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Plants are exposed to a wide range of potential pathogens, which derive from diverse phyla.
Therefore, plants have developed successful defense mechanisms during co-evolution with
different pathogens. Besides many specialized defense mechanisms, the plant cell wall
represents a first line of defense. It is actively reinforced through the deposition of cell wall
appositions, so-called papillae, at sites of interaction with intruding microbial pathogens.
The papilla is a complex structure that is formed between the plasma membrane and the
inside of the plant cell wall. Even though the specific biochemical composition of papillae
can vary between different plant species, some classes of compounds are commonly
found which include phenolics, reactive oxygen species, cell wall proteins, and cell wall
polymers. Among these polymers, the (1,3)-β-glucan callose is one of the most abundant
and ubiquitous components. Whereas the function of most compounds could be directly
linked with cell wall reinforcement or an anti-microbial effect, the role of callose has
remained unclear. An evaluation of recent studies revealed that the timing of the different
papilla-forming transport processes is a key factor for successful plant defense.
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INTRODUCTION
During plant-pathogen co-evolution, plants have evolved a range
of defense mechanisms to prevent ingress and colonization by
potential pathogens, which derive from diverse phyla and include
fungi, oomycetes, animals, bacteria, and viruses. Successful plant
defense depends on an early and rapid perception of the invading
pathogen and subsequent induction and mobilization of bio-
chemical and structural defense-related mechanisms. In most
cases, plant defense to pathogens is successful and infection is the
exception, which reflects the general effectiveness of the plant’s
immune response (Deverall, 1977; Smith, 1978; Bailey, 1983;
Thordal-Christensen, 2003).

The perception of pathogens and the induced plant defense
response generally follows two branches of the active immune sys-
tem. R proteins, which are encoded by plant disease resistance
(R) genes, control plant defense (Flor, 1971) by recognizing the
presence of corresponding avirulence (avr) proteins or effectors
deriving from the pathogen. This can occur through direct binding
of the avr protein or effector, the binding of an effector-modified
target, or recognition of an effector/target complex (Dodds and
Rathjen, 2010). In extension to these binding possibilities, a
current model suggests that R proteins can guard key cellular
hubs, which might be common targets of effectors from differ-
ent pathogen origin (Mukhtar et al., 2011). Even though most
of the R proteins identified contain a nucleotide binding site
(NBS) and leucine-rich repeats (LRRs), and are localized intra-
cellularly, a growing number of R proteins has been discovered
that contain membrane anchorage motifs, e.g., a myristoylation
motif, and an extracellular LRR but lack a NBS (Dangl and
Jones, 2001; Martin et al., 2003; Glowacki et al., 2011). Plant
NBS-LRR- or atypical R protein-mediated pathogen resistance

is only effective against obligate biotrophic or hemi-biotrophic
pathogens that require living host tissue for propagation. How-
ever, plant NBS-LRR- or atypical R protein-mediated pathogen
resistance is not effective against necrotrophic pathogens that
macerate and degrade host tissue during colonization (Glaze-
brook, 2005). In the second arm of the active immune system,
transmembrane pattern recognition receptors (PRR) that per-
ceive microbe- or pathogen molecular patterns (MAMPs; Ausubel,
2005) respond to intruding pathogens (Jones and Takemoto, 2004;
Nürnberger et al., 2004). MAMPs are characterized by their gen-
eral occurrence in all members of a pathogen class and their
often requirement for pathogen viability. Prominent examples for
MAMPs are flagellin from bacterial pathogens and chitin from
fungal pathogens, for which the respective PRR have been identi-
fied and characterized (Chinchilla et al., 2006; Kaku et al., 2006;
Chinchilla et al., 2007; Miya et al., 2007). The widely accepted
four phased Zig-Zag model from Jones and Dangl (2006) rep-
resents how these two branches of the plant immune system
interact.

