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Coumarins are natural plant products that have been the subject of extensive
phytochemical and pharmacological research studies in the past few decades. The core
structure of coumarins is derived from the respective cinnamates via ortho-hydroxylation
of the aromatic ring, trans/cis isomerization, and lactonization. Various substitution
patterns of coumarins have been reported, whereas the biosynthesis of coumarins
remains elusive. Ortho-hydroxylation is a key step in simple coumarin biosynthesis
as a branch point from the lignin biosynthetic pathway. 2-Oxoglutarate-dependent
dioxygenases (2OGDs) from plants convert cinnamate derivatives into simple coumarins
through the process of ortho-hydroxylation. This review describes the 2OGDs involved in
coumarin biosynthesis and their substrate specificities.
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INTRODUCTION
Coumarins are common plant-derived natural products that are
characterized by its core structure, coumarin (1, Figure 1). These
molecules exhibit various biological activities such as antibacte-
rial (Schinkovitz et al., 2003; Stavri et al., 2003; Céspedes et al.,
2006), antioxidant (Bajerova et al., 2014), anti-inflammatory
(Witaicenis et al., 2013), rodenticidal (Lotfi et al., 1996), termiti-
cidal (Adfa et al., 2010, 2011), and other activities (Stahmann
et al., 1941; Murray, 1989; Runkel et al., 1996; Song et al., 2014).
In addition, the role(s) of coumarins in plants have also been
reported. Scopoletin in tobacco is accumulated during a hyper-
sensitive response (Gachon et al., 2004) and is considered to be
involved in virus resistance (Chong et al., 2002). In Arabidopsis
thaliana, coumarins play a role as a chelator of iron ions in
soil (Fourcroy et al., 2013; Schmid et al., 2013; Schmidt et al.,
2014).

Based on their structural and biosynthetic properties, plant
coumarins are categorized as follows: simple coumarins, fura-
nocoumarins, and pyranocoumarins, and coumarins with modi-
fications in the pyrone ring (Figure 1) (Keating and O’kennedy,
1997). Simple coumarins harbor the hydroxy (-OH), alkoxy
(-OR), and/or alkyl (-R) group(s) in their benzene ring:
coumarin (1), umbelliferone (2: 7-hydroxycoumarin), esculetin
(3: 6,7-dihydroxycoumarin), and scopoletin (4: 7-hydroxy-6-
methoxycoumarin). Their hydroxy group is involved in conjuga-
tion to produce glycosides (Tal and Robeson, 1986; Taguchi et al.,
2000, 2001; Shimizu et al., 2005; Kai et al., 2006; Bayoumi et al.,
2008b; Wu et al., 2009). Furanocoumarins and pyranocoumarins
have additional ring systems, a five–or six-memberd ring with an
oxygen atom, which are fused to the benzene ring.

Plant researchers consider coumarins as a potential fluorescent
and flavoring component (Poulton et al., 1980; Oba et al., 1981;
Mock et al., 1999; Katerinopoulos, 2004; Bourgaud et al., 2006;
Stanfill et al., 2007; Maggi et al., 2011; Krieger et al., 2013). Tracer

experiments using cinnamate (10) or its derivatives have effec-
tively shown that simple coumarin formation in plants proceeds
via hydroxylation of the ortho-position (ortho-hydroxylation) of
respective cinnamates, the adjacent position in the benzene ring
to the side chain (Brown et al., 1960; Brown, 1962; Fritig et al.,
1970; Bayoumi et al., 2008a), followed by formation of a lac-
tone ring. Furanocoumarins and pyranocoumarins are derived
from umbelliferone (2) by addition of prenyl group (Larbat et al.,
2007; Karamat et al., 2013). 4-Hydroxycoumarin (7) in Apiaceae
and Asteraceae plants is presumed to utilize another biosynthetic
pathway that does not require ortho-hydroxylation (Liu et al.,
2009). It has been previously suggested that coumestrol (8) in
Leguminosae plants, which also comprises a coumarin core struc-
ture, is synthesized from isoflavonoids, circumventing the need
for ortho-hydroxylation of cinnamates in its biosynthetic pathway
(Veitch, 2013).

Due to its irreversibility, ortho-hydroxylation is considered
a key step in the biosynthesis of simple coumarins. This
review summarizes the research findings on ortho-hydroxylation
enzymes (ortho-hydroxylases) of cinnamates that are involved
in simple coumarin biosynthesis. The distribution of the ortho-
hydroxylases in plants using a database search of EST homologs
will be also discussed.

