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Until the 1970’s of the last century sulfur (S) was mainly regarded as a pollutant
being the main contributor of acid rain, causing forest dieback in central Europe. When
Clean Air Acts came into force at the start of the 1980’s SO2 contaminations in the
air were consequently reduced within the next years. S changed from an unwanted
pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer
“fertilized” indirectly by industrial pollution. S deficiency was first noticed in Brassica
crops that display an especially high S demand because of its content of S-containing
secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased
even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza
brassicae was observed in oilseed rape in the beginning 1990’s and the concept of
sulfur-induced-resistance (SIR) was developed after a relationship between the S status
and the disease incidence was uncovered. Since then a lot of research was carried out
to unravel the background of SIR in the metabolism of agricultural crops and to identify
metabolites, enzymes and reactions, which are potentially activated by the S metabolism
to combat fungal pathogens. The S status of the crop is affecting many different plant
features such as color and scent of flowers, pigments in leaves, metabolite concentrations
and the release of gaseous S compounds which are directly influencing the desirability of
a crop for a variety of different organisms from microorganisms, over insects and slugs to
the point of grazing animals. The present paper is an attempt to sum up the knowledge
about the effect of the S nutritional status of agricultural crops on parameters that are
directly related to their health status and by this to SIR. Milestones in SIR research are
compiled, open questions are addressed and future projections were developed.

Keywords: nutrient induced resistance, S fertilization, plant S metabolism, fungal diseases, biotrophic and

necrotrophic pathogens

NUTRIENT INDUCED RESISTANCE
Already Justus von Liebig identified in 1873 the nutritional sta-
tus of a crop as crucial for its susceptibility against diseases.
Interactions between mineral elements and plant diseases are
established for several macro- and microelements. An overview
of current knowledge on the effect of mineral nutrition on plant
diseases was compiled by Datnoff et al. (2007).

A sufficient nutrient supply is the first agricultural measure
against infection and determines the course of pathogenesis. In
general, the greatest benefit can be expected when all essential
nutrients are applied in sufficient amounts; however, the response
to a particular nutrient may be different when going from defi-
ciency to sufficiency than from sufficiency to excess (Huber and
Haneklaus, 2007). For nitrogen it was shown that fertilizer appli-
cation above recommended rates can lead to significantly greater
disease incidences (Walters and Bingham, 2007). Strengthening
the natural plant resistance is an important aspect of fertilization
practice and modern fertilizers deliver the possibility to indi-
vidually treat each kind of nutrient deficiency by tailored-made
products. All essential plant nutrients have a direct impact on
plants, pathogens, and microbial growth so that all of them as

well as their proportions are important in disease control and
will affect disease incidence or severity (Huber and Haneklaus,
2007). This illustrates an important problem in investigating
the metabolic background of sulfur induced resistance (SIR):
Plant pathogen response is determined by several interacting
factors—different nutrients and their interactions, soil param-
eters, climatic conditions, pathogens, water supply and much
more. Therefore, it is nearly impossible to investigate the response
to a certain pathogen in relation to S under natural conditions
without having interacting parameters.

PROGRESS IN RESEARCH ON SULFUR INDUCED
RESISTANCE (SIR)
The fungicidal effect of foliar-applied elemental S (S0) was already
discovered by William Forsyth in 1802 and S0 was used as
the most important fungicide until the development of organic
fungicides. The effects of foliar-applied elemental S have to be
clearly distinguished from the health promoting effects of soil
applied S on which SIR is based. The term SIR which denotes
the reinforcement of the natural resistance of plants against fun-
gal pathogens through triggering the stimulation of metabolic
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processes involving S by targeted soil-applied fertilizer strategies
was first introduced by Schnug et al. (1995). In subsequent stud-
ies the term sulfur enhanced defense (SED) was used as synonym
to prevent misinterpretation of the term resistance in a phy-
topathological context (Rausch and Wachter, 2005; Kruse et al.,
2007).

