in control cultures (Figure 4A).
In barley microspore cultures, the level of methylated DNA also
diminished after AzaC treatment (Figure 4B), but to a lesser
extent than in rapeseed cells.

Immunofluorescence assays with 5mdC antibodies and
confocal laser scanning microscopy analysis were performed to
analyze the effects of short AzaC treatments on the nuclear
localization pattern of methylated DNA. Immunofluorescence
images of treated samples were obtained in the confocal
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FIGURE 2 | Microspore embryogenesis in Hordeum vulgare.
(A,B) Vacuolated microspores at the beginning of the culture. (C,D)
Proembryos formed by several cells, still surrounded by the exine (the
microspore wall). (E) In vitro culture at the proembryo formation stage
(4 days), proembryos are pointed by arrows. (F,G) Early and late
transitional embryos. (H) In vitro culture at the embryo production stage
(30 days), embryos show the typical morphology of coleoptilar embryos of

the monocot embryogenesis pathway, some embryos at earlier
developmental stages (globular, early, and late transitional and scutellar
embryos) are also present. (A,C,F,G) Micrographs of toluidine blue-stained
sections for general structure visualization. (B,D) DAPI staining for nuclei
visualization (blue). (E,H) General views of cultures observed under the
stereomicroscope. Bars represent, in (A,B) 20 µm, in (C,D) 50 µm, in (E)
250 µm, in (F,G) 100 µm, in (H) 1 mm.

microscope under the same excitation intensity and emission
capture settings than the non-treated samples, allowing an
accurate comparison between signals. In non-treated cultures
of rapeseed, microspore-derived proembryos were formed by
several cells with a central rounded nucleus each, separated
by straight cell walls and surrounded by the microspore wall,
the exine (Figure 5A). The 5mdC immunofluorescence signal
was concentrated in 4-to-6 conspicuous foci preferentially at
the nuclear periphery and associated with heterochromatin
foci (condensed chromatin masses), which were also revealed
by the DAPI specific staining of DNA (Figures 5A’,A”). In
microspore cultures treated with 2.5 µM AzaC, proembryos
exhibited a cellular organization similar to that in control
cultures (Figure 5B). Nevertheless, the immunofluorescence
assays showed a different nuclear pattern of 5mdC distribution
with very low or no 5mdC signal concentrated in 1-to-2 small
foci per nucleus (Figures 5B’,B”).

Barley microspore-derived proembryos, still surrounded by
the exine, displayed numerous small cells with large nuclei and
wavy cell walls (Figure 5C), which is the typical organization
of microspore proembryos in monocot species like barley
(Ramírez et al., 2001) and maize (Testillano et al., 2002).
No significant differences on the structural organization of
proembryos were observed in AzaC-treated cultures (Figure 5D).
In control cultures, the 5mdC immunofluorescence signal was
intense, covering the whole nucleus (Figures 5C’,C”) which
also exhibited an intense fluorescence intensity by DAPI

(Figure 5C’). In proembryos developed in the presence of
AzaC, the 5mdC immunofluorescence signal was less intense
and was distributed over the entire nucleus (Figures 5D’,D”).
Negative controls avoiding either the DNA denaturation step or
the first antibody did not provide any labeling in the nucleus
or any subcellular compartment, in any of the plant species
analyzed.

Effects of Short AzaC Treatments on
Chromatin Condensation Patterns
Changes in the chromatin condensation degree/pattern of
proembryo cells after short AzaC treatments were analyzed in
relation to the distribution of methylated DNA, by light and
electron microscopy (Figures 6 and 7). After toluidine blue
staining, nuclei of rapeseed proembryos appeared very clear, with
several dark regions, mainly located at the nuclear periphery, as
revealed by light microscopy (Figure 6A). High magnification
fluorescence images of DAPI-stained samples showed a discrete
number of brightly stained heterochromatin foci of variable size
dispersed in euchromatin, which exhibited lower fluorescence
(Figure 6B). The 5mdC immunofluorescence signal was intense
in the heterochromatin regions while not excluded from
euchromatin, which showed a faint 5mdC immunofluorescence
signal throughout the nucleus (Figure 6B’). After the treatment
with AzaC, proembryo nuclei showed a homogeneous chromatin
distribution in both toluidine blue (Figure 6C) and DAPI
(Figure 6D) staining with no or little apparent heterochromatin
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FIGURE 3 | Effects of short Azacytidine (AzaC) treatment in
microspore cultures on cell death and embryogenesis
induction. (A) Evan’s blue staining to detect dead cells in
microspore embryogenesis cultures of B. napus at the proembryo
formation stage. The staining solution only enters into dead cells,
which appeared blue. (B,C) Quantification of the percentage of
dead cells (B) and proembryos (C) in microspore cultures of B.
napus at the proembryo formation stage, after short treatment

