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Metabolic processes in plants are key components of physiological and biochemical
disease resistance. Metabolomics, the analysis of a broad range of small molecule
compounds in a biological system, has been used to provide a systems-wide overview of
plant metabolism associated with defense responses. Plant immunity has been examined
using multiple metabolomics workflows that vary in methods of detection, annotation,
and interpretation, and the choice of workflow can significantly impact the conclusions
inferred from a metabolomics investigation. The broad range of metabolites involved in
plant defense often requires multiple chemical detection platforms and implementation
of a non-targeted approach. A review of the current literature reveals a wide range
of workflows that are currently used in plant metabolomics, and new methods for
analyzing and reporting mass spectrometry (MS) data can improve the ability to translate
investigative findings among different plant-pathogen systems.
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INTRODUCTION
The advent of the three central “omics” platforms: genomics,
transcriptomics, and proteomics has been invaluable to systems
biology (Fiehn et al., 2001; Ge et al., 2003). While often described
as a hypothesis-generating science, an omics approach allows for
the ability to elucidate complex phenotypes at the systems-level.
For investigations in plant immunity, such studies have been
instrumental in discovering fundamental interactions between
genes, transcripts, proteins, and metabolites that define plant
defense phenotypes (Maleck et al., 2000; Rajjou et al., 2006).

Primary and secondary metabolites are known to be critical to
the plant immune response, and the addition of a metabolomics
workflow to the omics toolbox is essential for systems-level
research. Plant metabolomics is a relatively new plant omics tech-
nique (Fiehn et al., 2000a) but it has not seen widespread use
due to major challenges in chemical detection and data analysis.
For example, while the chemical structure of genes, transcripts
and proteins is well defined, there is a wide variation in struc-
ture and abundance of small molecules in plants (Dixon, 2001;
Gershenzon and Dudareva, 2007). This diversity presents a major
analytical challenge for global metabolomics analysis.

Here, we review metabolomics studies that evaluate plant
immunity with an emphasis on mass spectrometry (MS) in
its many forms. A metabolomics workflow encompasses proce-
dures for metabolite extraction, detection by MS, data analysis,

Abbreviations: MS, mass spectrometry; UPLC, ultra performance liquid chroma-
trography; GC, gas chromatography; ESI, electrospray ionization; PCA, principal
component analysis; PLS, partial least squares.

and biological interpretation. The differences between targeted
and non-targeted workflows are also discussed. A review of
the current literature revealed that a wide range of workflows
are currently used in plant metabolomics and illustrates that
the addition of a metabolomics workflow to the omics tool-
box can provide new (and validate existing) hypotheses in
plant immunity.

A LARGE AND DIVERSE GROUP OF SMALL MOLECULES
MEDIATE THE RESPONSE TO BIOTIC STRESS
Plant metabolic factors are major contributors to plant defense
(Pare and Tumlinson, 1999; Dixon, 2001; Bolton, 2009). Figure 1
provides an illustration showing plant metabolite classes and
physiological processes known to be related to plant defense.
Upon detection of Pathogen- or Microbe-Associated Molecular
Patterns (PAMPs, MAMPs), a molecular signaling cascade results
in physiological modifications (Berger et al., 2007), and this may
ultimately define the resistant, tolerant, or susceptible phenotype.
Like other global omics workflows (e.g., transcriptomics and pro-
teomics), metabolomics provides the ability to globally survey the
small molecule components involved in detection, signaling, and
physiological, morphological, and chemical responses resulting
from pathogen infection.

Cell signaling represents the first molecular event associ-
ated with plant immunity. Signaling occurs very early in the
plant molecular response to infection and can be observed
as an increase in abundance of specific non-volatile (e.g.,
salicylate) or volatile (e.g., ethylene) molecules in the initial
hours after pathogen infection. Volatile compounds such as
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FIGURE 1 | Molecular and physiological modifications that can

occur during a plant-pathogen interaction. Upon detecting
Pathogen- or Microbe-Associated Molecular Patterns (PAMPs, MAMPs),
small molecules are produced that act as molecular signals to

induce changes in primary metabolism, modify plant structures, and
produce secondary metabolites. These events are also driven by
small molecules, and ultimately define the resistant, partially
resistant/tolerant, or susceptible plant phenotype.

nitric oxide, ethylene, methyl jasmonate, and methyl salicy-
late are key mediators of systemic acquired resistance (Ecker
and Davis, 1987; Gundlach et al., 1992; Delledonne et al.,
1998; Park et al., 2007). Many variants of these hormones
have also been described for their role in immunity, such
as the conjugate of jasmonate and isoleucine (Staswick and
Tiryaki, 2004). In addition to direct effects such as pathogen
toxicity and cell wall fortification (Bradley et al., 1992; Lamb
and Dixon, 1997), reactive oxygen species such as superoxide
and hydrogen peroxide can also act as non-volatile signals of
pathogen infection (Torres et al., 2006). Many non-hormone
plant compounds have dual metabolic and signaling effects such
as the amino acids homoserine and asparagine (Yang et al.,
2005) and sphingolipids (Ng et al., 2001; Vicente et al., 2013).
Additionally, the interaction among signaling compounds also
affects immunity, for example cross-talk between ethylene and
jasmonate (Lorenzo et al., 2003), or nitric oxide and jasmonate
(Wang and Wu, 2005).

Along with cell signaling molecules, primary metabolic com-
pounds are also involved in the plant defense response. Primary
metabolites related to defense are comprised of a diverse
class of molecules that include carbohydrates, organic acids,
amines/amino acids, and lipids reviewed in Rojas et al. (2014).
In response to a pathogen, a shift in primary metabolic com-
pounds can be associated with changes in energy metabolism
(sucrose; Scharte et al., 2005), nitrogen metabolism, (amino acids;
Tavernier et al., 2007), and cellular homeostasis such as pH and
redox status (malate, ascorbate, tocopherol; Sakano, 2001; Foyer
and Noctor, 2005; Roos et al., 2006; Liu et al., 2010). A shift in
primary metabolism may support a series of physiological and

morphological modifications to inhibit pathogen colonization or
growth as primary metabolites have been shown to be associated
with structural modifications. For example, changes to carbohy-
drates and phenolic organic acids have been associated with cell
wall modifications related to insects and fungi (Barros-Rios et al.,
2011; Cao et al., 2011). Other non-hormonal metabolites medi-
ate defense-related processes such as stomatal closure (malate;
Dittrich and Raschke, 1977), leaf rolling (malate, citrate; Saglam
et al., 2010), and callose deposition (uridine diphosphate-glucose;
Schlupmann et al., 1993).

A diverse group of secondary metabolites are also respon-
sible for mediating plant defense. Phytoanticipins (basally
produced) and phytoalexins (induced upon pathogen infec-
tion) can have a direct toxic effect on pathogens. These
secondary metabolites are often observed as various ter-
penoids, phenolics, and other miscellaneous nitrogen or sulfur
containing compounds such as indoles, alkaloids, and glucosi-
nolates (Dixon, 2001). Furthermore, there is extensive diver-
sity within each of these chemical classes, often relating to
specialized functions such as toxicity or volatile signaling
(Gershenzon and Dudareva, 2007).