Different research areas are of major relevance when investi-
gating the background of SIR. The most important milestones in
plant S research with respect to SIR are summarized in Table 1.
Here important discoveries such as the detection of the Foyer-
Halliwell-Asada pathway or the mustard oil bomb are listed as well
as important technical developments.

The achievements made in gene transfer, by which the possi-
bility to work with genetically modified plants was established, as
well as the elucidation of the Arabidopsis genome promoted the
progress in plant S research tremendously (Chilton et al., 1977).
Experimentation with knock-out mutants delivered deep insight
into plant metabolism and cross-talk between different pathways
(Thomma et al., 1998; Kopriva, 2006; Parisy et al., 2006).

A lot of efforts were undertaken to understand the S assim-
ilation pathway in plants, the transport of S into plants, and
the storage and regulation of the S metabolism (Table 1). Since
the completion of the Arabidopsis genome research has made
considerable progress.

For example a range of S transporters carrying S containing
metabolites within and between cells and over long-distance have
been characterized, some of them just recently (Gigolashvili and
Kopriva, 2014). In glucosinolate research the biosynthesis as well
as its regulation was nearly explained in the last years (Halkier and
Gershenzon, 2006).

Technical progress such as the development of macroarray
hybridization can be seen as a further important milestone. Jost
et al. (2005) recorded the reaction of more than 2000 selected
genes of Arabidopsis thaliana to methyl jasmonate (JA) elicitation,
a signaling compound in host-pathogen interactions. The authors
could show that S-related genes were even more up-regulated
due to methyl JA treatment than stress-related genes and that
more than one pathway is involved in plant stress response. Gene
expression of the ascorbate and glutathione metabolic pathways
increased in response to JA as well as the synthesis of indole glu-
cosinolates (Sasaki-Sekimoto et al., 2005). Moreover it was shown
that imbalances in cytosolic cysteine alter the expression of groups
of genes involved in pathogen response (Alvarez et al., 2012).
Therefore, macroarray analysis delivers the opportunity to inves-
tigate and understand the network and cross-talk of metabolic
pathways.

But despite of these great advances in scientific discoveries and
technologies delivering several pieces of the puzzle of SIR, many
questions remain open. It is still under discussion which reactions
or compounds are responsible for the higher resistance of plants
in relation to the S supply and how it is possible to induce a higher
resistance and use this by advanced fertilizer application.

PHYSIOLOGICAL BACKGROUND OF SIR
Plants have developed several defense mechanisms in response
to stress and react to a certain pathogen attack through a com-
bination of constitutive and inducible defense with S-containing

compounds being involved compiled by Bloem et al. (2005). In
principle plants have three major strategies to combat pathogens:
cell wall strengthening, apoplastic defense for inhibition of micro-
bial enzymes and poisoning of the pathogen by toxic compounds
like phytoalexins (Huckelhoven, 2007).

Initial pathogen recognition causes responses such as oxida-
tive burst with the production of reactive oxygen species (ROS)
and cell wall lignification (Swarupa et al., 2014). ROS serve as
major signaling molecules in plant defense and are closely linked
to the S metabolism via the Foyer-Halliwell-Asada pathway where
glutathione is involved in the detoxification of ROS (Foyer and
Halliwell, 1976). Via this link to ROS the S metabolism is linked
to pathogen recognition and activation of the defense network.

The complexity of plant stress responses became obvious in
several infection trials. S metabolites such as cysteine, glutathione,
gaseous S emissions, phytoalexins, glucosinolates, and elemen-
tal S depositions have been investigated for their role in plant
defense and how targeted S applications may prompt and enhance
crop resistance to fungal pathogens (Bloem et al., 2007; Haneklaus
et al., 2007, 2009). For most S containing metabolites a direct anti-
fungal mode of action was proven (Table 2). Cysteine is the main
precursor for all S containing compounds and is directly linked to
stress response via its function related to systemic acquired resis-
tance (Luckner, 1990). Cysteine displays a regulatory function
in pathogen defense. It was shown that a specific cytosolic cys-
teine content is mandatory for the initiation of the plant immune
response to pathogens and a link to the hypersensitive response
(HR) was proven (Alvarez et al., 2012).