(4 days) with AzaC at the concentrations of 0 µM (control), 2.5,
5, and 10 µM. (D) Quantification of the percentage of proembryos
in microspore cultures of H. vulgare, after short treatments (4 days)
with AzaC at the concentrations of 0 µM (control) and 2.5 µM.
Bar in (A) represents 100 µm. In histograms (B–D), columns
represent mean values and bars represent SEM; asterisks indicate
significant differences with the non-treated/control culture sample
(Student’s t-test at P ≤ 0.05).

foci. Concomitantly, the 5mdC immunofluorescence signal was
very low and occasionally accumulated at one or two bright
nuclear foci (Figure 6D’).

Transmission electron microscopy analysis revealed the
chromatin ultrastructural organization of rapeseed proembryo
nuclei, which exhibited a very low condensed chromatin
pattern (Figure 6E) with a few isolated and electron dense
condensed chromatin masses (arrows in Figure 6E), which
occupied a low fraction of the nuclear volume and were
mainly located at the nuclear periphery. These condensed
chromatin masses most likely corresponded to the dark spots
of heterochromatin observed at light microscopy, in toluidine
blue-stained preparations. A large fraction of the nuclear volume
was occupied by a wide interchromatin region (Ir) that displayed
abundant fibrillo-granular ribonucleoprotein structures (RNPs),
which are typical of this nuclear domain (Testillano et al.,
2000, 2005; Seguí-Simarro et al., 2011). Together with the
RNPs, decondensed chromatin fibers of different thicknesses
(euchromatin) were localized (Figure 6E). 5mdC immunogold
labeling revealed the ultrastructural distribution of methylated

DNA; numerous gold particles were found decorating the
large condensed chromatin masses, while no labeling was
observed in decondensed chromatin (Figure 6F). Much less
5mdC immunogold labeling was found in the rest of the
nucleus, with only a few gold particles observed as clusters
on the very small masses of condensed chromatin, and as
isolated particles (Figure 6G). The results of the 5mdC
immunogold labeling correlated with the distribution of the
5mdC immunofluorescence on the heterochromatin. Negative
controls avoiding either the denaturation step or the first
antibody did not provide gold labeling on the nucleus or any
subcellular compartment.

In barley proembryos, a completely different chromatin
organization was found. In control cultures, nuclei of barley
proembryos appeared densely stained by toluidine blue
(Figure 7A); this staining revealed a dense chromatin pattern
distributed throughout the entire nuclear area. By contrast,
barley proembryos of AzaC-treated cultures showed lower
toluidine blue staining density in their nuclei (Figure 7C),
indicating a less condensed chromatin pattern than in control
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FIGURE 4 | Effects of short AzaC treatment in microspore
embryogenesis cultures on global DNA methylation levels.
Quantification of global DNA methylation levels in control and 2.5 µM
AzaC-treated cultures of B. napus (A) and H. vulgare (B), at the proembryo
formation stage. Columns represent mean values and bars represent SEM of
5-methyl-deoxy-cytidine (5mdC) percentage of total DNA. Asterisks indicate
significant differences with the non-treated/control cultures (Student’s t-test at
P ≤ 0.05).

samples. DAPI staining provided an intense fluorescence to
proembryo nuclei of non-treated cultures (Figure 7B) while
nuclei of AzaC-treated proembryos showed less intense DAPI
fluorescence (Figure 7C), revealing a less condensed chromatin
pattern in treated nuclei. In control proembryos, the signal of
5mdC immunofluorescence was intense and distributed in a
reticular pattern (Figure 7B’). AzaC-treated nuclei showed a
less intense distribution pattern of 5mdC immunofluorescence
(Figure 7D’), when observed under the confocal microscope
with the same excitation and capture settings as those used in
non-treated nuclei. These observations suggested a decrease in
the degree of chromatin condensation in AzaC-treated nuclei.
Nucleoli appeared as non-stained (dark) rounded regions inside
the nucleus in both DAPI and immunofluorescence images
(Figures 7B,B’,D,D’).

