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Phosphorus (P) is essential for plant growth and productivity. It is one of the most limiting
macronutrients in soil because it is mainly present as unavailable, bound P whereas plants
can only use unbound, inorganic phosphate (Pi), which is found in very low concentrations
in soil solution. Some ectomycorrhizal fungi are able to release organic compounds (organic
anions or phosphatases) to mobilize unavailable P. Recent studies suggest that bacteria play
a major role in the mineralization of nutrients such as P through trophic relationships as
they can produce specific phosphatases such as phytases to degrade phytate, the main
form of soil organic P. Bacteria are also more effective than other microorganisms or plants
at immobilizing free Pi. Therefore, bacterial grazing by grazers, such as nematodes, could
release Pi locked in bacterial biomass. Free Pi may be taken up by ectomycorrhizal fungus by
specific phosphate transporters and transferred to the plant by mechanisms that have not
yet been identified. This mini-review aims to follow the phosphate pathway to understand
the ecological and molecular mechanisms responsible for transfer of phosphate from the
soil to the plant, to improve plant P nutrition.
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INTRODUCTION
Phosphorus (P) is an essential element for plant growth and
productivity. P is a component of nucleic acids, phospholipids,
and ATP and, as such, is involved in controlling enzyme reac-
tions and the regulation of the metabolic pathway (Schachtman,
1998; Raghothama, 1999; Vance et al., 2003). Plants can only take
up P as free phosphate ions, H2PO4

− and HPO4
2−(Pi). How-

ever, concentrations of free Pi in soil solution are generally low,
around 1–10 μM (Hinsinger, 2001), owing to its strong affinity
for combining with cations and clays, leading to the formation of
insoluble P complexes that are unavailable for plants (Hinsinger,
2001). P is, therefore, one of the most limiting macronutrients for
plant growth (Raghothama, 1999) and productivity (Batjes, 1997)
in many terrestrial ecosystems. However, plants are involved
in complex ecological interactions, especially through symbiotic
mycorrhizal association, allowing them to meet their P require-
ments (Bucher, 2007; Javot et al., 2007; Lambers et al., 2008;
Plassard and Dell, 2010).

In forest ecosystems, particularly in temperate and boreal
biomes, 95% of trees establish a mutualistic ectomycorrhizal
(ECM) symbiosis with fungal symbionts (Smith and Read, 2008).
The ECM fungus forms a soil-fungus interface outside the roots
of the host plant with a hyphal sheath around short lateral roots
and extra-radical hyphae growing from the sheath. The hyphae
explore a large volume of soil not accessible to roots and allow the
translocation of nutrients and water to the host plant in exchange
for sugar (Nehls et al., 2010). The nutritional exchanges between
fungus and host occur in the Hartig net located at the interface

between the root cortical cells and the fungal hyphae. The forma-
tion of symbiotic structures with ECM fungi is considered to be
the most widespread means of increasing P acquisition by trees
(Chalot et al., 2002; Torres Aquino and Plassard, 2004; Smith and
Read, 2008).

This mini-review considers the outward journey of P, from soil
to tree through ECM association. It discusses the mechanisms by
which the fungus mobilizes poorly available organic P (Po) sources
such as phytate and takes up Pi at the soil–fungus interface. It then
summarizes current knowledge of the fungus–plant interface and
suggests hypotheses concerning the transfer of P from the fungus
to the plant.

ROLE OF ECTOMYCORRHIZAL FUNGI AT THE SOIL-FUNGUS
INTERFACE
ECM AND PHYTATE MOBILIZATION
A large proportion of P in forest soils is found as Po compounds
(Tibbett, 2002). Most Po is in the form of phosphate esters (C-O-
P bonds) such as phosphate monoesters (e.g., sugar–phosphates)
and phosphate diesters (nucleic acids and phospholipids; Turner,
2008). Rennenberg and Herschbach (2013) suggested that ECM
fungi might absorb Po as a whole molecule. The identification
of three genes encoding glycerophosphoinositol transporters in
the Hebeloma cylindrosporum genome (JGI project list) supports
this hypothesis but the activity of these transporters has not
yet been established. Furthermore, it is generally accepted that,
in order to be used by plants and microorganisms, phosphate
groups must be released from the ester bond by phosphatase
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enzymes (Plassard and Dell, 2010). Of soil Po compounds, phy-
tate (myo-inositol hexakisphosphate), a form of inositol phosphate,
is particularly interesting as a potential source of P for plants,
because it is found in many ecosystems, including forest ecosys-
tems (Turner et al., 2002). Phytate is a form of P reserve in
seeds (Raboy, 2007) and it is hydrolyzed during germination by
intracellular plant phytases to supply Pi to young seedlings. How-
ever, if the seeds do not germinate, their phytate content will fill
the pool of soil phytate (Figure 1). To be used by plants and
microorganisms, phosphate groups of phytate must be released
by specialized enzymes (phytases). The efficiency of organisms
in mobilizing phytate in the soil solution relies on their abil-
ity to produce phytases in the external medium or at least in
the cell wall space. To date, plants grown in axenic conditions
have been shown to have very poor capacity to use phytate as
the sole source of P (Hayes et al., 2000; Richardson et al., 2000,
2001a,b), suggesting that they have little or no capacity for releas-
ing phytase into the external medium (Figure 1). The capacity
of ECM fungi to release phytase is still a matter of debate: some
studies have reported that ECM basidiomycetes have a high capac-
ity (Antibus et al., 1992; McElhinney and Mitchell, 1993), no
capacity (Mousain et al., 1988) or a very low capacity (Mousain
et al., 1988; Louche et al., 2010) to produce phytase in axenic
cultures.