Glutathione displays a central function in plant defense as well:
it is an important redox buffer in cells as it exists in a reduced form
(GSH) which can react with another molecule of reduced glu-
tathione (GSH) to form the oxidized disulfide form (GSSG) and
which is restored by the enzyme glutathione reductase (Leustek
et al., 2000). The ratio of reduced to oxidized glutathione delivers
already an important information as it decreases under stress con-
ditions that consume reducing equivalents. Moreover, glutathione
is supposed to be involved in stress signaling, the detoxification
of xenobiotics, it is the precursor of phytochelatines, which are
important for heavy metal detoxification, acts as transport and
storage form of reduced S and has a regulatory function in S
assimilation (Leustek et al., 2000). These manifold functions illus-
trate the major importance of glutathione in plant S metabolism
and stress response.

A direct antifungal mode of action was determined for S-rich
proteins, phytoalexins such as camalexin, elemental S and the
degradation products build from glucosinolates (Mithen, 1992;
Kuć, 1994; Cooper et al., 1996; Wallsgrove et al., 1999; Hughes
et al., 2000; Williams et al., 2002; Stec et al., 2004; Glawischnig,
2007). The toxicity of S-rich proteins such as thionins is explained
by their ability to generate ion channels in cell membranes of
pathogens and by this disturbing ion concentration gradients and
cellular homeostasis (Shai, 1999; Hughes et al., 2000).

The antifungal mode of action of S0 can be explained by its
lipophilic character. S0 may enter directly through the fungal cell
wall disturbing redox reactions in the metabolism of the pathogen
(Beffa, 1993). Beffa (1993) suggested that the fungicidal action
of S0 is mainly related to the oxidation of important sulfhydryl
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Table 1 | Discoveries and progress in plant sulfur (S) research with respect to sulfur induced resistance (SIR) during the twentieth century.

Year Scientific discoveries References

1802 • William Forsyth discovered the fungicidal effect of elemental S Forsyth, 1802

1860 • S was recognized as an essential plant nutrient, required for growth Woodard, 1922

1872 • Robert Angus Smith coined the term “acid rain” Seinfeld and Pandis, 1998

1956 • The common structure of glucosinolates was discovered Ettlinger and Lundeen, 1956

1973 • Elucidation of the major steps in glucosinolate biosynthesis Underhill et al., 1973

1976 • First description of the Foyer-Halliwell-Asada-cycle Foyer and Halliwell, 1976

1977 • Agrobacterium tumefaciens- mediated gene transfer Chilton et al., 1977

1979 • SO2 exposure increase the glutathione content in sensitive trees Grill et al., 1979

1982 • Description of the glutathione metabolism in higher plants and its function in transport, storage
and detoxification of xenobiotics

Rennenberg, 1982

• Detection of hydrogen sulfide (H2S) emissions from leaf tissue in response to L-cysteine feeding Sekiya et al., 1982

1984 • Description of the stimulating effect of abiotic stress and the restrictive impact of S deficiency on
synthesis of S containing secondary plant metabolites

Gershenzon, 1984

• Description of the “mustard oil bomb,” a model of the subcellular organization of the
glucosinolate-myrosinase system

Lüthy and Matile, 1984

1986 • Demonstration that leaf glucosinolates of Brassica napus can control fungal infection by
Leptospheria maculans

Mithen et al., 1986

1989 • Plants can take up and use atmospheric H2S as S source De Kok et al., 1989

1990 • Localization of the γ-glutamylcysteine synthetase in higher plants Hell and Bergmann, 1990