Ultrastructural analysis by TEM showed the pattern
of chromatin condensation in barley proembryo nuclei
(Figure 7E). High magnification electron micrographs showed

heterochromatin patches distributed throughout the whole
nucleus, connected by chromatin threads of different thicknesses
(Figure 7F). In this species, the abundant condensed chromatin
masses (heterochromatin) occupied a significant proportion of
the nucleus in comparison with the euchromatin (decondensed
chromatin). The Ir that typically contained fibrillo-granular
RNPs was less abundant in barley than in rapeseed proembryo
nuclei (compare Figures 6E and 7F). The ultrastructural analysis
of the condensed chromatin pattern of barley proembryo nuclei
revealed that the distribution pattern of the heterochromatin
corresponded to that of the methylated DNA revealed by 5mdC
immunolocalization assays.

Effects of Long AzaC Treatments on
Microspore-Derived Embryo Development
Long treatments with AzaC (30 days from culture initiation,
the period in which most embryos finished their development)
were carried out to evaluate the effects of the drug on embryo
production, in the two stress-induced microspore embryogenesis
systems, rapeseed and barley. Parallel cultures were performed
in the presence and absence of the drug and the production
of embryos were analyzed in the two in vitro systems at the
embryo production stage, after 30 days of culture initiation. The
embryos found were late torpedo and cotyledonary embryos in
rapeseed (Figure 1I) and late scutellar and coleoptilar embryos
in barley (Figure 2H). The results showed a very marked
reduction of embryo production in 2.5 µM AzaC-treated cultures
in which only very few embryos were found in both species,
in contrast with control cultures which exhibited numerous
embryos (Figures 8A–D). The quantification of embryos in
control and AzaC-treated cultures demonstrated a large decrease
in the level of embryo production induced by the drug, in both
systems (Figures 8E,F).

To assess the effects of AzaC on the progression of microspore
embryogenesis after the proembryo stage, in barley microspore
cultures, treated and non-treated-cultures were monitored under
the microscope every few days until the stage in which the first
coleoptilar embryos were observed, at 21 days. The number of
proembryos (still surrounded by the exine) and the number
of developing embryos (embryos at different developmental
stages, formed after the exine breakdown) found in control
and AzaC-treated cultures were quantified at each time interval
(Figures 9 and 10).

In control cultures, responsive microspores divided during
the first days of culture and produced proembryos which reached
a proportion of one third by 10 days (Figures 9A and 10A).
Later, the number of proembryos slightly increased until day 12,
remained relatively stable for several more days and progressively
decreased until day 21 (Figures 9B and 10A). However, in
AzaC-treated cultures, the proportion of proembryos at
day 10 was significantly higher than in control cultures
(Figures 9D and 10A). During the following days, the number
of proembryos in AzaC-treated cultures progressively increased,
until day 21 (Figures 9E and 10A). The proembryos formed
during long AzaC treatments showed similar morphology and
size to the proembryos formed in non-treated cultures at early
stages (Figures 9A,D,E), and no aberrant embryo morphologies
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FIGURE 5 | Distribution patterns of methylated DNA in
microspore proembryos under control conditions and short
AzaC treatment. 5mdC immunofluorescence and confocal laser
scanning microscopy analysis in B. napus (A,B) and H. vulgare
(C,D) microspore proembryos of control (A,C) and 2.5 µM
AzaC-treated (B,D) cultures. (A–D) Nomarsky’s differential interference

contrast (DIC) images of the proembryo structure. (A′–D′) DAPI
staining of nuclei (blue). (A′ ′–D′ ′) 5mdC immunofluorescence (green).
The same structures are visualized under different microscopy modes
in (A–A′ ′, B–B′ ′, C–C′ ′, and D–D′ ′). The exine showed unspecific
autofluorescence under UV excitation in some DAPI images (C′,D′).
Bars represent 20 µm.

were observed during long AzaC treatments. These observations
suggested that, in long AzaC treatments, the proembryos that
were formed in the presence of the drug during the first days of
culture, later stopped developing.