Current knowledge suggests that ECM fungi on their own are
not the best symbionts for improving plant nutrition using phytate
as the sole source of P (Richardson et al., 2007; Plassard et al., 2011;
Figure 1A). Another strategy that has been little studied until now
relies on the exploitation of the interactions between plants, ECM

fungi, bacteria, and their grazers within the rhizosphere (food web
relationships) combined with the capacity of bacteria to degrade
phytate (Figure 1B).

ROLES OF RHIZOSPHERE TROPHIC INTERACTIONS
Unlike ECM fungi, bacteria inhabiting the plant rhizosphere
are able to mineralize phytate in vitro (Jorquera et al., 2008a,b;
Maougal et al., 2014). Several studies have shown that inoculating
plants with these bacteria, in sterile conditions, improves plant
access to P from phytate (Richardson and Hadobas, 1997; Hayes
et al., 2000; Richardson et al., 2001b). While the plants provide
carbon, the bacteria mineralize Po and increase the available P
pool. However, bacteria are more competitive than plants and
ectomycorrhizal fungi to take up P released by phytase (Irshad
et al., 2012). In consequence, a large fraction of P released from
phytate is immobilized and locked in the soil bacterial biomass
(Figure 1A). It could, therefore, be possible that bacterial grazers
significantly improve plant P nutrition through re-mineralization
of the microbial P pool (soil microbial loop), and reduction of the
competition between plants and bacteria for Pi (Clarholm, 1985;
Figure 1B). Nevertheless, studies focusing on protozoa (Coleman
et al., 1977; Cole et al., 1978; Griffiths, 1986; Darbyshire et al., 1994;
Bonkowski et al., 2001) and nematodes (Anderson et al., 1978;
Griffiths, 1986; Bardgett and Chan, 1999; Irshad et al., 2011, 2012)
reported that bacterial grazers have either no effect (Griffiths,
1986), a short-term increase (Anderson et al., 1978; Darbyshire
et al., 1994; Djigal et al., 2004) or a significant increase (Cole-
man et al., 1977; Cole et al., 1978) on soil P mineralization with
obvious consequences on plant P nutrition (Herdler et al., 2008;

FIGURE 1 | Role of plants and their mycorrhizal symbionts together with

rhizosphere bacterial populations on the use of soil phytate. Phytate is
the main pool of organic phosphorus (Po) in soil (Turner et al., 2002) that is
filled by phytate from ungerminated seeds. To be used by plants, phytate
must be hydrolyzed by specialized enzymes called phytases. (A) The capacity
of roots and ECM fungi to release phytases in the rhizosphere is very low
(Richardson et al., 2007) whereas some bacteria have a great ability to