Overall, the plant defense response is largely a product of
the interaction of a diverse class of metabolites. Thus, chemical
profiling experiments should be designed to maximize the cover-
age of chemical classes to simultaneously assay for events related
to both cell signaling and primary and secondary metabolism.
Metabolomics, the global analysis of a broad class of small
molecule compounds, is therefore an important tool enabling
investigations of the molecular basis of plant immunity in plant-
pathogen interaction systems.
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MASS SPECTROMETRY WORKFLOWS TO SURVEY SMALL
MOLECULES ASSOCIATED WITH PLANT IMMUNITY
OVERVIEW
In a standard metabolomics workflow, metabolites are assayed
by extracting compounds from plant tissue in a solvent, and
subsequently detecting and quantifying compounds using var-
ious chemical detection platforms (e.g., MS, nuclear magnetic
resonance, ultraviolet absorbance). MS-based metabolite detec-
tion is a powerful tool for investigations of plant metabolism
due to its sensitivity for low-abundant molecules and flexibil-
ity for the detection of multiple chemical molecular classes.
Therefore, MS is well-suited to investigate the signaling, physi-
ological, and other chemical events associated with plant defense.
However, while many compounds related to plant defense are
well-defined, there is currently no metabolite extraction protocol
or MS detection platform that can survey the entire defense-
related metabolome in a single experiment. Metabolite extraction
procedures are inherently biased toward solubility of the molecule
in the choice of solvent, specifically for differences in polarity
or pH. Furthermore, MS detection platforms are biased in their
compatibility of a particular molecule with a mode of ionization
or detection. For example, electrospray ionization (ESI) MS can
differentially apply positive or negative charges to molecules, and
certain compounds vary in their propensity to form positively
charged and negatively charged ions.

The ability to globally profile highly complex mixtures of plant
extracts is enhanced by coupling chromatography with MS detec-
tion. Thus, a “metabolomics platform” refers to the combination
of chromatography and MS. The two most commonly utilized
metabolomics platforms include liquid chromatography-mass
spectrometry (LC-MS) and gas chromatography-mass spectrom-
etry (GC-MS) (Kopka et al., 2004).

Following data acquisition and processing, MS-metabolomics
data is often expressed as a matrix of molecular features defined
by (i) chromatography elution time, (ii) mass (mass/charge ratio)
within the mass error of the instrument, and (iii) intensity of
the mass signal as a quantitative unit. While GC- and LC-MS
platforms provide superior sensitivity in detecting a diverse set
of compounds, annotating the detected molecular feature as a
metabolite is the major bottleneck in MS-metabolomics work-
flows (Wishart, 2011), and is further complicated due to the
extensive diversity in plant compounds. The annotation bottle-
neck has resulted in the delineation between two metabolomics
workflows: targeted and non-targeted, the latter also known as
“untargeted,” “unbiased,” or “global” metabolomics (Figure 2).
Here, the general procedure associated with each workflow is
reviewed in the context of metabolomics investigations related to
plant defense.

THE TARGETED MS-METABOLOMICS WORKFLOW
A targeted metabolomics workflow is designed for the analysis
of a subset of specific metabolites in a single experiment, thus
requiring an a priori knowledge of the compounds of interest.
The classes and types of metabolites involved in plant defense are
well-defined, and therefore the targeted MS-metabolomics work-
flow has major utility in plant-pathogen interaction experiments.
An example hypothesis amenable to a targeted workflow may be: a

pathogen of interest is expected to alter amino acid and monosac-
charide metabolism after 24 h of infection, but differentially affect
a wildtype and mutant plant.

There are multiple ways in which a workflow can be targeted to
specific metabolites. First, a metabolite extraction procedure can
be developed to maximize recovery of the target compounds from
the plant tissue of interest. This improves the overall sensitivity
of detecting the compounds of interest, for example by extract-
ing in a specific pH, polarity, or through the use of solid phase
extraction enrichment. For example, an extraction solvent of 50%
methanol (methanol/water) would extract metabolites in a single
phase, whereas an experiment targeting amino acids and carbohy-
drates may extract in chloroform/methanol/water and only assay
the aqueous fraction of the biphasic system. The latter extraction
procedure could also provide improved sensitivity in a targeted
lipid MS-profiling experiment due to the reduced complexity
of the sample. If two compounds chromatographically co-elute,
the mass spectrometer will have to split the available acquisition
time across multiple compounds, resulting in diminished sensi-
tivity overall. Thus, a targeted reduction in sample complexity
can result in significant increases in sensitivity for compounds of
interest.

In a targeted experiment, the mass spectrometer is specifically
tuned to detect a specific set of compounds. Typically, authen-
tic standards (if available) are first run to define the time and
mass parameters associated with each compound. This targeted
acquisition approach addresses the metabolite identification bot-
tleneck by only collecting data on metabolites with known masses
and retention times. Furthermore, running authentic standards
prior to a complex sample can provide an overview of which
metabolites can and cannot be detected using the chosen extrac-
tion solvent and metabolomics platform. For LC-ESI-MS, certain
metabolites may be only detected with positive or negative ioniza-
tion, and many metabolites may not be retained using a particular
chromatographic method. GC-MS metabolomics is dependent
on transitioning the metabolites of interest to a gas phase, and
multiple derivatization procedures are often employed to increase
volatility required for GC, including methoximation critical for
carbohydrate analysis by GC-MS (Schweer, 1982), trimethylsi-
lylation (TMS), or the TMS-alternative tertbutyldimethylsilyla-
tion that is compatible with amino acids but not high molec-
ular weight carbohydrates (Fiehn et al., 2000b; Lisec et al.,
2006). For example, based on the example hypothesis presented
above, a methoximation-TMS/GC-MS procedure would be likely
amenable to many (but not all) of the amino acids and carbohy-
drates of interest.

A targeted metabolomic workflow requires relatively simple
data analysis procedures. Data normalization can be conducted
using stable isotope labeled internal standards for each compound
of interest, or for compound classes if not all labeled standards are
available. For example, if glucose is a specific target in the plant
extract, then glucose-13C6 can be added to the extraction solvent
to account for analytical variation (e.g., extraction or derivatiza-
tion efficiency, column degradation, detector source contamina-
tion). The internal standard is collected as a separate, single data
point, and analysis software can be directed to automatically nor-
malize to the standard before the data is exported for downstream
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FIGURE 2 | Schematic of targeted and non-targeted MS-metabolomics workflows.

interpretation. In addition, while the MS detector results in data
at the “molecular feature” level, retention times and masses are
pre-determined using authentic standards, thus the data can be
automatically output as “metabolites” instead of “m/z at a given
time.” For MS-metabolomics, this data reduction can improve
the statistical robustness of the experiment as fewer tests result in
decreased false discovery (Broadhurst and Kell, 2006), and min-
imizes the potential to over-fit multivariate models by reducing
the presence of analytical artifacts in the data matrix (described
in section Non-targeted MS-metabolomics Workflows).

While a targeted workflow can improve in the overall sensi-
tivity and specificity of an experiment, there are also limitations
due to the significant time, labor, and cost of developing a tar-
geted MS method and the requirement for authentic standards.
Additionally, chromatographic retention times can be unstable
over periods of time and across instruments and laboratories, for
example due manual solvent mixture preparation (LC) or chro-
matography column variation and/or degradation (LC or GC).
Thus, the time parameter of a detection method needs to be
calibrated, internally or externally, across experiments and labo-
ratories. Furthermore, a targeted method is dependent on a priori
knowledge, which is inherently biased toward a current under-
standing of which molecules are important to plant defense in the
system under study. Thus, a targeted workflow will not provide
information on previously undescribed molecular events within
a specific plant-pathogen interaction.

NON-TARGETED MS-METABOLOMICS WORKFLOWS
A non-targeted metabolomics workflow is designed to glob-
ally profile all detectable metabolites in a single experiment. It
requires little to no a priori knowledge of which metabolites
would be involved in plant immunity. Often, a non-targeted
approach has the ability to detect many (if not all) of the same
metabolites included in a targeted assay, depending on obsta-
cles related to instrument sensitivity and sample complexity, but
has the added advantage of collecting novel information. An
example hypothesis amenable to a non-targeted workflow may
be: a pathogen of interest is expected to alter plant secondary

metabolism after 24 h of infection, but differentially within a
wildtype and mutant plant. In contrast to the targeted work-
flow, “secondary metabolism” provides little focus for metabolite
extraction and detection techniques, as secondary metabolites
are incompletely characterized for most species, and the targeted
approach would fail to detect many of the important compounds
involved in this response.