In non-treated cultures, after the exine breakdown
embryogenesis progressed and further cell proliferation and
differentiation events, that occurred asynchronously, lead to
the formation of embryos with various sizes and shapes, the
so-called “developing embryos.” These developing embryos were
found in significant proportions from day 17 and maintained
high proportions on day 21 and later, until day 30 (Figures 9B,C
and 10B). Developing embryos were not found at earlier
stages, during the first time points studied, when proembryos
were abundant in the cultures (10–12 days; Figure 10B).
By contrast, in AzaC-treated cultures, the progression of
embryogenesis was inhibited and developing embryos were
found in extremely low proportions at all the time intervals
analyzed (Figures 9E,F and 10B).

Discussion

DNA Hypomethylation by AzaC Induces
Changes in the Chromatin Condensation
Pattern and Promotes Microspore
Reprogramming and Embryogenesis Initiation
In vivo exposure to 5-AzaC prevents the incorporation of methyl
groups to DNA cytosines leading to DNA hypomethylation.
Recently, we have shown that the microspore reprogramming
to embryogenesis is accompanied by modifications in global
DNA methylation which exhibits low levels after induction
and early embryogenesis (Solís et al., 2012; El-Tantawy et al.,
2014; Rodriguez-Sanz et al., 2014a). Therefore, with the aim of
exploring whether epigenetic inhibitors could affect the DNA
methylation dynamics during microspore embryogenesis, we
studied the effects of the demethylating agent AzaC on the
process and its potential application to improve microspore
embryogenesis induction.
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FIGURE 6 | Chromatin condensation patterns and methylated DNA
distribution in microspore proembryos of B. napus. (A–D) High
magnification light microscopy images of microspore proembryo nuclei in
control (A,B,B’) and 2.5 µM AzaC-treated (C,D,D’) cultures, observed
after toluidine blue staining (A,C), DAPI staining (B,D) and 5mdC
immunofluorescence (B’,D’) by confocal laser scanning microscopy. The
same nuclei are visualized under different microscopy modes in (B,B’),
and in (D,D’). (E–G) Transmission electron microscopy (TEM) micrographs
of nuclear regions of proembryos of control cultures. (E) Ultrastructural

organization of the nucleus that shows some condensed chromatin
masses (arrows), an extensive interchromatin region (Ir) and a large
nucleolus (Nu). (F,G) 5mdC immunogold labeling over nuclear regions of
proembryo cells; large heterochromatin masses (arrows in F) are labeled
by numerous gold particles, and nuclear regions with small condensed
chromatin masses of different sizes show lower labeling (G). No gold
particles are found on nucleolus and cytoplasms (Ct). Ex, exine; W, cell
wall separating proembryo cells. Bars represent in (A–D) 10 µm, in (E)
0.5 µm, in (F), (G) 0.2 µm.

The present work was aimed to analyze the effects of
the demethylating agent AzaC on microspore embryogenesis
induction and progression, by comparing two different plant
species, the monocot barley and the dicot rapeseed. These species
are model systems for the process in which direct embryogenesis
is induced, via different temperature stress treatments, in isolated
microspores cultured in liquid media. The results of the short

AzaC treatments demonstrated a positive effect of the drug on
microspore embryogenesis induction, at the low concentration
of 2.5 µM, increasing the percentage of microspore-derived
proembryos formed, in the two systems.