produce phytase and to mineralize phytate (Jorquera et al., 2008a,b) for their
own. This will result in bacterial P immobilization at the expense of plants and
ECM fungi. (B) To improve P nutrition of plants alone or with ECM fungi, P
from phytate locked in bacteria has to be released through the grazing activity
of microfauna, such as bacterial grazer nematodes (Irshad et al., 2012). Black
arrows: P fluxes, blue arrows: biological controls, (a) release of phytase, (b)
grazing activity.
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Irshad et al., 2012). These contradictory results were put for-
ward without any clear identification of the ecological factors
driving the efficiency of bactivorous-induced P mineralization.
More specifically, the study carried out by Irshad et al. (2012),
with phytate as the sole source of P, showed that the presence of
both bacterial-feeder nematodes (Rhabditis sp.) and Bacillus sub-
tilis increased the net amount of P in Pinus pinaster seedlings
(Figure 1B). A possible mechanism involved in these patterns
lies in the ability of grazers to increase bacterial metabolism and,
probably, phytase production (Figure 1B). It would, therefore, be
interesting to study the expression of two main classes of bac-
terial phytase genes, the histidine acid phytases (HAP), and the
β-Propeller phytase (BPP) (Mullaney and Ullah, 2003) when bac-
teria are in the presence of their grazers. It may be supposed
that predation has two synergistic effects; (i) grazers may cause
the overexpression of bacterial HAP and/or BPP and increase
the mineralization of phytate and (ii) grazers may increase phos-
phate availability by the release of P from the microbial biomass
(Figure 1B).

However, it is not clear how the presence of ECM fungi affects
this positive trophic P pathway. The experimental study conducted
by Irshad et al. (2012) with P. pinaster showed that the presence
of the ECM fungi (H. cylindrosporum) did not alter the positive
trophic effect on plant P nutrition from phytate. This was probably
due to experimental conditions used by the authors, which used
agarose medium rather than soil. ECM fungi could be expected to
have a positive effect by increasing the soluble mineral P uptake
by the host from the additional P released by nematodes and sub-
sequently locked in the soil matrix (Plassard and Dell, 2010). The
role of ECM fungi remains unclear and further studies are clearly
needed.

ECM AND INORGANIC PHOSPHORUS ACQUISITION
After mineralization of phytate and other Po compounds, the
phosphate released must be absorbed by plants and mainly
by ECM fungi, which are more efficient than the roots.
Van Tichelen and Colpaert (2000) showed that ECM fungi signif-
icantly increased the phosphate uptake capacity of pine roots. As
discussed above, the mycorrhizal basidiomycete produces an extra-
radical mycelium that is able to explore the soil away from the root,
significantly increasing the volume of soil exploited by plants with
ECM fungi. It has been shown that such exploration was respon-
sible for the major fraction of P uptake by plants (Torres Aquino
and Plassard, 2004).

The acquisition of free phosphate by ECM fungi occurs through
a plasma membrane phosphate transporter (Figure 2A). The first
putative Pi transporter gene from an ECM fungal species (Kothe
et al., 2002) was identified based on homology with the yeast Pi
transporter PHO84 (Bun-ya et al., 1991). More recently, many
others have been found in the genomes of five ECM fungi (JGI
Genome Portal, Casieri et al., 2013). Most ECM fungi have three
to five putative phosphate transporter genes that belong to the
Pht1 subfamily (Karandashov and Bucher, 2005; phosphate/H+
transporters). However, the phosphate transporter encoded by the
TmPT3 gene was classified as a phosphate/Na+ transporter (Pht2).
This type of transporter has first been identified in the yeast, Sac-
charomyces cerevisiae (Martinez and Persson, 1998). These results

FIGURE 2 | Current knowledge about phosphate transporters in

ectomycorrhizal roots. In ectomycorrhizal (ECM) roots, the fungus forms
extraradical hyphae and a fungal sheath outside the root (A) and the Hartig
net surrounding root cells (B) hiding epidermal cells and cortical (cc) cells
(C). (A) In fungal cells, the uptake of Pi occurs mostly through Pht1
phosphate transporters. To date, only HcPT1.1, HcPT2 (Tatry et al., 2009),
and BePT (Wang et al., 2014) genes have been characterized by
heterologous expression in yeasts. Genomics and transcriptomic data
suggest that other transporters may play a role in phosphate uptake (e.g.,
HcPT1.2, LbPTs, AmPTs, TvPTs, TmPT3 (Pht2; Casieri et al., 2013). (B) In
the Hartig net, fungal and plant cells have a common apoplastic space with
no direct symplastic communication. It is hypothesized that the hydrolysis
(a) of polyphosphate (PolyP) increases Pi concentration in the cytosol of the
fungus. Up to now, the molecular mechanisms sustaining P efflux from the
fungus (b) to the apoplast and P influx (c) from the apoplast to the plant cell
have not been identified. It is also hypothesized that fungal P transporters
may not be functioning (d). (C) In plant cells, phosphate ions enter through
plant P transporters. Little is known about plant transporters responsible for
Pi acquisition in ECM roots. Only phosphate transporters from Populus
trichocarpa (PtPTs; Loth-Pereda et al., 2011) and Eucalyptus marginata
(EmPhts; Kariman et al., 2014) have so far been identified. Transcriptomic
data for Pinus pinaster (Canales et al., 2013) showed putative encoding
sequences for phosphate transporters (PpPTs). Full lines indicate transport
systems whose capability in phosphate transport has been verified by
heterologous expression in yeast. Dotted lines indicate transport systems
whose involvement in phosphate transport during mycorrhizal symbioses is
suggested by genomic or transcriptomic data. ed: endodermal cells. Hc:
Hebeloma cylindrosporum, Be: Boletus edulis, Tm: Tuber melanosporum,
Am: Amanita muscaria, Lb: Laccaria bicolor, Tv: Tricholoma vaccinum, Pt:
Populus trichocarpa, Em: Eucalyptus marginata, Pp: Pinus pinaster.