While metabolite extraction and detection are inherently
biased, the procedures can be designed to maximize coverage of
the metabolome to included broad detection of amines/amino
acids, organic acids, lipids, alkaloids, and many other compound
classes. Non-targeted metabolite extractions can be conducted
using miscible organic/aqueous solvents (e.g., single phase mix-
tures such as 80% methanol or isopropanol/acetonitrile/water).
Internal standards may be added during this extraction step,
and/or the data can be normalized using computational pro-
cedures during data processing (e.g., total signal or quantile
normalization). A variety of normalization procedures have been
developed (Sysi-Aho et al., 2007; Veselkov et al., 2011; De Livera
et al., 2012), and while the normalization procedure is a criti-
cal step in the non-targeted workflow, there is little consensus as
to which normalization procedures are the most robust. In gen-
eral, a procedure that accounts for biological (plant), technical
(extraction), analytical (detection), and computational (MS peak
detection and alignment) variability should be employed.

In addition to metabolite extraction and data normalization,
non-targeted MS-metabolomics is highly dependent on chemo-
informatic procedures to assign metabolite identifications from
MS data. The initial steps (mass peak detection, grouping, align-
ment, deconvolution) can be performed using various compu-
tational platforms (e.g., Smith et al., 2006; Lommen, 2009; Xia
et al., 2009) or other MS vendor-specific software. The result-
ing data is often a matrix of molecular features defined by mass
(mass/charge ratio), retention time, and a quantitative value rel-
ative to the normalization procedure. The entire data matrix is
often interrogated using uni- or multi-variate statistical analyses
(e.g., ANOVA, PCA, PLS, correlation) to identify which molec-
ular features varied within the experimental design. However,
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a major flaw in conducting statistical analyses on the resulting
data set is assumed independence among the variables (molec-
ular features) in the data. MS requires a compound to be ion-
ized prior to detection, a process that often results in multiple
mass signals that correspond to the same molecule. For LC-
ESI-MS, these often include the presence of isotopes (12C, 13C)
adducts (Na+, K+), charge states ([M+H]+, [M+2H]2+), and
in-source fragments/neutral losses ([M-glycosyl group]). GC-MS
metabolomics methods mostly use electron impact ionization,
which is a high-energy procedure that results in highly frag-
mented molecules and include many (∼5–100) mass signals that
correspond to a single metabolite. In contrast to a targeted work-
flow, where data will be acquired for only one or few of the mass
signals that correspond to a metabolite, all detectable mass signals
will be acquired in a non-targeted MS-metabolomics experiment
and processed as an independent variable in the overall dataset.
Computational procedures to cluster this redundant data have
been developed for LC-MS (Tautenhahn et al., 2007; Broeckling
et al., 2012; Kuhl et al., 2012) and GC-MS (Stein, 1999).

The next major step in the non-targeted workflow is the
annotation of molecular features as metabolites. The annota-
tion procedure is somewhat hierarchical in structure, with the
first and most confident methods based on the matching of
mass spectral and retention time data to in-house or external
metabolite databases of authentic standards. Similar to a tar-
geted metabolomics experiment, an in-house database requires
the acquisition and curation of mass spectra and retention times.
While ideal, a large in-house spectral library requires signifi-
cant resources to develop due to the time and cost to purchase
or acquire authentic standards, and acquire and curate the MS
data. Furthermore, many plant authentic standards are not avail-
able and many compounds are species- or situation-specific, such
as phytoalexins that are only produced upon the detection of a
pathogen. Therefore, it is critical to develop a metabolite anno-
tation procedure that is independent of any a priori knowledge
about the mass spectra or retention time of pathogen-related
compounds.

For GC-MS and LC-ESI-MS metabolomics, mass spectra can
be searched against external resources such as NIST standard ref-
erence (www.nist.gov), Massbank (Horai et al., 2010), Metlin
(Smith et al., 2005), and Golm (Kopka et al., 2005) spectral
databases. If the external databases lack a perfect match, par-
tial matches may indicate a similar molecular structure to the
unknown compound in the experiment. In addition to spectral
matching, individual masses within a spectrum can be manually
interpreted to inform on the structure of the precursor molecule.
A manual interpretation usually requires high-resolution mass
information (i.e., less error in measuring mass), and may depend
on identifying patterns in the data to identify the molecular
weight of the target compound. For example, LC-ESI-MS data
run in positive ionization mode may result in the detection of
[M+H]+, [M+Na]+, and [M+H]+ – H2O in a single spectrum
that correspond to [M+1.008], [M+22.990], and [M+1.008
– 18.015]. For example, Figure 3 shows a spectrum that was
obtained from plant leaf extracts using non-targeted LC-ESI-MS
profiling in positive mode followed by data processing using the
algorithm described in Broeckling et al. (2012). The top panel

shows the experimental spectrum matched against the spectrum
from an authentic standard of L-phenylalanine. It is important to
note that if data reduction via clustering was not performed on
the data, each of the mass signals in this spectrum would have
been considered an independent data point even though they are
derived from the same metabolite.

In the absence of confident identification by spectral match-
ing or spectral interpretation, a molecular weight-based search is
the next-best alternative. Individual mass values can be searched
in external chemical databases, however this approach is largely
dependent on both the mass error of the instrumentation and
the manual interpretation of the experimental mass spectrum
to identify a putative molecular weight. In silico fragmentation
tools such as MetFrag (Wolf et al., 2010) can provide additional
confidence in a putative match, as well as elemental composi-
tion analysis available in various software. If possible, the putative
metabolite annotations should be validated with a comparison to
an authentic standard. If a standard is unavailable, the evidence
for an annotation should be included as supplementary data in a
published manuscript (Sumner et al., 2007). Due to the require-
ment for manual interpretation of mass spectra, this annotation
process is a major bottleneck in the time and cost of non-targeted
metabolomics experiments.

In summary, there are distinct differences in the underly-
ing assumptions and procedures within targeted or non-targeted
MS-metabolomics workflows. A targeted workflow requires sig-
nificant effort prior to the experiment and only results only in
the detection of a pre-determined set of metabolites. However,
targeted workflows benefit from less complex data analysis pro-
cedures, are more robust to statistical assumptions, and offer
improved sensitivity due to optimized extraction and detection
procedures. Alternatively, non-targeted metabolomics workflows
allows for novel discoveries in a broader range of compounds,
including unknown compounds and metabolites unique to a
specific plant species. The non-targeted MS-metabolomics work-
flows allow for more simple extraction and detection procedures,
however result in highly complex data with increased false discov-
ery burden and interdependence of features (variables) requiring
significantly more effort in data analysis and interpretation.