The plant immune system triggers a variety of defense mech-
anisms and include a hypersensitive response (HR) for rapid
collapse of attacked host cells (Coll et al., 2011), production
of anti-microbial phytoalexins (Bednarek and Osbourn, 2009),
biosynthesis of enzymes, which can decompose pathogen cell walls
(Mauch et al., 1988), and plant cell wall modifications; notably the
deposition of papillae, which are enriched with the (1,3)-β-glucan
cell wall polymer callose (Aist, 1976). These cell wall thicken-
ings are formed at sites of microbial attack and are thought to
act as a physical barrier to slow pathogen invasion (Stone and
Clarke, 1992). Compared with many plant defense responses that
can be specific to a phylum or even a species, the formation of
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callose-rich papillae can be regarded as a ubiquitous response
because it appears to be induced in essentially all plants following
pathogen challenge.

THE ROLE OF CALLOSE IN PATHOGEN-INDUCED PAPILLAE
The formation of papillae is one of the earliest observed plant
defense responses that has been analyzed on a cellular level for over
150 years. deBary (1863) discovered papillae at sites of fungal pene-
tration, and Mangin (1895) reported that callose commonly occurs
in papillae. Since then, chemical analyses have identified additional
chemical components, which comprise phenolic compounds and
lignin, an additional cell wall polymer to callose, reactive oxygen
species (ROS), and cell wall proteins like peroxidases and anti-
microbial thionins (Aist and Williams, 1971; Mercer et al., 1974;
McLusky et al., 1999; Mims et al., 2000). Whereas the role of cal-
lose in papillae remained unclear, a function in defense could be
attributed to most of the other components. For instance, hydro-
gen peroxide is a ROS that accumulates in forming papillae and can
be used by peroxidases to promote cross-linking of proteins and
phenolics to reinforce cell wall appositions (Thordal-Christensen
et al., 1997; Brown et al., 1998).

In general, papillae formation is an early defense response and
can contribute to the plant’s innate immunity (Jones and Dangl,
2006; Schwessinger and Ronald, 2012). By slowing pathogen inva-
sion in the attacked tissue, papillae formation can gain time for
an induction of additional defense responses that may require
gene activation and expression (Lamb and Dixon, 1997; Brown
et al., 1998; Boller and Felix, 2009). However, the extent to which
papillae and the deposited callose would contribute to the plant’s
innate immunity and penetration resistance has been subject to
an ongoing discussion.

Callose-rich papillae were not only found in cases of suc-
cessful resistance but also at sites of pathogen penetration (Aist,
1976). In this regard, the proposed function of callose in
strengthening cell wall appositions and contributing to penetra-
tion resistance was further challenged by studies using Arabidopsis
(Arabidopsis thaliana) mutants. Disruption mutants that lack
the stress-induced callose synthase PMR4 [POWDERY MILDEW
RESISTANT 4; also known as GSL5 (GLUCAN SYNTHASE-
LIKE 5)] and do not deposit callose at sites of attempted fungal
penetration, showed an unexpected, increased resistance to pow-
dery mildew species (Jacobs et al., 2003; Nishimura et al., 2003).
This result revealed that in Arabidopsis wild-type leaves, cal-
lose levels at penetration sites do not contribute to penetration
resistance to adapted powdery mildews. However, callose depo-
sition is required to maintain the high penetration resistance
to the non-adapted powdery mildew Blumeria graminis f.sp.
hordei, which was challenged in pmr4 mutants (Jacobs et al., 2003;
Ellinger et al., 2013). Additional double-mutant and microar-
ray analyses revealed that the hyperactivated salicylic acid (SA)
pathway caused the high resistance to adapted powdery mildews
in pmr4 mutants (Nishimura et al., 2003). The SA-dependent
resistance of pmr4 mutants, however, might not be directly
related to missing callose because the penetration success of an
adapted powdery mildew was not different between wild-type and
pmr4 mutant at early stages of infection (Consonni et al., 2010;
Ellinger et al., 2013).