suggest that the efficiency of phosphate uptake into ECM fun-
gal cells could rely mostly upon the external pH. Of all phosphate
transporters so far identified in ECM fungi, only HcPT1.1, HcPT2,
and BePT have been characterized by heterologous expression in
yeast (Tatry et al., 2009; Wang et al., 2014). HcPT1.1 and HcPT2
were expressed in H. cylindrosporum alone or associated with its
natural host plant, P. pinaster, grown in low or high P condi-
tions. However, the transporters respond in different ways to the
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external Pi concentration. HcPT1.1 transcripts were up-regulated
in fungal cells exposed to phosphate starvation in solution or to
low phosphate availability in soil such as phosphate transporters
of the ECM fungus Tricholoma spp. (Kothe et al., 2002) and Bole-
tus edulis (Wang et al., 2014), whereas the transcripts levels of
HcPT2 were less dependent on the external P concentration (Tatry
et al., 2009). The expression patterns of these two transporters
(Tatry et al., 2009) and the immunolocalization of HcPT1.1 (Gar-
cia et al., 2013) indicate that they are found in extraradical hyphae
(Figure 2). H. cylindrosporum might use HcPT1.1 to mediate Pi
uptake in phosphate starvation conditions and HcPT2 when soil
P availability is high (Tatry et al., 2009).

PHOSPHATE TRANSLOCATION FROM THE EXTRAMATRICIAL MYCELIA
TO THE HARTIG NET
Once absorbed, P is transferred via the extra-radical mycelium to
the ECM roots. This has been demonstrated using 32P labeling
and pulse chase experiments in simple laboratory systems where
the distance of translocation did not exceed 40 cm (Finlay and
Read, 1986; Timonen et al., 1996). For forests, it is accepted that
this range can be much higher (Anderson and Cairney, 2007).
The first studies on P translocation reported that ECM hyphae
contain a tubular vacuole system (Ashford and Allaway, 2002).
Although there is no direct evidence that these vacuoles inter-
connected by smaller membrane tubules could be involved in P
transport, Ashford and Allaway (2002) showed movement of flu-
orescent probes in this vacuolar system and that ECM fungal
vacuoles hold substantial amounts of P mainly in the form of
polyphosphates. In parallel, mathematical models suggested that
this network was only responsible for short distance P transloca-
tion at the mm to cm scale (Darrah et al., 2006; Fricker et al., 2008).
Other mechanisms could be involved in longer distance transport
but there is still little evidence of this (Cairney, 2011).

UNDERSTANDING THE FUNGUS–PLANT INTERFACE
FROM THE FUNGAL CELL TO THE HOST CELL
Interactions between ECM fungi and plants are based on the
bidirectional transfer of carbohydrates and nutrients, such as P,
across an interface (Bücking and Heyser, 2001). For a long time,
studies have demonstrated the transfer of P, mainly as inorganic
orthophosphate, from the ECM fungus to the plant (Harley and
Loughman, 1963; Skinner and Bowen, 1974; Finlay and Read,
1986). Bücking and Heyser (2001) showed, by microautoradio-
graphic studies following 33P, that Pi accumulated rapidly in the
ECM sheath and was slowly translocated off the Hartig net to
the cortical cells. Because there is no direct symplastic continuity
between the ECM fungus and the roots, Pi has to move into the
interfacial apoplast before it can be absorbed by the plant (Peter-
son and Bonfante, 1994; Figure 2B). The molecular mechanisms
of Pi transport across the mycorrhizal interface have not yet been
determined for mycorrhizal symbioses (Harrison, 1999; Plassard
and Dell, 2010; Smith and Smith, 2011; Figure 2B).