EXAMPLE STUDIES THAT UTILIZE MS-METABOLOMICS
WORKFLOWS IN PLANT IMMUNITY
OVERVIEW
A collection of investigations was identified that utilized MS-
metabolomics workflows to help answer key questions in
plant immunity. The search terms “plant,” “pathogen,” and
“metabolomics” were included as keywords in Web of Science and
resulted in a total of 70 peer reviewed publications. A random
subset of these publications (28 in total) was further examined to
determine the distribution of plant species, pathogen classes, and
types of metabolites observed using MS-metabolomics (Table 1).
The publications revealed a distribution across bacteria, fungi,
oomycete, insects, epiphytes, and viruses, and showed several
common metabolite classes found to be related to disease resis-
tance. The publication set also illustrated that, to date, LC-MS
platforms were more frequently employed for targeted workflows
and GC-MS for non-targeted workflows. (Figure 4). A portion of
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FIGURE 3 | Annotation of an LC-ESI-MS detected (positive

ionization) metabolite using a metabolite database for

non-targeted MS acquisition. In a non-targeted workflow, each
mass signal is treated as an independent variable for statistical

analysis, but the entire spectrum informs on the metabolite identity.
In a targeted workflow, L-phenylalanine standard would be pre-run to
identify 166.087 m/z as the major mass signal to monitor during a
pre-determined time window.

the publications performed a combination of targeted and non-
targeted metabolomics (“multi-workflow”), utilizing elements of
both workflows to optimize the experiment. For further review,
16 of the 28 publications that corresponded to plant-fungal inter-
actions were interrogated to determine major similarities and dif-
ferences in analytical platforms and detected metabolites among
the targeted and non-targeted MS-metabolomics workflows.

EXAMPLE TARGETED MS-METABOLOMICS STUDIES OF PLANT-FUNGI
INTERACTIONS
The number of studies that relied on targeted MS-metabolomics
workflows of fungi was limited. One investigation used ESI-MS
to target lipids and hormones predicted to be involved in the
interaction between Brachypodium distachyon and Magnaporthe
grisea (Allwood et al., 2006). Several lipids and hormones were
predicted to be important based on previous characterization
using non-MS chemical detection techniques. As expected, the
authors describe variation in phospholipids to be the major plant
response phenotype. Wojakowska et al. used a combination of
targeted and non-targeted extraction and detection workflows to
characterize the metabolic response of lupin (Lupinus angusti-
folius) associated with the fungus Colletotrichum lupini and/or its
toxins (Wojakowska et al., 2013). The study describes a targeted
extraction procedure to evaluate changes in cuticle metabolites
(e.g., waxes) combined with non-targeted GC-MS, and a sep-
arate extraction and detection procedure for LC-MS detection
of flavonoids. The study described major changes in both agly-
cone and conjugates of isoflavones, and the variation occurred
at an earlier time-point and with greater intensity with C. lupine
extracts than the pathogen itself.

Several additional targeted MS-metabolites studies character-
ized the metabolic effect of specific defense elicitors or stress
metabolites. A study in rice (Oryza sativa) reported that metabolic
changes occurred when plants were exposed to a chitin elicitor,
and used LC-MS/MS (tandem MS) to detect the elicitor-induced
production of several phytoalexins (Kishi-Kaboshi et al., 2010).
Similarly, Gamir et al. used a targeted LC-MS/MS method to
evaluate the effect of β-aminobutyric acid, a priming agent that
induces callose deposition in Arabidopsis, and found major effects

on hormone metabolism (Gamir et al., 2012). In this study,
the authors describe an approach for detecting both the basic
moieties and conjugated forms of hormones using a targeted
workflow. For example, many auxins are variants of an indole
moiety (116 m/z), and it is difficult to scan for all auxins using
targeted metabolite profiling. Therefore, the reported targeted MS
workflow involved (i) scanning for m/z values that correspond
to the 116 m/z indole moiety and (ii) validating the full struc-
ture of the conjugation form using an orthogonal LC-ESI-MS
experiment. They found that β-aminobutyric acid influenced the
116 m/z ion from plant extracts, and confirmed that this ion cor-
responded to an indole-3-carboxylic acid after validation with a
commercial authentic standard.

EXAMPLE NON-TARGETED MS-METABOLOMICS STUDIES OF FUNGI
MS-metabolomics can be used to investigate the general plant
response without an emphasis on disease resistance. Aliferis
et al. reported the use of multiple MS detection platforms
to describe the general metabolic response of potato sprouts
(Solanum tuberosum) to Rhizoctonia solani (Aliferis and Jabaji,
2012). They reported shifts in primary metabolism that agree
with general theories of nutrient remobilization, specifically a
decrease in carbohydrates and amino acids upon infection. They
observed both an increase and decrease in select organic acids and
lipids, and an overall increase in potato alkaloids. An Arabidopsis-
Alternaria brassicicola interaction study used non-targeted GC-
MS and described 128 and 249 molecular features that varied after
9 and 24 h of infection including several sugars, organic acids, and
amino acids (Botanga et al., 2012).

Metabolomics studies are also relevant for plant systems as a
means to elucidate the mechanisms underlying genetic sources
of resistance. Sunflower (Helianthus annuus) resistance to the
necrotrophic fungal pathogen Sclerotinia sclerotiorum is associ-
ated with at least 44 quantitative trait loci (reviewed in Ronicke
et al., 2005). Peluffo et al. characterized sunflower resistance to
the necrotrophic pathogen Sclerotinia sclerotiorum using non-
targeted GC-MS and found 63 metabolites including sugars
(trehalose), organic acids (glycerate, citrate, succinate), amino
acids (asparagine, valine, tyrosine) and secondary metabolites

Frontiers in Plant Science | Plant-Microbe Interaction June 2014 | Volume 5 | Article 291 | 6

http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Heuberger et al. Plant defense metabolomics

Table 1 | Subset of MS-metabolomic studies with workflows, platforms, and example plant metabolites associated with disease.

Pathogen Plant Workflow Platform Example metabolites References

Bacteria Arabidopsis Non-targeted GC-MS Salicylate, azelaic acid Jung et al., 2009

Arabidopsis Non-targeted LC-MS Camalexin Beets et al., 2012

Arabidopsis Targeted GC-MS Salicylates, jasmonates,
camalexin

Mishina and Zeier, 2007

Arabidopsis Targeted LC-MS Salicylates, glucosinolates,
camalexin, auxins, amino acids

Truman et al., 2010

Arabidopsis Targeted LC-MS,
GC-MS

Glycerol, glycerol-3-phosphate,
salicylates, jasmonates, azelaic
acid, lipids

Chanda et al., 2011

Arabidopsis Multi-workflow GC-MS Organic acids O’brien et al., 2012

Citrus Non-targeted GC-MS Amino acids, organic acids,
sugars

Cevallos-Cevallos et al., 2012

Nicotiana benthamiana Non-targeted LC-MS No annotation performed Lee et al., 2013

Nicotiana benthamiana Non-targeted GC-MS Butyl 2-pyrrolidone-5-carboxylate Park et al., 2007

Fungi Arabidopsis Non-targeted GC MS Amino acids, organic acids,
sugars

Botanga et al., 2012

Arabidopsis Targeted LC-MS Indole-3-carboxylic acid Gamir et al., 2012

Brachypodium distachyon Targeted LC-MS Lipids Allwood et al., 2006

Citrus unshiu Non-targeted GC-MS,
LC-MS

Amino acids, organic acids,
sugars, lipids

Yun et al., 2013

Eucalyptus globulus Non-targeted GC-MS Volatiles Hantao et al., 2013

Helianthus annuus Non-targeted GC-MS Amino acids, organic acids,
sugars, chlorgenic acid

Peluffo et al., 2010

Hordeum vulgare Non-targeted LC-MS Phenylpropanoids Bollina et al., 2011

Lupinus angustifolius Semi-targeted GC-MS,
LC-MS

Flavonoids Wojakowska et al., 2013

Nicotiana tabacum Non-targeted GC-MS,
LC-MS

Terpenoids, coumarins,
jasmonates, salicylates

Tugizimana et al., 2014

Nicotiana tabacum Multi-workflow LC-MS Phenylpropanoids Madala et al., 2013

Oryza sativa Targeted LC-MS Diterpenoid phytoalexins,
hydroxycinnamaldehydes

Kishi-Kaboshi et al., 2010

Solanum tuberosum Non-targeted GC-MS,
FT-ICR-
MS

Amino acids, organic acids,
sugars, lipids, alkaloids

Aliferis and Jabaji, 2012

Oomycetes Nicotiana benthamiana,
Solanum tuberosum

Targeted GC-MS Oxylipins Saubeau et al., 2013

Nicotiana tabacum Non-targeted LC-MS Phenylpropanoid-polyamine
conjugates, amines, oxylipins