Contrary results about an active role of callose in forming
papillae derived from studies using mlo (MILDEW RESISTANCE
LOCUS O) disruption mutants. In Arabidopsis, the observed
mlo2-conditioned penetration resistance to powdery mildew did
not require PMR4-dependent callose formation (Consonni et al.,
2010) whereas mlo-resistant barley (Hordeum vulgare) colep-
tiles seemed to be dependent on papillae containing callose to
maintain their penetration resistance to powdery mildew (Bayles
et al., 1990). However, it has to be considered that the results
in barley were based on a treatment with a callose synthase
inhibitor that is not specific to stress-induced callose biosynthesis.
Therefore, inhibition of additional callose synthases might have
contributed to increased penetration susceptibility in this experi-
ment. In our recent study, we could directly confirm that callose
deposition in papillae can have an active role in penetration resis-
tance also in Arabidopsis. The overexpression of PMR4 caused an
elevated early callose deposition at sites of attempted fungal pen-
etration, which provided complete penetration resistance to the
adapted powdery mildew Golovinomyces cichoracearum and the
non-adapted powdery mildew B. graminis (Ellinger et al., 2013).
This example reveals that timing and rapid transportation in
papillae formation is important to slow or even stop pathogen
invasion.

The extent to which overexpression of PMR4 could be applied
in crops to induce callose-mediated pathogen resistance is cur-
rently under investigation. First results from increased penetration
resistance to the virulent powdery mildew B. graminis in barley
leaves after transient PMR4 overexpression (Blümke et al., 2013)
prompted us to generate stable PMR4 expression lines in barley,
wheat (Triticum aestivum), and the model grass Brachypodium dis-
tachyon. To test whether induced penetration resistance would be
dependent on overexpression of the callose synthase gene PMR4
from Arabidopsis, callose synthase genes from the respective plant
of interest could be used for overexpression. In this regard, new
breeding strategies, like non-GMO-considered TAL effector nucle-
ase mutagenesis (Wendt et al., 2013) would open new possibilities
in applying this type of induced resistance in crops, e.g., by site-
directed editing of the promoter region for constitutive expression
of the gene of interest.

REGULATION OF TRANSPORT PROCESSES AT THE FORMING
PAPILLAE
The spatial confinement of papillae to the paramural space
between the cell wall and the plasma membrane at sites of
attempted pathogen penetration suggests a site-directed transport
of papilla components and cell wall-synthesizing enzymes, which
would imply an induction and regulation of cell polarization pro-
cesses (Schmelzer, 2002; Koh et al., 2005). The rearrangement of
the cytoskeleton is an important factor in these processes. Actin fil-
aments might be especially involved in the delivery of vesicles and
transportation of organelles, like the Golgi and the nucleus, to the
infection site and the forming papilla. This was supported in exper-
iments where actin formation and rearrangements were inhibited,
which resulted in increased fungal penetration (Kobayashi et al.,
1997; Yun et al., 2003). Also mlo-mediated penetration resistance
to powdery mildew was shown to be dependent on active actin
reorganization (Opalski et al., 2005; Miklis et al., 2007). However,
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the MLO protein itself accumulated at the forming papillae at
penetration sites in absence of an intact actin cytoskeleton (Bhat
et al., 2005). This suggests that also actin-independent mecha-
nisms for protein recruitment to infection sites may exist. MLO
was also shown to negatively regulate penetration resistance to
powdery mildew because in different plant species, like bar-
ley, tomato (Solanum lycopersicum), and Arabidopsis, mutation
or disruption of the MLO locus conferred increased resistance
(Jørgensen, 1992; Piffanelli et al., 2004; Consonni et al., 2006;
Bai et al., 2008; Consonni et al., 2010). A putative interaction
of MLO and ROR2 (REQUIRED FOR mlo RESISTANCE 2) in
barley and PEN1 (PENETRATION 1) in Arabidopsis (Schulze-
Lefert, 2004; Bhat et al., 2005; Panstruga, 2005) could link MLO
function with the regulation of transport processes to papillae.
However, genetic data suggest that MLO and ROR2/PEN1 func-
tion independently. Therefore, observed effects are likely additive
and would not support a direct functional link on a molecular
level.