AzaC has previously been tested as an additive in the culture
medium of various in vitro systems of somatic embryogenesis and
organogenesis, mainly through the culture of organs and tissue
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FIGURE 7 | Chromatin condensation patterns and methylated DNA
distribution in microspore proembryos of H. vulgare. (A–D) High
magnification light microscopy images of microspore proembryo nuclei in
control (A,B,B′) and 2.5 µM AzaC-treated (C,D,D′) cultures observed after
toluidine blue staining (A,C), DAPI staining (B,D) and 5mdC
immunofluorescence (B′,D′) by confocal laser scanning microscopy. The same
nuclei are visualized under different microscopy modes in (B,B′), and (D,D′).

(E,F) TEM micrographs of proembryos of control cultures. (E) Panoramic view of
a proembryo surrounded by the microspore wall, the exine (Ex) showing several
cells with one large nucleus (N) per cell and dense cytoplasms (Ct). (F) Detail of
a nuclear region at high magnification; condensed chromatin masses (arrows)
appear dense to electrons and forming numerous patches of different sizes,
frequently connected by chromatin threads. Ir, interchromatin region; Nu,
Nucleolus. Bars represent in (A,C): 20 µm, in (B,B′,D,D′) 10 µm, in (E,F) 1 µm.

segments, with varying results. Most studies reported negative
effects of the drug in the production of somatic embryos (Pedrali-
Noy et al., 2001; Santos and Fevereiro, 2002; Yamamoto et al.,
2005; Nic-Can et al., 2013; Teyssier et al., 2014); there are only a
few examples in which AzaC promoted organogenesis or somatic
embryogenesis (Li et al., 2001; Belchev et al., 2004; Tokuji et al.,
2011; Fraga et al., 2012). In these previous studies, the range of
concentration of AzaC has been very variable and high (from
10 to 200 µM). Therefore, a dose response effect with possible
secondary effects and cell toxicity could occur in these in vitro
systems, as previously reported (Juttermann et al., 1994; Teyssier
et al., 2014). In addition, data on AzaC effects on early events of

the process have not yet been analyzed. In the present work, lower
concentrations of AzaC have been tested, 2.5, 5, and 10 µM, and
their effects on cell death have been evaluated; the results of these
analyses reveal that cultures with the lowest AzaC dose (2.5 µM)
showed slightly lower proportions of dead cells than non-treated
cultures, indicating that at this concentration the drug has no
toxic effects on isolated microspore cultures. Therefore, 2.5 µM
was the concentration selected for the treatments. Moreover, the
quantification of global DNA methylation indicates that 2.5 µM
AzaC significantly decreased the DNA methylation level of cells
in microspore cultures of the two species studied, at precisely the
same culture stage as when we detected significant increases in
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FIGURE 8 | Effects of long AzaC treatment on embryo
production yield. (A–D) Plates showing the microspore-derived
embryos produced in control (A,C) and 2.5 µM AzaC-treated
(B,D) cultures of B. napus (A,B) and H. vulgare (C,D), after
30 days. (E,F) Quantification of the embryo production in control

and 2.5 µM AzaC-treated cultures of B. napus (E) and H. vulgare
(F). In histograms (E,F), columns represent mean values and bars
represent SEM of the total number of embryos per Petri dish.
Asterisks indicate significant differences with the non-treated/control
culture sample (Student’s t-test at P ≤ 0.05).

proembryo formation. These results indicate that, in rapeseed
and barley, while the stress treatment induces microspore
reprogramming and proliferation, concomitantly, AzaC-induced
DNA hypomethylation promotes microspore embryogenesis
initiation and formation of proembryos a few days after culture
initiation.

Reprogramming and acquisition of cellular totipotency
involve activation of numerous genes associated with the
new developmental program and/or repression of genes of
the original cell program. The way in which differentiating
plant cells remodel their gene expression program during
the acquisition of cell totipotency is a central question which
involves large-scale chromatin reorganization (Tessadori et al.,