Cho et al., 2013

Vitis vinifera Targeted LC-MS Stilbenes Malacarne et al., 2011

Zingiber zerumbe Non-targeted GC-MS Organic acids, phenolics,
terpenes

Keerthi et al., 2014

Viruses,
epiphytes, pests

Gracilaria chilensis Non-targeted LC-MS Oxylipins, jasmonates Weinberger et al., 2011

Nicotiana tabacum Targeted GC-MS Capsidiol Matros et al., 2006

Oryza sativa Targeted GC-MS Methyl salicylate, methyl
benzoate volatiles

Zhao et al., 2010

(chlorogenic acid) to be associated with a tolerant phenotype
(Peluffo et al., 2010). Similar to S. sclerotiorum infection, an
MS-metabolomics study of Fusarium graminearum revealed a
modulation in amino and organic acids (Bollina et al., 2010) in
barley (Hordeum vulgare). Using a non-targeted LC-MS approach

they found 496 molecular features that varied among resistant
and susceptible lines, 50 of which could be annotated using a
non-targeted informatics workflow and included organic acids,
amino acids, phenylpropanoids, flavonoids, fatty acids, and ter-
penoids. Interestingly, F. graminearum is known to produce
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FIGURE 4 | Distribution of publications across workflows and

platforms for MS-metabolomics related to plant immunity.

“Combined” refers to studies that utilized LC and GC platforms.
“Multi-workflow” refers to a publication that utilized both a targeted and
non-targeted workflow.

deoxynivalenol (DON), a terpene virulence factor, but this
compound was not detected. However, because a non-targeted
workflow was employed the glycosylated form of DON was
detected, indicating an active detoxification event that had not
previously been described in barley. A comparable non-targeted
LC-MS metabolomics study was conducted with F. graminearum
and Triticum aestivum, and the authors reported 473 (rachis) and
340 (spikelet) molecular features that differed between the resis-
tant and susceptible lines due to the Fhb1 locus (Gunnaiah et al.,
2012). Furthermore, the study reported that DON levels did not
vary between the resistance and susceptible lines, indicating a dif-
ferent mechanism of resistance than in barley. In contrast, the
authors noted drastic changes in phenylpropanoids (including
related enzymes) that supports lignification as a key mediator of
resistance.

To analyze fungal elicitors of plant defense, Madala et al.
utilized non-targeted LC-MS metabolomics and showed that
N. tabacum cells exposed to the stress-metabolite isonitrosoace-
tophenone induced variation in phenylpropanoid and flavonoid
metabolism (Madala et al., 2013). A similar study characterized
the effect of ergosterol on N. tabacum cells using non-targeted
GC- and LC-MS (and other non-MS detection platforms), and
found major metabolomic variation after 18 h of incubation
with 300 nM ergosterol (Tugizimana et al., 2014). The major
metabolic shifts occurred in secondary metabolites (terpenoids,
coumarins, lignin precursors) and hormonal signaling molecules
(jasmonate, salicylate-glucoside). In addition, heat treatment, a
non-chemical elicitor of defense against post-harvest infection
in citrus fruits, was investigated for its protection against fun-
gal infection. A non-targeted LC-MS and GC-MS metabolomics
study showed that organic acids (succinate), amines (ornithine),
phenylpropanoids (flavonoids and lignin), and hormones (jas-
monate) all increased in the pericarp of Citrus unshiu (mandarin),
providing new insights into the molecular basis of heat-treatment
induced resistance to fungal infection (Yun et al., 2013).

Another study identified volatile metabolites associated with
the interaction between Eucalyptus globulus and the necrotrophic
fungal pathogen Teratosphaeria nubilosa using non-targeted GC-
MS (Hantao et al., 2013). More than 40 compounds were identi-
fied that can be used as biomarkers of disease, potentially before
visual or non-volatile chemical traits can be observed. A similar
volatile biomarker-discovery study was described for Citrus sinen-
sis infection with Candidatus liberibacter (Aksenov et al., 2014),
highlighting the potential use of chemical biomarkers of disease
with non-destructive sampling during the growing season.

Taken together, these non-targeted MS-metabolomics studies
consistently showed that the regulation of primary and secondary
metabolites is important for resistance in plant-fungal interac-
tions. While the targeted MS-metabolomics workflows described
metabolic changes associated with fungal infection, the non-
targeted studies provided a much broader view of metabolism.
Thus, even though metabolite identification was a clear bot-
tleneck in many of the non-targeted studies, each investigation
allowed for an improved understanding of the plant response to
fungal infection.

CONCLUSION
MS is a high-throughput and sensitive chemical detection plat-
form that can be used to globally characterize the metabolome
and elucidate the molecular mechanisms that govern plant-
pathogen interactions. MS-metabolomics is becoming an impor-
tant tool to characterize the metabolic basis of resistance to
pathogens in non-model systems represented in the exten-
sive chemical diversity of the plant kingdom. The two major
MS-metabolomics workflows, targeted and non-targeted, can
provide important information that is complimentary to more
traditional genomics approaches. The targeted MS-metabolomics
workflow has the advantages of simple data analysis procedures
and improved statistical robustness, however it is dependent
on a priori knowledge of which metabolites are important for
plant defense. The targeted workflow also requires significant up-
front labor and costs to calibrate the MS acquisition method
for the metabolites of interest. In contrast, the non-targeted
metabolomics workflow provides the ability to sample a broad
range of chemical classes, and thus plant metabolism, in a single
experiment. However, it is limited by bottlenecks in metabolite
identification and false assumptions in traditional statistical anal-
yses. While still considered a relatively new field, the annotation
bottlenecks in non-targeted metabolite profiling are predicted
to significantly improve as the MS metabolite spectral databases
mature. In addition, sharing of unknown spectra as supplemental
data upon publication or to a public resource such as Massbank
(Horai et al., 2010) can improve the general understanding of
which chemicals, albeit unknown, are consistently associated with
plant immunity. It is therefore recommended that mass spec-
tra, which are the information collected in an MS-experiment,
should be included in publications of non-targeted metabolomics
experiments.

REFERENCES
Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W., Dandekar, A. M., Fiehn,

O., et al. (2014). Detection of huanglongbing disease using differential mobility
spectrometry. Anal. Chem. 86, 2481–2488. doi: 10.1021/ac403469y

Frontiers in Plant Science | Plant-Microbe Interaction June 2014 | Volume 5 | Article 291 | 8

http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Heuberger et al. Plant defense metabolomics

Aliferis, K. A., and Jabaji, S. (2012). FT-ICR/MS and GC-EI/MS metabolomics
networking unravels global potato sprout’s responses to rhizoctonia solani
Infection. PLoS ONE 7:e42576. doi: 10.1371/journal.pone.0042576

Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., and Mur, L. A. J. (2006).
Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol
phospholipids are major discriminatory non-polar metabolites in responses
by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J. 46,
351–368. doi: 10.1111/j.1365-313X.2006.02692.x

Barros-Rios, J., Malvar, R. A., Jung, H. J. G., and Santiago, R. (2011). Cell wall com-
position as a maize defense mechanism against corn borers. Phytochemistry 72,
365–371. doi: 10.1016/j.phytochem.2011.01.004