2-OXOGLUTARATE-DEPENDENT DIOXYGENASES INVOLVED
IN THE ORTHO-HYDROXYLATION OF CINNAMATES ARE THE
KEY ENZYMES OF SIMPLE COUMARIN BIOSYNTHESIS
In Arabidopsis, a 2-oxoglutarate-dependent dioxygenase (2OGD)
encoded by the gene AtF6′H1 (locus: At3g13610) was found to
exhibit ortho-hydroxylase activity to feruloyl coenzyme A (15:
feruloyl-CoA) as a substrate, with a Km value of 36 μM, yield-
ing an ortho-hydroxylation product, 6-hydroxyferuloyl-CoA (19)
(Kai et al., 2008). The AtF6′H1 enzyme exhibits no catalytic activ-
ity to p-coumaroyl-CoA (14), free ferulic acid (13), or feruloyl
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FIGURE 1 | Coumarin biosynthetic pathway in plants. Simple coumarins,
coumarin (1), umbelliferone (2), esculetin (3), and scopoletin (4) have
modifications in their benzene ring. They are biosynthesized from the
phenylpropanoid pathway via ortho-hydroxylation of cinnamate (10),
p-coumarate (11), caffeate (12), and ferulate (13), respectively. The
ortho-positions are shown by red arrows. Oxygen atoms introduced by
ortho-hydroxylation are also highlighted in red. The ortho-hydroxylases from
Arabidopsis (AtF6′H1), Ruta graveolens (RgC2′H), and Ipomoea batatas (Ib1
and Ib2) were functionally analyzed. AtF6′H1 and Ib1 catalyze
ortho-hydroxylation of feruloyl-CoA (15), whereas RgC2′H and Ib2 were

capable of reacting to both feruloyl-CoA (15) and p-coumaroyl-CoA (14) as the
substrates. After hydroxylation, trans/cis isomerization and lactonization
occur, resulting in the production of their respective coumarins.
Umbelliferone (2) is a key intermediate of prenylcoumarin biosynthesis, from
which furanocoumarins and pyranocoumarins (examples: psoralen and
xanthyletin, respectively) are derived. No report has described cloning and
functional analysis of the hydroxylases that introduce an ortho-hydroxy group
to cinnamate and caffeate to form coumarin (1) and esculetin (3), respectively
(hashed arrows). Coumarins substituted in the pyrone ring are thought to be
derived from different pathways.

quinate. Deficient mutation of the AtF6′H1 gene in Arabidopsis
causes a significant reduction in the accumulation of scopolin,
a β-glucoside of scopoletin (4), indicating that AtF6′H1 cat-
alyzes ortho-hydroxylation. Another 2OGD (AtF6′H2) encoded

by a homologous gene (locus: At1g55290) exhibits an equiv-
alent activity against CoA thioesters of cinnamates (Km value
for feruloyl-CoA: 14.5 μM); however, no significant change in
scopolin levels was observed in the plant.
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Further studies involving cloning and functional analysis of
the 2OGD genes in plants have elucidated the mechanism of
coumarin formation. Using Ruta graveolenes, which accumu-
lates franocoumarins, a 2OGD (RgC2′H) was cloned as the
key enzyme of coumarin biosynthesis (Vialart et al., 2011).
RgC2′H shows hydroxylation activity not only to feruloyl-
CoA (15, Km = 37 μM), but also to p-coumaroyl-CoA (14,
Km = 50 μM), forming scopoletin (4) and umbelliferone (2),
respectively. Furanocoumarins are formed after addition of prenyl
group to umbelliferone (2), which is detected in R. graveolens,
whereas no scopoletin (4) was detected. This result indicates that
RgC2′H exclusively catalyzes p-coumaroyl-CoA (14), besides its
activity against feruloyl-CoA (15) and p-coumaroyl-CoA (14).
Regulation of substrate supply to RgC2′H enzyme is likely to
determine the structures of the products, namely, umbelliferone
(2) or scopoletin (4).