2007). Changes in chromatin organization and variations in
the level of global DNA methylation have been associated with
several different in vitro plant regeneration processes (Loschiavo
et al., 1989; Miguel and Marum, 2011). Also during microspore
embryogenesis, remodeling of the chromatin organization
patterns have been characterized in various species like pepper,
tobacco, and rapeseed (Testillano et al., 2000, 2002, 2005;
Bárány et al., 2005; Seguí-Simarro et al., 2011). In these previous
studies, comparative analyses were performed between the
gametophytic and the sporophytic pathways followed by the
microspore, permitting the identification of defined nuclear
changes that occurred when the microspore reprogrammed
and switched to embryogenesis. These reports showed that
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FIGURE 9 | Progression of microspore embryogenesis in control and
AzaC-treated cultures of barley. Micrographs of microspore cultures
observed at different time points. (A–C) Control cultures. (D–F) 2.5 µM
AzaC-treated cultures. (A,D) 10 day-old cultures showing typical rounded
proembryos surrounded by the exine, clearly distinguished by their size and
density (higher than those of microspores), together with non-responsive and
dead microspores; in AzaC-treated cultures (D) a higher proportion of
proembryos than in control cultures is observed. (B,E) 21 day-old cultures;
control cultures (B) show developing embryos of different sizes which were
formed after the breakdown of the exine, they exhibit much larger size and
more density than the proembryos and microspores still present in the culture.
AzaC-treated cultures (E) do not progress and contain mostly proembryos.
(C,F) 30 day-old cultures; in control cultures (C) embryos at advanced
developmental stages (transitional and coleoptilar embryos) are observed,
whereas no embryos are found in AzaC-treated cultures (F) at the same time
point.

the change of developmental program and the activation of
proliferative activity (at the initiation of embryogenesis) affected
the functional organization of the nuclear domains, which
changed their architecture and functional state accordingly.
Ultrastructural and in situ localization approaches revealed the
pattern and functional states of chromatin and demonstrated
the relation between the nuclear activity and the degree of
chromatin condensation/decondensation. Regardless of the
heterochromatin distribution pattern typical of each species,
after microspore embryogenesis induction, the pattern of
chromatin was less condensed in proembryos than in cells
that follow the gametophytic development. Early microspore
proembryos were characterized by a typical decondensed
chromatin pattern, also found in proliferating cells of several
plant species (Testillano et al., 2000, 2002, 2005; Bárány
et al., 2005; Seguí-Simarro et al., 2011). De novo auxin
biosynthesis and accumulation has been recently reported

FIGURE 10 | Effects of long AzaC treatment on microspore
embryogenesis progression in barley. Quantification of the percentage of
proembryos (A) and developing embryos (B) observed at different time
intervals (10, 12, 17, and 21 days) during microspore embryogenesis
progression in control (gray columns) and 2.5 µM AzaC-treated (black
columns) cultures of barley. Columns represent mean values and bars
represent SEM. Asterisks indicate significant differences with the
non-treated/control culture sample at each time point, days in culture
(Student’s t-test at P ≤ 0.05).

in early microspore embryogenesis, from the first divisions
(Rodriguez-Sanz et al., 2015). This auxin accumulation
has been related to the activation of proliferative activity
in the reprogrammed microspore and early proembryo
cells.

The results of the ultrastructural analysis of the
chromatin condensation patterns together with the 5mdC
immunofluorescence and immunogold assays presented here
illustrate that AzaC-treatments not only decrease global DNA
methylation levels but also modify the distribution pattern of the
methylated DNA in the nucleus leading to more decondensed
chromatin patterns in proembryo cells. In B. napus, the size
and number of heterochromatin masses, enriched in 5mdC,
diminished in proembryo cells treated with AzaC. Also in
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barley, the hypomethylating drug affected methylated DNA
distribution and chromatin condensation patterns, which
changed into more decondensed chromatin threads. In animals,
cell totipotency and pluripotency have been associated with a
global chromatin reorganization and decondensation leading to
the so-called “open chromatin state” in which specific histone
modifications and DNA hypomethylation, among other factors,
have been shown to be involved. This open chromatin structure
is required for the cell to maintain its totipotent state, ready
for transcriptional activation (Shi et al., 2008; Gaspar-Maia
et al., 2011; Gonzalez-Muñoz et al., 2014). In animals, after
fertilization and the formation of the zygote (totipotent)
chromatin is decondensed and acquires specific epigenetic
marks (Burton and Torres-Padilla, 2010). High mobility of core
histones, remodeling of constitutive heterochromatin marks,
and acquisition of specific permissive histone modifications
have been suggested as required features for the chromatin
state compatible with cellular reprogramming (Burton and
Torres-Padilla, 2010; Boskovic et al., 2014; Lu and Zhang,
2015). In plants, cellular reprogramming has been associated
with nuclear changes including chromatin decondensation,
reduction in heterochromatin and changes in DNA methylation
and histone modifications landscapes (Solís et al., 2012; She
et al., 2013; El-Tantawy et al., 2014; Rodriguez-Sanz et al.,
2014b). In Arabidopsis, after fertilization, distinct chromatin
patterns have been reported in the zygote (totipotent) and
endosperm (Pillot et al., 2010), patterns that have been associated
with differential epigenetic and transcription patterns in the
zygote/embryo and endosperm (Pillot et al., 2010) and could
underlay the totipotency acquisition in the zygote. By contrast,
DNA hypermethylation, and repressive histone modifications
has been associated with heterochromatization and cell
differentiation in animal and plant systems (Lippman et al., 2004;
Solís et al., 2012; El-Tantawy et al., 2014; Rodriguez-Sanz et al.,
2014b).