Beets, C. A., Huang, J. C., Madala, N. E., and Dubery, I. (2012). Activation of
camalexin biosynthesis in Arabidopsis thaliana in response to perception of bac-
terial lipopolysaccharides: a gene-to-metabolite study. Planta 236, 261–272. doi:
10.1007/s00425-012-1606-1

Berger, S., Sinha, A. K., and Roitsch, T. (2007). Plant physiology meets phytopathol-
ogy: plant primary metabolism and plant-pathogen interactions. J. Exp. Bot. 58,
4019–4026. doi: 10.1093/jxb/erm298

Bollina, V., Kumaraswamy, G. K., Kushalappa, A. C., Choo, T. M., Dion, Y.,
Rioux, S., et al. (2010). Mass spectrometry-based metabolomics application to
identify quantitative resistance-related metabolites in barley against Fusarium
head blight. Mol. Plant Pathol. 11, 769–782. doi: 10.1111/j.1364-3703.2010.
00643.x

Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., and Rioux, S. (2011).
Identification of metabolites related to mechanisms of resistance in barley
against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol.
77, 355–370. doi: 10.1007/s11103-011-9815-8

Bolton, M. D. (2009). Primary metabolism and plant defense-fuel for the fire. Mol.
Plant Microbe Interact. 22, 487–497. doi: 10.1094/MPMI-22-5-0487

Botanga, C. J., Bethke, G., Chen, Z., Gallie, D. R., Fiehn, O., and Glazebrook, J.
(2012). Metabolite profiling of arabidopsis inoculated with alternaria brassici-
cola reveals that ascorbate reduces disease severity. Mole. Plant Microbe Interact.
25, 1628–1638. doi: 10.1094/MPMI-07-12-0179-R

Bradley, D. J., Kjellbom, P., and Lamb, C. J. (1992). Elicitor-induced and
wound-induced oxidative cross-linking of a proline-rich plant-cell wall pro-
tein - a novel, rapid defense response. Cell 70, 21–30. doi: 10.1016/0092-
8674(92)90530-P

Broadhurst, D. I., and Kell, D. B. (2006). Statistical strategies for avoiding false dis-
coveries in metabolomics and related experiments. Metabolomics 2, 171–196.
doi: 10.1007/s11306-006-0037-z

Broeckling, C. D., Heuberger, A. L., Prince, J. A., Ingelsson, E., and Prenni, J.
E. (2012). Assigning precursor–product ion relationships in indiscriminant
MS/MS data from non-targeted metabolite profiling studies. Metabolomics 9,
33–43. doi: 10.1007/s11306-012-0426-4

Cao, A., Reid, L. M., Butron, A., Malvar, R. A., Souto, X. C., and Santiago, R.
(2011). Role of Hydroxycinnamic acids in the infection of maize silks by fusar-
ium graminearum schwabe. Mol. Plant Microbe Interact. 24, 1020–1026. doi:
10.1094/MPMI-03-11-0079

Cevallos-Cevallos, J. M., Futch, D. B., Shilts, T., Folimonova, S. Y., and Reyes-
De-Corcuera, J. I. (2012). GC-MS metabolomic differentiation of selected
citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol.
Biochem. 53, 69–76. doi: 10.1016/j.plaphy.2012.01.010

Chanda, B., Xia, Y., Mandal, M. K., Yu, K. S., Sekine, K. T., Gao, Q. M., et al.
(2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity
in plants. Nat. Genet. 43, 421. doi: 10.1038/ng.798

Cho, K., Kim, Y., Wi, S. J., Seo, J. B., Kwon, J., Chung, J. H., et al. (2013). Metabolic
survey of defense responses to a compatible hemibiotroph, Phytophthora par-
asitica var. nicotianae, in ethylene signaling-impaired tobacco. J. Agric. Food
Chem. 61, 8477–8489. doi: 10.1021/jf401785w

De Livera, A. M., Dias, D. A., De Souza, D., Rupasinghe, T., Pyke, J., Tull, D.,
et al. (2012). Normalizing and integrating metabolomics data. Anal. Chem. 84,
10768–10776. doi: 10.1021/ac302748b

Delledonne, M., Xia, Y. J., Dixon, R. A., and Lamb, C. (1998). Nitric oxide functions
as a signal in plant disease resistance. Nature 394, 585–588. doi: 10.1038/29087

Dittrich, P., and Raschke, K. (1977). Malate metabolism in isolated epidermis of
commelina-communis l in relation to stomatal functioning. Planta 134, 77–81.
doi: 10.1007/BF00390098

Dixon, R. A. (2001). Natural products and plant disease resistance. Nature 411,
843–847. doi: 10.1038/35081178

Ecker, J. R., and Davis, R. W. (1987). Plant defense genes are regulated by ethylene.
Proc. Natl. Acad. Sci. U.S.A. 84, 5202–5206. doi: 10.1073/pnas.84.15.5202

Fiehn, O., Kloska, S., and Altmann, T. (2001). Integrated studies on plant biol-
ogy using multiparallel techniques. Curr. Opin. Biotechnol. 12, 82–86. doi:
10.1016/S0958-1669(00)00165-8

Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., and Willmitzer,
L. (2000a). Metabolite profiling for plant functional genomics. Nat. Biotechnol.
18, 1157–1161. doi: 10.1038/81137

Fiehn, O., Kopka, J., Trethewey, R. N., and Willmitzer, L. (2000b). Identification of
uncommon plant metabolites based on calculation of elemental compositions
using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72,
3573–3580. doi: 10.1021/ac991142i

Foyer, C. H., and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a
metabolic interface between stress perception and physiological responses. Plant
Cell 17, 1866–1875. doi: 10.1105/tpc.105.033589

Gamir, J., Pastor, V., Cerezo, M., and Flors, V. (2012). Identification of indole-
3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina.
Plant Physiol. Biochem. 61, 169–179. doi: 10.1016/j.plaphy.2012.10.004

Ge, H., Walhout, A. J. M., and Vidal, M. (2003). Integrating “omic” information: a
bridge between genomics and systems biology. Trends Genet. 19, 551–560. doi:
10.1016/j.tig.2003.08.009

Gershenzon, J., and Dudareva, N. (2007). The function of terpene natural products
in the natural world. Nat. Chem. Biol. 3, 408–414. doi: 10.1038/nchembio.2007.5

Gundlach, H., Muller, M. J., Kutchan, T. M., and Zenk, M. H. (1992). Jasmonic acid
is a signal transducer in elicitor-induced plant-cell cultures. Proc. Natl. Acad. Sci.
U.S.A. 89, 2389–2393. doi: 10.1073/pnas.89.6.2389

Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S., and Somers, D. J. (2012).
Integrated metabolo-proteomic approach to decipher the mechanisms by which
wheat qtl (fhb1) contributes to resistance against fusarium graminearum. PLoS
ONE 7:e40695. doi: 10.1371/journal.pone.0040695

Hantao, L. W., Aleme, H. G., Passador, M. M., Furtado, E. L., Ribeiro, F. A.
D., Poppi, R. J., (2013). Determination of disease biomarkers in Eucalyptus
by comprehensive two-dimensional gas chromatography and multivariate
data analysis. J. Chromatogr. A 1279, 86–91. doi: 10.1016/j.chroma.2013.
01.013

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010).
MassBank: a public repository for sharing mass spectral data for life sciences.
J. Mass Spectrom. 45, 703–714. doi: 10.1002/jms.1777

Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., and Greenberg, J.
T. (2009). Priming in systemic plant immunity. Science 324, 89–91. doi:
10.1126/science.1170025

Keerthi, D., Geethu, C., Nair, R. A., and Pillai, P. (2014). Metabolic profiling of
Zingiber zerumbet following pythium myriotylum infection: investigations on
the defensive role of the principal secondary metabolite, zerumbone. Appl.
Biochem. Biotechnol. 172, 2593–2603. doi: 10.1007/s12010-013-0707-z