PEN1 and ROR2 are functionally homologous members
of the syntaxin family (Collins et al., 2003). Similar to tar-
get SNAP (SOLUBLE NSF ATTACHEMENT PROTEIN) recep-
tors (tSNARE), syntaxins form ternary SNARE complexes with
corresponding VAMPs (VESICLE ASSOCIATED MEMBRANE
PROTEIN), which reflects their direct involvement in vesicle
fusion processes. PEN1 and ROR2 accumulation at the plasma
membrane at sites of attempted fungal penetration allowed a
further specification of their function in targeting vesicle traf-
ficking to the forming papilla (Assaad et al., 2004; Bhat et al.,
2005; Underwood and Somerville, 2008). This possible func-
tion of PEN1 was supported by findings in Arabidopsis pen1
disruption mutants where papillae formation was reduced at
early time-points of powdery mildew infection due to a delay
in papilla deposition (Assaad et al., 2004). However, pen1 dis-
ruption did not change the general morphology of papillae,
which might indicate an involvement of one or more addi-
tional syntaxins that could substitute PEN1 during papilla for-
mation. In contrast to PEN1, PEN2 was found to localize to
peroxisomes. These organelles accumulate at sites of attempted
fungal penetration where they are thought to deliver com-
pounds with a potential antifungal activity to papillae. Because
PEN2 encodes a glycosyl hydrolase, it might directly partici-
pate in compound formation (Lipka et al., 2005; Bednarek et al.,
2009). Similar to PEN1, the ATP-binding cassette (ABC) trans-
porter PEN3 localized to the plasma membrane in unchallenged
Arabidopsis leaves and was transported to the site of papilla
formation after pathogen attack where it strongly accumulated
(Stein et al., 2006; Underwood and Somerville, 2008). Inter-
estingly, pen3 disruption mutants revealed a higher resistance
to biotrophic and hemibiotrophic pathogens, which was asso-
ciated with an upregulation of SA biosynthesis or signaling
and induced HR-like cell death (Kobae et al., 2006; Stein et al.,
2006). Based on the transporter function and the observed phe-
notypes of PEN3 mutants, it has been proposed that PEN3
might participate in the export of anti-microbial compounds,
which could derive from PEN2-dependent processing in perox-
isomes. For its recruitment and focal accumulation at sites of
attempted penetration, PEN3 required functional actin filaments

but not microtubules, secretory trafficking or protein biosynthesis.
Hence, an unknown trafficking pathway might be involved in
translocation of existing PEN3 (Underwood and Somerville,
2013).

Regarding one of the most prominent components of the form-
ing papilla, the localized deposition of the (1,3)-β-glucan callose in
response to pathogen attack suggests a precise timing of preceding
transport processes (Zimmerli et al., 2004; Koh et al., 2005; Nielsen
et al., 2012; Ellinger et al., 2013). Our recent results of the overex-
pression of the GFP-tagged callose synthase PMR4 in Arabidopsis
suggested that this enzyme was released from vesicle-like bodies
and reintegrated into the plasma membrane at sites of attempted
penetration where callose deposition started (Ellinger et al., 2013).
Therefore, recruitment from the plasma membrane and transport
in vesicle-like bodies to the site of attempted penetration could
be anticipated after fungal infection. This would also explain why
application of brefeldin A, which is a known inhibitor of vesicle
transport (Sciaky et al., 1997), prevented callose accumulation at
forming papillae (Nielsen et al., 2012). However, a direct proof of
PMR4 transportation to sites of attempted pathogen penetration
in vesicles is still missing.