Recently, it has been shown that the change of developmental
program of the microspore toward embryogenesis is
accompanied by modifications in global DNA methylation
(Solís et al., 2012; El-Tantawy et al., 2014; Rodriguez-Sanz
et al., 2014a) and changes in histone epigenetic modifications
(Rodriguez-Sanz et al., 2014b). These facts indicate that an
epigenetic reprogramming occurs after the induction of the
microspore to a totipotent state and embryogenesis initiation.
Recent work by our group with B. napus (Rodriguez-Sanz
et al., 2014b) suggested the participation of the dimethylated
histone H3K9me2, a repressive mark, and histone methyl
transferases (HKMTs) in microspore embryo cell differentiation
and heterochromatinization events, whereas the acetylated
histones H3Ac and H4Ac, permissive marks, and histone acetyl
transferases (HATs) were involved in transcriptional activation
and totipotency during microspore reprogramming. In addition,
the reported changes of the DNA methylation (Solís et al., 2012)
that occur after microspore embryogenesis induction lead to low
methylation levels in early embryo stages. DNA hypomethylation
is associated with the change of developmental program and
with the activation of cell proliferation at the beginning of
embryogenesis, and this DNA hypomethylation appears to be

related to a global change of gene expression (Solís et al., 2012).
AzaC would facilitate/promote DNA hypomethylation and
chromatin decondensation of cells stimulating reprogramming,
totipotency acquisition, and early proembryo divisions and,
therefore, increasing the efficiency of embryogenesis initiation.
In mammalian cells, AzaC has been reported to induce expression
of silenced genes, through demethylation of specific genome
regions, and even to increase the expression of unmethylated
genes by affecting histone methylation (Zheng et al., 2012).
The DNA hypomethylation induced by AzaC could favor the
deactivation of the gene expression program of the microspore
to the pathway and the activation of a new gene expression
program which promotes totipotency of a differentiating cell, the
microspore, and the beginning of its active proliferation and cell
cycle division.

In vivo exposure of Allium cepa root meristems to 5-
AzaC (10−6M) stimulated the rate of nucleologenesis and
shortened its cycle time (De-La-Torre et al., 1991; Mergudich
et al., 1992). In AzaC-treated proliferating root cells, nucleoli
on the hypomethylated NORs were larger, a sign of high
transcriptional activity, as demonstrated by the increase of
the rate of [3H]uridine incorporation in AzaC-treated root
cells (Mergudich et al., 1992). The vacuolated microspore,
the most responsive stage for embryogenesis induction,
has been characterized by a high transcriptional activity
which is reflected by a large nucleolus and a decondensed
chromatin pattern (Testillano et al., 2000, 2005; Seguí-Simarro
et al., 2011). The positive effect of AzaC on microspore
embryogenesis induction could also be due in part to the
activation of nucleolar activity and nucleologenesis rate which
would promote cell cycle divisions of the reprogrammed
microspore.