1994 • The term “sulfur induced resistance” (SIR) was introduced after field trials unraveled a relationship
between S nutrition and plants susceptibility toward fungal diseases

Schnug et al., 1995

• Significance of glutathione in plants under stress was demonstrated Rennenberg and Brunold, 1994

• Concept of “biofumigation” was developed Angus et al., 1994

1995 • Isolation of three sulfate transporters for sulfate uptake by plant roots Smith et al., 1995

1996 • Detection and cellular localization of elemental S in disease resistant genotypes of Theobroma
cacao

Cooper et al., 1996

1999 • Overexpression of serineacetyltransferase (SAT) caused increased cysteine and glutathione
contents accompanied by an increased resistance to oxidative stress

Blaszczyk et al., 1999

2000 • Interaction of sulfate reduction with N nutrition and major role of O-acetylserine in this regulation
was shown at the transcriptional level

Koprivova et al., 2000

2001 • Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase Eilers et al., 2001

2003 • Application of DNA macroarray technique to investigate the gene-to-metabolite networks
regulating the S metabolism of Arabidopsis

Hirai et al., 2003

2004 • The regulatory function of the O-acetylserine(thiol)lyase (OAS-TL) in the S assimilation pathway
was shown

Wirtz et al., 2004

2005 • Introduction of the term “sulfur enhanced defense” (SED) Rausch and Wachter, 2005

• Higher susceptibility of S deficient oilseed rape for different pathogens Dubuis et al., 2005

• The link between S assimilation and the stress hormone jasmonate (JA) was proven by
macroarray technique

Jost et al., 2005

2006 • Identification of PAD2 as a γ-glutamylcysteine synthetase and the importance of glutathione in
pathogen defense

Parisy et al., 2006

2009 • Indole glucosinolate biosynthesis and hydrolysis is required for callose accumulation in response
to microbial pathogens

Clay et al., 2009

2012 • A shift from plant COS uptake to COS release with fungal infection Bloem et al., 2012

• Regulatory role of cytosolic cysteine/cytosolic OAS-TL in plant immune response Alvarez et al., 2012; Tahir et al., 2013

groups. S0 depositions in the vascular tissue of resistant vari-
eties of Theobroma cacao in response to infection by Verticillium
dahliae were considered as defense reaction causing the resistance
of these varieties (Cooper et al., 1996; Resende et al., 1996).

Native glucosinolates display no fungal toxicity in contrast
to their hydrolysis products, the isothiocyanates (ITC), which
display a strong antimicrobial activity (Manici et al., 1997).
Fungal inhibition is caused by irreversible reactions of ITC’s with

functional groups of proteins resulting in enzyme inactivation
(Brown and Morra, 1997). In accordance with this not only the
biosynthesis of indole glucosinolates was up-regulated by ethylene
signaling after pathogen recognition in Arabidopsis but also the
expression of myrosinase enzymes which catalyze their hydrol-
ysis (Clay et al., 2009). Additionally the biosynthesis of indole
glucosinolates was shown to be required for callose depositions
in response to microbial pathogens (Clay et al., 2009). Therefore,
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Table 2 | Possible mode of action of S-containing plant compounds in stress resistance and in response to fungal infection.

Compound Mode of action in stress resistance and after fungal infection References

Cysteine −Precursor for all relevant S containing metabolites
−Cytosolic cysteine has a regulatory function in the establishment and

signaling of the plant response to pathogens
−Increase with fungal infection
−Link to salicylic acid and by this to systemic acquired resistance via CoASH

and essential for the initiation of the hypersensitive response (HR)

Luckner, 1990; Bloem et al., 2007; Alvarez
et al., 2012

Glutathione −Participation in antioxidative defense
−Detoxification of xenobiotics by targeting them into the vacuole
−Involved in phytochelatine biosynthesis/ detoxification of heavy metals
−Messenger in the hypersensitive response (HR)
−Rapid accumulation after fungal attack