The biosynthetic origin of the 1-oxygen atom of umbellif-
erone (2) in sweet potato root (Ipomoea batatas) is molecu-
lar oxygen; therefore, hydroxylase using a water molecule to
introduce a hydroxy group was excluded as the candidate of
ortho-hydroxylation enzyme(s) (Shimizu et al., 2008). 2OGDs
from sweet potato were also cloned and functionally ana-
lyzed as the ortho-hydroxylases of CoA thioesters of the cin-
namates (Matsumoto et al., 2011). The 2OGDs were then
categorized into two groups based on their substrate speci-
ficities. Enzymes belonging to the first one, designated as
Ib1s, showed ortho-hydroxylation activity to feruloyl-CoA (15,
Km = approximately 10 μM), whereas those of Ib2s catalyzed
both p-coumaroyl-CoA (14, Km = 7.3–14 μM) and feruloyl-CoA
(15, Km = 6.1–15.2 μM) as the substrates to yield umbellifer-
one (2) and scopoletin (4), respectively. Root tissues of sweet
potato accumulate moderate levels of scopolin. After fungal and
elicitor treatments, the production of umbelliferone (2) and its
β-glucoside, skimmin, was significantly higher than that before
treatment, whereas the amount of scopolin remained at a moder-
ate level after the treatments. Fungal and elicitor treatments also
resulted in an upregulation of Ib2 genes, whereas no significant
induction of Ib1 genes was detected. These results indicate that
Ib2s mainly synthesize umbelliferone (2) using p-coumaroyl-CoA
(14), besides their bi-functional activity.

In R. graveolens and I. batatas, the ortho-hydroxylases may act
as neighboring enzymes by positioning themselves at enzymes
of the upper steps such as C4H, C3H, or 4CL, and receive
more supplies with their substrate, p-coumaroyl-CoA (14), to
produce umbelliferone (2). Interactions among the metabolic
enzymes (Burbulis and Winkel-Shirdley, 1999) including the
ortho-hydroxylases possibly occur when simple coumarins are
biosynthesized in these plant cells.

The ortho-hydroxylase involved in the formation of coumarin
(1) is still unknown, whereas approaches to biosynthesis of
coumarin (1) have been performed using sweet clover (Gestetner
and Conn, 1974) and lavender (Brown et al., 1960; Stoker and
Bellis, 1962). Esculetin (3) formation is also remained to be
elucidated. Ib1s from sweet potato showed a trace activity to
caffeoyl-CoA (Matsumoto et al., 2011). Therefore, catalysis of
these reactions by members of the 2OGD family is reason-
able using cinnamate (10) or caffeate (12) esters, or their free

acid, respectively. Enzymatic information of ortho-hydroxylase
homologs would tell mechanism of these coumarins. There is still
a possibility that other enzyme families such as flavin monooxy-
genases or another oxidase family would also contribute to this
reaction (Schlaich, 2007). Furthermore, in cassava or chicory,
modification steps involving the conversion of umbelliferone (2)
to esculetin (3) or daphnetin (20: 7,8-dihydroxycoumarin) have
been detected by tracer analysis, indicating a biosynthetic grid of
simple coumarin formation (Sato and Hasegawa, 1972; Bayoumi
et al., 2008a).

Although the details of the biosynthesis of simple coumarins
are still unclear, the three examples of ortho-hydroxylases serve as
key information for future researches on elucidating the mech-
anism of coumarin biosynthesis in plants. Substrate specificities
of the ortho-hydroxylases from plants that accumulate coumarins
will be also clue to know the metabolic grid of coumarin
biosynthesis.

QUEST FOR THE CANDIDATE SEQUENCES OF
ORTHO-HYDROXYLASES IN PLANTS
The substitution patterns involving the phenyl group of cin-
namates have been extensively characterized. Furthermore, the
CoA moiety is a prerequisite for their activity. The alignment
of the amino acid sequences of previously reported ortho-
hydroxylases is presented in Figure 2, which shows a moderately
high sequence identity (approximately 59–64% amino acid iden-
tity), with conserved amino acid residues. Investigation of sub-
strate specificities of 2OGDs using chimeric proteins revealed the
significance of C-terminal sequence elements of gibberellin 20-
oxidases of Cucurbita maxima (Lange et al., 1997) and flavanone
3β-hydroxylase of Petunia sp. (Wellmann et al., 2004). They
reported that the C-terminal sequences comprising 33–54 amino
acid residues are involved in substrate recognition.

Taking advantage of these results, a TBLASTN search (http://
blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al., 1997) was per-
formed to explore candidate EST sequences of ortho-hydroxylases
involved in the biosynthesis of simple coumarins, using the
C-terminal sequences of AtF6′H1 (54 amino acid residues,
Supplementary Material 1).