Furthermore, the results presented here show that the
same effects of AzaC (DNA hypomethylation, chromatin
decondensation and an increase in microspore embryogenesis
induction rates) are found in the two species studied, a
monocot and a dicot plant, suggesting common epigenetic
mechanisms during microspore embryogenesis induction in both
phylogenetic groups.

DNA Methylation is Required for Microspore
Embryo Differentiation and Long AzaC
Treatment Prevents the Subsequent Embryo
Development
In the present work, we have also analyzed the effects of the
demethylating agent AzaC on the progression of microspore
embryogenesis during subsequent developmental stages after the
induction and the formation of proembryos. For this purpose,
longer treatments of 2.5 µM AzaC were applied to microspore
cultures. The results revealed that, in contrast with short
AzaC treatments which promoted embryogenesis initiation and
proembryo formation, longer treatments prevented subsequent
embryogenesis progression. The proembryos formed in AzaC-
treated cultures during the first days of treatment were
also observed during the following days and, although their
development had stopped, they did not show any aberrant
morphology.
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During development, in relation to differentiation processes,
the pattern of DNA methylation in the genome changes
as a result of a dynamic process involving both de novo
DNA methylation and demethylation. As a consequence,
differentiated cells acquire a stable and unique DNA methylation
pattern that regulates tissue-specific gene transcription. The
progress of the cellular differentiation has been related to a
rapid increase in global DNA methylation levels in various
plant developmental processes (Costa and Shaw, 2006, 2007;
Malik et al., 2012). In mammals, heterochromatin increases
dramatically during terminal cell differentiation and this
has been linked to increased levels of DNA methylation
(Politz et al., 2013). In Arabidopsis, embryos with loss-of-
function mutations of the DNA methyltransferases MET1
and CMT3 (responsible of methylating DNA) develop
improperly, indicating that DNA methylation is critical for
plant embryogenesis (Xiao et al., 2006). Recent studies by
our group have demonstrated the increase of global DNA
methylation during microspore embryogenesis progression
in rapeseed (Solís et al., 2012) and barley (El-Tantawy
et al., 2014). This hypermethylation was associated with the
heterochromatization that accompanies cell differentiation in
advanced embryogenesis stages (Solís et al., 2012; El-Tantawy
et al., 2014). In addition, the gene expression of the MET1
DNA methyltransferase has been reported to increase during
late stages of pollen maturation, tapetum developmental PCD,
and differentiation of embryos originated from zygotes and
microspores, in B. napus (Solís et al., 2012, 2014). This increase
in MET1 expression correlated with the increase in global
DNA methylation and heterochromatization events (Solís
et al., 2012, 2014). In the present work, the dynamics of
DNA methylation has been altered by a demethylating agent,
AzaC. The analysis of the effects of AzaC on the progression
of microspore embryogenesis reported here showed that the
drug clearly prevented embryo differentiation (hypermethylated
stage), whereas AzaC promoted embryogenesis initiation
(hypomethylated stage). The presence of the drug from the
beginning until advanced stages blocked the process at the
proembryo stage, which indicates that de novo DNA methylation

is required for subsequent microspore embryo differentiation
processes.

Conclusion

Epigenetic inhibitors affecting DNA methylation, such as
AzaC, provide a promising way for intervention through
pharmacological assays to improve the efficiency of plant
regeneration by stress-induced embryogenesis in vitro
systems, as well as a convenient tool to investigate the
role of DNA methylation dynamics in these processes. The
results reported here demonstrated that AzaC increases
microspore embryogenesis induction rates by inducing DNA
hypomethylation and chromatin decondensation, at early stages.
By contrast, subsequent embryo development is drastically
affected by AzaC, suggesting that microspore-derived embryo
differentiation requires de novo DNA methylation. The present
study illustrates that low concentration and short duration of
the AzaC treatment, at defined early stages, are critical points to
achieve positive effects in terms of microspore embryogenesis
efficiency, 2.5 µM AzaC for 4 days from culture initiation
is a suitable treatment for promoting the induction of the
process in isolated microspore cultures of two different species,
rapeseed and barley. The results suggest common epigenetic
mechanisms in both monocot and dicot plant systems and open
the way to design new biotechnological strategies for improving
doubled-haploid production in crop breeding programs.
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