Edwards et al., 1991; Rea et al.,
1998;Leustek and Saito, 1999; Cobbett,
2000; Foyer and Rennenberg, 2000;
Vanacker et al., 2000

S-containing volatiles −H2S causes disturbances in redox reactions
−Release of H2S and COS increased with fungal infections

Bloem et al., 2007, 2012

S-rich proteins −Pathogen-induced or constitutive expression (defensins)
−Thionins are enhanced locally and systemically after infection
−Toxic mode of thionins: disruption of the cell wall structure; generation of

ion channels

Hughes et al., 2000; Stec et al., 2004;
Kruse et al., 2007

Phytoalexins −De-novo synthesis after pathogen attack Kuć, 1994

S0 −S0 accumulates after fungal infection in vascular tissue
−Disturbances of the respiratory chain
−Oxidation of sulfhydryl groups

Beffa, 1993; Cooper et al., 1996; Williams
et al., 2002

Glucosinolates −Their degradation products (isothiocyanates) exhibit a toxic and repellent
effect → reason for its use in biofumigation

Mithen, 1992; Wallsgrove et al., 1999

glucosinolate biosynthesis seems to be involved in pathogen
defense in more than one way in glucosinolate containing
plants.

The concentrations of all S containing metabolites, the amino
acids cysteine and methionine as well as primary and secondary
S compounds were reduced with S deficiency or can be increased
by S fertilization (Salac et al., 2005; Bloem et al., 2007). It was
observed that the gas exchange of H2S and carbonyl sulfide (COS)
between plants and atmosphere changed in relation to S sup-
ply and fungal infection. As long as enough S is available plants
release H2S into the atmosphere. This happens most likely to
reduce excess S in their metabolism or as a signal molecule
(Rennenberg, 1984; Bloem et al., 2012). Under conditions of S
deficiency plants take up and use gaseous S compounds from the
ambient air (De Kok et al., 1989).

Linear relationships were determined between the S supply
and most of the mentioned S containing compounds. When
next to the S supply a fungal infection was studied the results
became less conclusive (Bloem et al., 2004; Salac et al., 2005). In
many trials S fertilization decreased fungal infection (Wang et al.,
2003). But in some trials no effect on disease severity could be
determined despite of the fact that a stress response occurred,
indicated by changes in the S metabolism (Salac et al., 2005).
The S metabolism is only one branch of the overall plant stress
response. Several other pathways and metabolites are involved
(Bennett and Wallsgrove, 1994; Morrissey and Osbourn, 1999).

Amongst others flavonoids and phenolics are shown to be major
biochemical marker against fungal infections (Shanmugam et al.,
2010; Datta and Lal, 2012). Cell wall strengthening is another
important resistance response against fungi as it helps to inhibit
pathogen entry. Accumulation of cell wall-bound phenolics, the
monomers of lignin, is part of this process (Swarupa et al.,
2014). It was shown that cell wall-bound phenolics increase
together with soluble phenolics in plant tissue after fungal infec-
tion (Huckelhoven, 2007). Moreover several studies show a close
link between the S metabolism, mineral deficiency or increased
internal demand and hormonal signaling by methyl jasmonate
and possibly other hormones (Hirai et al., 2003; Saito, 2004; Jost
et al., 2005) (Figure 1).

Table 3 gives an example which changes occur in the S
metabolism in response to S fertilization and fungal infection
(Bloem et al., 2012). Brassica napus was artificially infected by
Sclerotinia sclerotiorum and the plants displayed strong symptoms
of S deficiency without S application.