The results (maximum target sequences: 1000;
Supplementary Material 2) showed that the hit sequences
belonged to the 2OGD family, with maximum scores within
the range of 42–111 and minimum E-values within the range
of 1 e−27–1 e−2. The highest scoring hits were observed in the
Brassicales plants. Although it was necessary to analyze the
accumulation of simple coumarins, these clones would show
ortho-hydroxylase activity, thus indicating its involvement in
simple coumarin formation. Plant species belonged to Spindales,
Malvales, Malpigiales, Fabales, Rosales, Fagales, Vitales, Solanales,
Lamiales, Gentianales, and Asteriales also showed significantly
high scores and low E-values, whereas other plant species with
2OGD sequences were of relatively lower levels of similarity. In
plants that accumulate simple coumarins, 2OGDs with higher
levels of similarity are likely to exhibit ortho-hydroxylase activity.
In Fabales, Lotus japonicus, Glycine max, Vigna unguiculata,
and Medicago truncatula harbored ESTs with highly similar
sequences. Coumarin is accumulated in Melilotus alba, a Fabales
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FIGURE 2 | Comparison of amino acid sequences of ortho-hydroxylases from the plants. Amino acid sequences are aligned using ClustalW2 (McWilliam
et al., 2013, http://www.ebi.ac.uk/Tools/msa/clustalw2/). A FASTA file of the protein sequences is available as Supplementary Material 3.

Frontiers in Plant Science | Plant Metabolism and Chemodiversity November 2014 | Volume 5 | Article 549 | 4

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity
http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity
http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity/archive


Shimizu Ortho-hydroxylases involved in simple coumarins

plant (Brown et al., 1960; Stoker and Bellis, 1962; Gestetner and
Conn, 1974). These EST sequences in Fabales plants could serve
as clues in the search for ortho-hydroxylases in cinnamate (10)
from M. alba. In addition, sequences from Euphorbia spp. or
Manihot esculenta, which accumulate esculetin (Masamoto et al.,
2003; Bayoumi et al., 2008a; Nazemiyeh et al., 2009; Shi et al.,
2009), showed high similarities. The biosynthetic pathway of
simple coumarins containing esculetin in these plants would be
elucidated through the functional analysis of these sequences.
Species from the rest of the orders were less similar to the partial
sequence of AtF6′H1.

Kawai et al. (2014) conducted an extensive phylogenetic anal-
ysis of 2OGD sequences, where the ortho-hydroxylases involved
in simple coumarin biosynthesis belonged to DOXC30-clade.
These enzymes were not detected in Oryza sativa or other vas-
cular plants that arose from more basal lineages (Stevens, 2014).
There is no report about coumarin accumulation in O. sativa.
The tendency decrease in the level of similarity in the EST
sequences supports the results of the present study; therefore, it
is unlikely that the hit sequences showing less similarity than that
of O. sativa (max score: 45; minimum E-value: 2 e−4) exhibited
ortho-hydroxylation of cinnamates to form simple coumarins.
However, the boundary line dividing the ortho-hydroxylase
sequence involved in simple coumarin biosynthesis and the other
2OGDs remains unclear. Liriodendron tulipifera, a Magnoliales
plant that arose from a more basal lineage than monocots, accu-
mulates scopoletin (4) (Kang et al., 2014). Cinnamomum cas-
sia, which is Laureales plant, also contains coumarin (1) (Choi
et al., 2001). However, no significant similarity in the C-terminal
sequence of AtF6′H1 was observed by TBLASTN search for ESTs
in Magnoliales and Laurales plants. An unknown biosynthetic
pathway of simple coumarins without 2OGD enzymes perhaps
exists in plants.

Candidates of ortho-hydroxylases are mainly distributed in
dicots, indicating that the biosynthesis of simple coumarins
is a newer pathway of plant secondary metabolism, com-
pared to flavonoids, which extensively occur in the plant king-
dom (Harborne and Baxter, 1999; Williams and Grayer, 2004).
Furthermore, biosynthetic pathways comprising apparently dif-
ferent enzyme sets evolutionally converged to form the coumarin
core structure. Further analysis of plant ortho-hydroxylases at the
molecular level would provide more details on the evolution of
plant coumarins.
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