Kishi-Kaboshi, M., Okada, K., Kurimoto, L., Murakami, S., Umezawa, T., Shibuya,
N., et al. (2010). A rice fungal MAMP-responsive MAPK cascade regulates
metabolic flow to antimicrobial metabolite synthesis. Plant J. 63, 599–612. doi:
10.1111/j.1365-313X.2010.04264.x

Kopka, J., Fernie, A., Weckwerth, W., Gibon, Y., and Stitt, M. (2004). Metabolite
profiling in plant biology: platforms and destinations. Genome Biol. 5:109. doi:
10.1186/gb-2004-5-6-109

Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al.
(2005). The golm metabolome database. Bioinformatics 21, 1635–1638. doi:
10.1093/bioinformatics/bti236

Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., and Neumann, S. (2012).
CAMERA: an integrated strategy for compound spectra extraction and anno-
tation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84,
283–289. doi: 10.1021/ac202450g

Lamb, C., and Dixon, R. A. (1997). The oxidative burst in plant disease
resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275. doi:
10.1146/annurev.arplant.48.1.251

Lee, S., Yang, D. S., Uppalapati, S. R., Sumner, L. W., and Mysore, K. S. (2013).
Suppression of plant defense responses by extracellular metabolites from
Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC Plant Biol.
3:65. doi: 10.1186/1471-2229-13-65

Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A. R. (2006). Gas
chromatography mass spectrometry-based metabolite profiling in plants. Nat.
Protoc. 1, 387–396. doi: 10.1038/nprot.2006.59

www.frontiersin.org June 2014 | Volume 5 | Article 291 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Heuberger et al. Plant defense metabolomics

Liu, G. S., Ji, Y. Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J. T., et al.
(2010). Amino acid homeostasis modulates salicylic acid-associated redox
status and defense responses in arabidopsis. Plant Cell 22, 3845–3863. doi:
10.1105/tpc.110.079392

Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for
hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81,
3079–3086. doi: 10.1021/ac900036d

Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J., and Solano, R. (2003).
ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jas-
monate pathways in plant defense. Plant Cell 15, 165–178. doi: 10.1105/tpc.
007468

Madala, N. E., Steenkamp, P. A., Piater, L. A., and Dubery, I. A. (2013).
Metabolomic analysis of isonitrosoacetophenone-induced perturbations in
phenolic metabolism of Nicotiana tabacum cells. Phytochemistry 94, 82–90. doi:
10.1016/j.phytochem.2013.05.010

Malacarne, G., Vrhovsek, U., Zulini, L., Cestaro, A., Stefanini, M., Mattivi, F.,
et al. (2011). Resistance to Plasmopara viticola in a grapevine segregating
population is associated with stilbenoid accumulation and with specific host
transcriptional responses. BMC Plant Biol. 11:114. doi: 10.1186/1471-2229-
11-114

Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., et al.
(2000). The transcriptome of Arabidopsis thaliana during systemic acquired
resistance. Nat. Genet. 26, 403–410. doi: 10.1038/82521

Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U., and Mock, H.
P. (2006). Growth at elevated CO2 concentrations leads to modified profiles
of secondary metabolites in tobacco cv. SamsunNN and to increased resis-
tance against infection with potato virus Y. Plant Cell Environ. 29, 126–137. doi:
10.1111/j.1365-3040.2005.01406.x

Mishina, T. E., and Zeier, J. (2007). Pathogen-associated molecular pattern recog-
nition rather than development of tissue necrosis contributes to bacterial
induction of systemic acquired resistance in Arabidopsis. Plant J. 50, 500–513.
doi: 10.1111/j.1365-313X.2007.03067.x

Ng, C. K. Y., Carr, K., Mcainsh, M. R., Powell, B., and Hetherington, A.
M. (2001). Drought-induced guard cell signal transduction involves
sphingosine-1-phosphate. Nature 410, 596–599. doi: 10.1038/350
69092

O’brien, J. A., Daudi, A., Finch, P., Butt, V. S., Whitelegge, J. P., Souda, P.,
et al. (2012). A peroxidase-dependent apoplastic oxidative burst in cultured
arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158,
2013–2027. doi: 10.1104/pp.111.190140

Pare, P. W., and Tumlinson, J. H. (1999). Plant volatiles as a defense against insect
herbivores. Plant Physiol. 121, 325–331. doi: 10.1104/pp.121.2.325

Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D. F. (2007). Methyl
salicylate is a critical mobile signal for plant systemic acquired resistance. Science
318, 113–116. doi: 10.1126/science.1147113

Peluffo, L., Lia, V., Troglia, C., Maringolo, C., Norma, P., Escande, A.,
et al. (2010). Metabolic profiles of sunflower genotypes with contrasting
response to Sclerotinia sclerotiorum infection. Phytochemistry 71, 70–80. doi:
10.1016/j.phytochem.2009.09.018

Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006).
Proteomic investigation of the effect of salicylic acid on Arabidopsis seed ger-
mination and establishment of early defense mechanisms. Plant Physiol. 141,
910–923. doi: 10.1104/pp.106.082057

Rojas, C. M., Senthil-Kumar, M., Tzin, V., and Mysore, K. (2014). Regulation
of primary plant metabolism during plant-pathogen interactions and its
contribution to plant defense. Front. Plant Sci. 5:17. doi: 10.3389/fpls.2014.
00017

Ronicke, S., Hahn, V., Vogler, A., and Friedt, W. (2005). Quantitative trait loci anal-
ysis of resistance to Sclerotinia sclerotiorum in sunflower. Phytopathology 95,
834–839. doi: 10.1094/PHYTO-95-0834

Roos, W., Viehweger, K., Dordschbal, B., Schumann, B., Evers, S., Steighardt, J.,
et al. (2006). Intracellular pH signals in the induction of secondary path-
ways - The case of Eschscholzia californica. J. Plant Physiol. 163, 369–381. doi:
10.1016/j.jplph.2005.11.012

Saglam, A., Terzi, R., Nar, H., Saruhan, N., Ayaz, F. A., and Kadioglu,
A. (2010). Inorganic and organic solutes in apoplastic and symplastic
spaces contribute to osmotic adjustment during leaf rolling in ctenan-
the setosa. Acta Biol. Cracov. Ser. Bot. 52, 37–44. doi: 10.2478/v10182-010-
0005-9

Sakano, K. (2001). Metabolic regulation of pH in plant cells: role of cytoplasmic on
in defense reaction and secondary metabolism. Int. Rev. Cytol. 206, 1–44. doi:
10.1016/S0074-7696(01)06018-1

Saubeau, G., Goulitquer, S., Barloy, D., Potin, P., Andrivon, D., and Val, F. (2013).
Differential induction of oxylipin pathway in potato and tobacco cells by bac-
terial and oomycete elicitors. Plant Cell Rep. 32, 579–589. doi: 10.1007/s00299-
012-1377-y

Scharte, J., Schon, H., and Weis, E. (2005). Photosynthesis and carbohy-
drate metabolism in tobacco leaves during an incompatible interaction
with Phytophthora nicotianae. Plant Cell Environ. 28, 1421–1435. doi:
10.1111/j.1365-3040.2005.01380.x

Schlupmann, H., Bacic, A., and Read, S. M. (1993). A novel callose synthase from
pollen tubes of nicotiana. Planta 191, 470–481. doi: 10.1007/BF00195748

Schweer, H. (1982). Gas chromatography-mass spectrometry of aldoses as o-
methoxime, O-2-Methyl-2-Propoxime and O-normal-butoxime pertrifluo-
roacetyl derivatives on Ov-225 with methylpropane as ionization agent.2.
hexoses. J. Chromatogr. 236, 361–367. doi: 10.1016/S0021-9673(00)84886-4