With increasing S supply total S and SO4-S increased in leaves
as well as the cysteine and glutathione content (Table 3). Only
γ–glutamylcysteine, which is an intermediate in the biosynthe-
sis of glutathione, was lower with S fertilization indicating to a
fast turn-over to build glutathione under these conditions. H2S
exchange shifted from uptake, indicated by the negative value in
S deficient plants, to H2S release in the fertilized ones. COS was
taken up in S fertilized as well as in non-fertilized plants.
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FIGURE 1 | Sulfur metabolites and pathways involved in the defense against fungal pathogens in Brassica species. Metabolites in yellow boxes were
found to increase after fungal attack (Williams and Cooper, 2004; Glazebrook, 2005; Jost et al., 2005; Kruse et al., 2007; Bloem et al., 2012).

Infection with S. sclerotiorum caused significant changes in the
S metabolism. The total S content decreased as well as cysteine
and γ–glutamylcysteine while glutathione significantly increased.
Additionally plants were analyzed for their potential to take up or
release H2S and COS in the first days after infection (Bloem et al.,
2012). In Table 3 the data from 2 days after infection are shown
when the strongest plant response was observed. H2S release was
significantly increased by infection. The change in COS was even
more striking as COS was changed from uptake to release (Bloem

et al., 2012). The data clearly revealed that plants responded to the
infection by several changes in their S metabolism. Nevertheless,
the visual scoring revealed that the infection rate was not reduced
by the higher S supply at this stage of infection (see Bloem et al.,
2012).

Likewise Raj and Srivastava (1977) showed that the total S
content of infected tissue of Brassica juncea was inversely corre-
lated with the pathogenicity of different isolates of Macrophomina
phaseolina and suggested that the pathogens are able to
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Table 3 | Impact of S nutrition and fungal infection with Sclerotinia sclerotiorum on the S status, S-containing metabolites and the release of

gaseous S compounds from Brassica napus (variety Heros) at stem elongation (data derived from Bloem et al., 2012).

Total S SO4-S Cysteine γ-GC GSH1
tot H2S2 COS2

[mg g−1 dw] [nmol g−1 dw] [pg min−1 g−1 dw]

S fertilization 0 0.74 b 0.11 b 37.4 b 87.6 a 276 b −91 b −63 a

[mg pot−1] 250 5.63 a 1.34 a 232.0 a 39.8 b 2370 a 41 a −174 a

Infection with no 4.28 a 0.73 a 236.0 a 88.4 a 1383 b 41 a −174 b

Sclerotinia sclerotiorum yes 2.75 b 0.83 a 114.2 b 38.9 b 1851 a 123 b 382 a

1GSHtot , total glutathione content.
2The gas measurement was performed on non-infected control plants to determine the effect of S fertilization and from S fertilized plants that were infected for

2 days for the impact of infection. Sulfur contents and metabolites were determined in leaf material of B. napus while the gas release was measured from whole

intact plants.

metabolize S from the host plant. Losses in total S with fungal
infection could be also explained by the release of gaseous S com-
pounds like shown in Table 3. In some studies also a higher total
S content was observed in response to infection indicating to an
up-regulation of the S assimilation due to infection. Most likely it
is the timing of sampling or the degree of infection which deter-
mine if an increase or decrease of a compound is determined in
response to infection as a cascade of reactions takes place (Bloem
et al., 2007).

A direct relationship between fungal infection and S
metabolism as shown exemplary in Figure 1 was also found
for other host-pathogen interactions. Infection of oilseed rape
with Pyrenopeziza brassicae increased the cysteine and glutathione
content in leaves as well as the activity of the L-cysteine-
desulfhydrase, an enzyme that releases H2S during cysteine degra-
dation (Bloem et al., 2004). A higher release of H2S after fungal
infection was determined in grapes (Vitis vinifera L.) infected
by Uncinula necator (Bloem et al., 2007). Gaseous S compounds
seem to be involved in stress response but to date their function is
not fully understood. A possible role could be in stress signaling or
as regulatory compounds comparable to the effect in mammalian
cells where H2S is involved in the regulation of the intracellular
redox-homeostasis and glutathione generation (Ju et al., 2013).