Nutrient transfer models generally involve (1) the passive efflux
of phosphate and carbohydrates through the fungal and plant
plasma membranes into the interfacial apoplasm and (2) the active
absorption of nutrients by both symbionts driven by an H+-
ATPase (Smith and Smith, 2011). However, the net loss of P from

ECM fungi in pure culture is normally regarded as slight (Cair-
ney and Smith, 1993a). There must be specific conditions favoring
the efflux of phosphate from the fungus at the fungus-root inter-
face in ectomycorrhizas in order to ensure that the transfer of P
is sufficiently large to meet the host plant demand (Smith and
Smith, 2011). It has been suggested that passive Pi flux across
the fungal plasma membrane is due to low Pi concentration in
the apoplast at the fungus-root interface relative to the cytoplasm
(Smith et al., 1994). As suggested for arbuscular mycorrhizal (AM)
associations (Solaiman and Saito, 2001), this gradient could be the
result of polyphosphate degradation in the fungal cytosol (Clark-
son, 1985) and the efficient phosphate uptake across the plant
plasma membrane through phosphate transporters (Bucher, 2007;
Javot et al., 2007). Moreover, P efflux from free-living mycelia of
ECM fungi has been shown to be clearly affected by an extracellu-
lar supply of cations, particularly K+ and Na+ and carbohydrates
(Cairney and Smith, 1993b; Bücking, 2004). While these obser-
vations are derived from mycelia in axenic culture, they provide
strong indirect evidence that the efflux may be influenced by the
chemical environment of the zone of exchange localized in the
Hartig net.

Alternatively, the output of Pi from the ECM fungus toward
the common apoplasm could be an active mechanism involving
phosphate transporters whose presence and/or activity is regu-
lated, at least partly, by host demand (Cairney and Smith, 1992).
Genome sequencing of H. cylindrosporum has identified three
phosphate transporters which have been characterized in yeast
as phosphate influx transporters (Tatry et al., 2009). Phosphate
efflux could be provided by one of these carriers, able to input and
output Pi depending on specific conditions. The yeast high affin-
ity phosphate transporter (PHO84) is able to transport phosphate
bidirectionally, depending on the pH gradient across the plasma
membrane (Fristedt et al., 1996). The phosphate efflux could also
be mediated by another transport system, as yet unidentified,
specifically responsible for phosphate efflux at the fungus-root
interface (Figure 2B).

THE RELEASE OF P TO THE PLANT
Contrary to AM symbiosis (see Bucher, 2007 for review), little is
still known about plant transporters responsible for Pi acquisition
in the Hartig net of roots with ECM fungi (Figure 2B). The studies
by Loth-Pereda et al. (2011) and Kariman et al. (2014) are the first
to provide details of the regulation of plant gene expression that
may be involved in phosphate uptake by root cells (Figures 2B,C).
Loth-Pereda et al. (2011) showed that Populus colonization by both
AM and ECM fungi led to the up-regulation of two Pht1 trans-
porters, PtPT9, and PtPT12. These genes are also up-regulated
in Pi-depleted media. This suggests that these two genes could
be involved in plant Pi uptake in the Hartig net (Figure 2B)
and/or in Pi acquisition from soil solution (Figure 2C). Other
plant Pht1 gene products were down-regulated in ECM symbio-
sis (Loth-Pereda et al., 2011; Kariman et al., 2014; Figure 2C).
This will probably result in a reduction in Pi absorption via the
direct (root) pathway toward a mycorrhizal pathway as docu-
mented for AM symbiosis (Smith and Smith, 2011). However,
it is not still clear whether the reduced expression of Pht1 genes in
mycorrhizal roots is triggered by improved P nutrition of plants
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or whether it is a symbiotic response (Javot et al., 2007). Fur-
thermore, no Pht1 genes are specifically induced during ECM
development as observed in AM symbiosis in woody plants (Loth-
Pereda et al., 2011) and herbaceous species (Harrison et al., 2002;
Bucher, 2007).

CONCLUSION
The molecular mechanisms sustaining P fluxes from ECM fungi to
root cells in the Hartig net have not yet been explained. This lack
of knowledge limits our ability to improve P-utilization efficiency
in forest ecosystems. Large scale sequencing of fungal (Martin
et al., 2011) and tree (Mackay et al., 2012) genomes will pro-
vide candidate genes that may be involved in these P exchanges.
Using the genetic transformation methods available for ECM fungi
(Combier et al., 2003; Kemppainen et al., 2005; Rodríguez-Tovar
et al., 2005; Garcia et al., 2014) and trees (e.g., P. pinaster, Alvarez
and Ordás, 2013) it will then be possible to study these candidates
and determine their actual role in ECM symbiosis.
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