Smith, C. A., O’maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al.
(2005). METLIN - A metabolite mass spectral database. Ther. Drug Monit. 27,
747–751. doi: 10.1097/01.ftd.0000179845.53213.39

Smith, C. A., Want, E. J., O’maille, G., Abagyan, R., and Siuzdak, G. (2006). XCMS:
processing mass spectrometry data for metabolite profiling using nonlinear
peak alignment, matching, and identification. Anal. Chem. 78, 779–787. doi:
10.1021/ac051437y

Staswick, P. E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is acti-
vated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell
16, 2117–2127. doi: 10.1105/tpc.104.023549

Stein, S. E. (1999). An integrated method for spectrum extraction and compound
identification from gas chromatography/mass spectrometry data. J. Am. Soc.
Mass Spectrom. 10, 770–781. doi: 10.1016/S1044-0305(99)00047-1

Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., et al. (2007).
Proposed minimum reporting standards for chemical analysis. Metabolomics 3,
211–221. doi: 10.1007/s11306-007-0082-2

Sysi-Aho, M., Katajamaa, M., Yetukuri, L., and Oresic, M. (2007). Normalization
method for metabolomics data using optimal selection of multiple internal
standards. BMC Bioinformatics 8:93. doi: 10.1186/1471-2105-8-93

Tautenhahn, R., Bottcher, C., and Neumann, S. (2007). Annotation of LC/ESI-MS
mass signals. Bioinformatics Res. Dev. Proc. 4414, 371–380. doi: 10.1007/978-3-
540-71233-6_29

Tavernier, V., Cadiou, S., Pageau, K., Lauge, R., Reisdorf-Cren, M., Langin, T.,
et al. (2007). The plant nitrogen mobilization promoted by Colletotrichum lin-
demuthianum in Phaseolus leaves depends on fungus pathogenicity. J. Exp. Bot.
58, 3351–3360. doi: 10.1093/jxb/erm182

Torres, M. A., Jones, J. D. G., and Dangl, J. L. (2006). Reactive oxygen
species signaling in response to pathogens. Plant Physiol. 141, 373–378. doi:
10.1104/pp.106.079467

Truman, W. M., Bennett, M. H., Turnbull, C. G. N., and Grant, M. R. (2010).
Arabidopsis auxin mutants are compromised in systemic acquired resistance
and exhibit aberrant accumulation of various indolic compounds. Plant Physiol.
152, 1562–1573. doi: 10.1104/pp.109.152173

Tugizimana, F., Steenkamp, P. A., Piater, L. A., and Dubery, I. A.
(2014). Multi-platform metabolomic analyses of ergosterol-induced
dynamic changes in Nicotiana tabacum cells. PLoS ONE 9:e87846. doi:
10.1371/journal.pone.0087846

Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V.,
et al. (2011). Optimized preprocessing of ultra-performance liquid chromatog-
raphy/mass spectrometry urinary metabolic profiles for improved information
recovery. Anal. Chem. 83, 5864–5872. doi: 10.1021/ac201065j

Vicente, M. R. S., Larios-Zarate, G., and Plasencia, J. (2013). Disruption of sphin-
golipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent
responses and compromises resistance to Alternaria alternata f. sp lycopersici.
Planta 237, 121–136. doi: 10.1007/s00425-012-1758-z

Wang, J. W., and Wu, J. Y. (2005). Nitric oxide is involved in methyl jasmonate-
induced defense responses and secondary metabolism activities of Taxus cells.
Plant Cell Physiol. 46, 923–930. doi: 10.1093/pcp/pci098

Weinberger, F., Lion, U., Delage, L., Kloareg, B., Potin, P., Beltran, J., et al. (2011).
Up-regulation of lipoxygenase, phospholipase, and oxylipin-production in the
induced chemical defense of the red alga Gracilaria chilensis against epiphytes.
J. Chem. Ecol. 37, 677–686. doi: 10.1007/s10886-011-9981-9

Frontiers in Plant Science | Plant-Microbe Interaction June 2014 | Volume 5 | Article 291 | 10

http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Heuberger et al. Plant defense metabolomics

Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis 3,
1769–1782. doi: 10.4155/bio.11.155

Wojakowska, A., Muth, D., Narozna, D., Madrzak, C., Stobiecki, M., and Kachlicki,
P. (2013). Changes of phenolic secondary metabolite profiles in the reac-
tion of narrow leaf lupin (Lupinus angustifolius) plants to infections with
Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9,
575–589. doi: 10.1007/s11306-012-0475-8

Wolf, S., Schmidt, S., Muller-Hannemann, M., and Neumann, S. (2010).
In silico fragmentation for computer assisted identification of metabo-
lite mass spectra. BMC Bioinformatics 11:148. doi: 10.1186/1471-2105-
11-148

Xia, J. G., Psychogios, N., Young, N., and Wishart, D. S. (2009). MetaboAnalyst: a
web server for metabolomic data analysis and interpretation. Nucleic Acids Res.
37, W652–W660. doi: 10.1093/nar/gkp356

Yang, Z. N., Rogers, L. M., Song, Y. D., Guo, W. J., and Kolattukudy, P. E. (2005).
Homoserine and asparagine are host signals that trigger in planta expression of
a pathogenesis gene in Nectria haematococca. Proc. Natl. Acad. Sci. U.S.A. 102,
4197–4202. doi: 10.1073/pnas.0500312102

Yun, Z., Gao, H. J., Liu, P., Liu, S. Z., Luo, T., Jin, S., et al. (2013). Comparative
proteomic and metabolomic profiling of citrus fruit with enhancement of dis-
ease resistance by postharvest heat treatment. BMC Plant Biol. 13:44. doi:
10.1186/1471-2229-13-44

Zhao, N., Guan, J., Ferrer, J. L., Engle, N., Chern, M., Ronald, P., et al.
(2010). Biosynthesis and emission of insect-induced methyl salicylate
and methyl benzoate from rice. Plant Physiol. Biochem. 48, 279–287. doi:
10.1016/j.plaphy.2010.01.023

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 15 April 2014; paper pending published: 12 May 2014; accepted: 04 June
2014; published online: 24 June 2014.
Citation: Heuberger AL, Robison FM, Lyons SMA, Broeckling CD and Prenni JE
(2014) Evaluating plant immunity using mass spectrometry-based metabolomics
workflows. Front. Plant Sci. 5:291. doi: 10.3389/fpls.2014.00291
This article was submitted to Plant-Microbe Interaction, a section of the journal
Frontiers in Plant Science.
Copyright © 2014 Heuberger, Robison, Lyons, Broeckling and Prenni. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

www.frontiersin.org June 2014 | Volume 5 | Article 291 | 11

http://dx.doi.org/10.3389/fpls.2014.00291
http://dx.doi.org/10.3389/fpls.2014.00291
http://dx.doi.org/10.3389/fpls.2014.00291
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive

	Evaluating plant immunity using mass spectrometry-based metabolomics workflows
	Introduction
	A Large and Diverse Group of Small Molecules Mediate the Response to Biotic Stress
	Mass Spectrometry Workflows to Survey Small Molecules Associated with Plant Immunity
	Overview
	The Targeted MS-Metabolomics Workflow
	Non-Targeted Ms-Metabolomics Workflows

	Example Studies that Utilize MS-Metabolomics Workflows in Plant Immunity
	Overview
	Example Targeted MS-Metabolomics Studies of Plant-Fungi Interactions
	Example Non-Targeted MS-Metabolomics Studies of Fungi

	Conclusion
	References