Also Kruse et al. (2007) determined a steep and fast increase
not only for H2S, but also for cysteine, glutathione and phytoalex-
ins during the initial phase of pathogenesis. The important role
of cysteine in pathogenesis was proven by Alvarez et al. (2012)
and Tahir et al. (2013). Alvarez et al. (2012) could show that
mutants with increased cytosolic cysteine content are resistant
to biotrophic as well as necrotrophic pathogens, while mutants
with decreased cytosolic cysteine contents are more susceptible.
Also Tahir et al. (2013) found that decreased cytosolic cys-
teine contents resulted in enhanced disease susceptibility against
infection with virulent and non-virulent Pseudomonas syringae
strains.

Though the sequence, magnitude and efficacy of all individ-
ual S metabolites involved in the activation and strengthening of
plant defenses by S fertilization are not yet fully known, these
could be released in a chain reaction triggered by the pathogen
and mediated by the S status of the plant (Haneklaus et al.,
2006). It seems possible that infection triggers the activation of
all effective resistance mechanisms of the host.

Trials where the effect of S nutrition on fungal infection was
studied are compiled in Table 4. Plant pathogens are often divided
into biotrophs and necrotrophs despite of the fact that there
are several transitions. Biotrophs feed on living host tissue while
necrotrophs cause die-off and feed on the remains (Glazebrook,
2005). SIR was proven for biotrophic and necrotrophic pathogens
(Table 4). Different mechanisms in pathogen response are impor-
tant for biotrophic and necrotrophic pathogens and a schematic
model is summarized in Figure 2.

Generally defense reactions that cause the die-off of cells such
as oxidative burst and hypersensitive response (HR) are only
beneficial when repelling the attack of a biotrophic pathogen.
In contrast, it is not predicted that the cell death of a host
plant will limit the growth of necrotrophic pathogens. It is the
opposite way round; necrotrophic fungi can elicit a defense
response such as oxidative burst in a susceptible host plant caus-
ing necrosis (Winterberg et al., 2014). SA dependent defense is
more frequently observed against biotrophs and JA/ET dependent
defense against necrotrophs but there are exceptions. The fact that
pathogenesis-related proteins are not expressed and JA dependent
signaling is not activated against a special biotrophic pathogen
does not mean that they are not active in case they are triggered
(Glazebrook, 2005). S containing compounds are involved in both
defense lines (see also Figure 1). Glutathione is involved in detox-
ification of ROS, many pathogenesis-related proteins contain S
(phytoalexins, thionins, defensins) and SA needs coenzyme A
(CoASH) as a precursor. Therefore, it is hardly possible to pre-
dict the efficacy of S against special fungi based on the lifestyle of
the pathogen.

It is hard to explain why in some trials a clear relationship
between the S supply and the extent of fungal infection was found
whilst in others with the same pathosystem no such response was
observed. Probably it is the timing and extent of plants defense
response which decides over resistance or susceptibility while the
nutritional status of the crop determines the extent of defense.
Moreover, the type of pathogen and its pathogenicity, infection
severity and other environmental factors are important as well.

PRACTICAL RELEVANCE OF SIR
Optimizing the S nutritional status of a plant is equivalent of
enhancing the capability of a plant to cope with stress. The
identification of the mechanisms causing SIR is an important
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milestone for a sustainable agricultural production as the input
of fungicides can be minimized by crop specific S fertilization
and a higher resistance due to S will not be rapidly broken by
new pathotypes. It is possible to optimize the S nutrition with-
out understanding all mechanisms underlying SIR. For winter
crops a first S application in autumn was shown to be advan-
tage with respect to disease resistance followed by the regular S
application in spring. An increasing S supply is associated with
higher contents of cysteine, glutathione, H2S, and glucosinolates
in Brassica crops so that plants with a higher content of phytoan-
ticipins might not only have a priori a better protection against
pathogens, but also be able to activate resistance mechanisms
more rapidly and intensely. In addition, an instantly high S supply
satisfying the elevated S demand after a fungal attack may play a
pivotal role in SIR, even when the nutrient demand of the crop is
well exceeded by such an S application (Haneklaus et al., 2009).

OPEN QUESTIONS AND FUTURE PROJECTIONS
It is generally difficult to assign a change in plant metabolism
to a specific stress factor, as usually a variety of abiotic and
biotic stress factors occur at the same time and can induce antag-
onistic responses resulting in accumulation, degradation and
consumption of primary and secondary metabolites. Therefore,
standardized experimental conditions are important to improve
comparability of results.

Moreover, more field studies and infection trials are necessary
accompanied by molecular research to unravel the relationship
between S supply and fungal infection and by this to enable
researchers and farmers to adopt the results into new fertilizer
concepts. There are many unknowns affecting plant response
such as timing of application, kind of fungal pathogen, crop
species, climatic conditions, and cross-talk with other macro- and
micronutrients. Therefore, to date it is not possible to induce
a stress response by S application that will certainly reduce or
prevent a crop from fungal infection. It is necessary to further
elucidate the cross-talk between different pathways to understand
which other parameters need to be optimized in order to reach
the full potential of plants own pathogen defense.

Much more work in the field of phytopathology is necessary
to solve the questions why only some pathogens are affected by
S nutrition and which is the exact mode of action by which
the S supply is affecting fungal pathogens. Could be the lifestyle
(biotrophic, necrotrophic, heterotrophic) of a pathogen impor-
tant for plants defense in relation to S or is the timing of infection
in relation to plant development most important for the course
of infection? Which part of metabolite changes is caused by the
host and which one by the pathogen? These are only some of the
manifold topics and questions where further research is necessary.

Moreover, it is not possible to transfer all results obtained from
research with model plants such as Arabidopsis to other species so
that studies on major agricultural crops are important especially
as most agricultural crops do not contain glucosinolates.

Nevertheless, the manifold results, which point to a relation-
ship between S nutrition and crop resistance, indicate that in
future the crucial factors will be identified. There are still some
agricultural diseases where the efficiency of chemical fungicides
is limited. For example currently, no fungicides are available
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FIGURE 2 | Model of the response of plants to biotrophic and

necrotrophic plant pathogens (adapted from Glazebrook (2005):

displayed are the interactions of Arabidopsis with the biotrophs

Peronospora parasitica and Erysiphe ssp. and with the necrotrophs

Alternaria brassicicola and Botrytis cinerea; SA, salicylic acid, JA,

jasmonic acid, ET, ethylene; broken line arrows indicate to a

possible interaction but which was not found in the chosen

experiments while the solid line arrows indicate to the observed

plant-pathogen-response). The defense reaction of Arabidopsis against
biotrophic pathogens start with gene-for-gene recognition of the pathogen
followed by rapid activation of defense and the production of reactive
oxygen species (ROS), the so-called “oxidative burst,” which is by self a

signal for defense activation. ROS production is connected with the
hypersensitive response (HR), also called “programmed cell death,” which
limits the access of biotrophs that feed on living tissue to water and
nutrients. HR is associated with the activation of the salicylic acid (SA)
dependent signaling pathway that is connected with systemic acquired
resistance (SAR) and the expression of pathogenesis-related proteins. For
necrotrophic pathogens a different defense line takes place as they feed
on dead plant tissue and host cell death is not predicted to limit their
growth. Defense against necrotrophic pathogens is mainly mediated by
JA and ET controlled defense as well as production of phytoalexins such
as camalexin. The broken line arrows indicate that also mixed defense
lines are possible for other biotrophic or nectrotrophic pathogens.

to control Verticillium wilt. Therefore, fertilizer strategies which
improve the plants potential and resistance against fungal diseases
are still of high importance not only in organic farming but in
conventional agriculture as well.
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