In the current discussion about vesicles that are required for
transportation and delivery of defense components to the form-
ing papilla, growing evidence of an involvement of multi-vesicular
bodies (MVBs) has been provided. MVBs mediate exocytosis
that would facilitate a delivery of vesicles and their content to
the cell exterior, namely the forming papilla in the paramural
space between the plasma membrane and the cell wall. In bar-
ley, MVBs contained the ADP-ribosylation factor (ARF) GTPase
ARFA1b/1c that was required for callose deposition in papillae
and penetration resistance to the powdery mildew B. graminis;
but absence of this GTPase did not prevent basic papillae for-
mation (Böhlenius et al., 2010). The importance of a timely and
coordinated delivery of components required for proper papillae
formation was further supported in experiments with Arabidop-
sis where mutation of the ARF-GTP exchange factor GNOM
resulted in a 30 min delay of callose deposition in papillae
(Nielsen et al., 2012).

A NEW DIRECTION OF PAPILLA EXPENSION
The currently discussed and presented models of papillae forma-
tion favor a transportation and delivery of papilla components by
vesicles, which are controlled by a complex, underlying network
of regulatory mechanisms. This would ensure a rapid and coor-
dinated assembly of this pathogen-induced cell wall structure to
support penetration resistance.

These models of delivery and transport processes would be
sufficient to explain papillae expansion pointing to the cytosol
(Nishimura et al., 2003) and a lateral expansion in the para-
mural space, which was strongly induced in Arabidopsis PMR4
overexpression lines where an additional field of callose sur-
rounded the dense core region of the papilla (Ellinger et al.,
2013; Naumann et al., 2013). Material or cell wall enzymes, like
callose synthases that would be required for a growth of the
papilla in these directions, could be delivered along the plasma
membrane. However, we recently detected an expansion of the
papilla into the pre-existing cellulosic cell wall. Super-resolution
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microscopy at sites of papillae formation, where we stained cal-
lose with aniline blue fluorochrome and the overlying cellulosic
cell wall with pontamine fast scarlet 4B, revealed a migration of
callose fibrils into the cell wall (Eggert et al., 2014). Only sin-
gle callose fibrils, which originated from the dense callosic core
of the papilla, migrated into and penetrated through the cel-
lulosic cell wall in wild-type Arabidopsis leaves. In contrast, a
dense network of callose/cellulose fibrils was established along
the papilla core region and the lateral field of callose in epider-
mal leaf cells of PMR4 overexpression lines at sites of attempted
powdery mildew penetration. In addition to this polymer net-
work, a callose layer was formed on top of the cellulosic cell wall
(Figure 1). We showed that the complex of the callose/cellulose
network and the additional callose layer provided enhanced resis-
tance to cell wall degrading enzymes (Eggert et al., 2014), which
helped to explain the observed complete penetration resistance to
powdery mildew in PMR4 overexpression plants (Ellinger et al.,
2013).

These findings raised the question whether this new direction
of papilla expansion would be a regulated process or the conse-
quence of an ongoing callose production at the plasma membrane

of the forming papilla. Because the expansion of the callosic papilla
into the cellulosic cell wall occurred at sites without contact to the
plasma membrane, the previously discussed transport and delivery
mechanisms would not apply. Our results from super-resolution
microscopy suggest a permeation of callose fibrils through internal
cell wall nanopores (Carles and Scallan, 1973; Hubbe et al., 2007).
This could be facilitated if callose would have a gel-like condi-
tion at these migration sites. In general, a gel-forming property of
callose has been described as being pH-dependent (Harada et al.,
1968; Saito et al., 1979). Hence, either conditions at the interphase
of the callose deposition and the cellulosic cell wall would favor a
gel-formation of callose without active regulation or cellular pro-
cesses might actively regulate pH condition at the interphase. The
apoplastic alkalinization that has been discussed as a general stress
factor caused by abiotic and biotic stress, would not be sufficient to
induce a gel-formation of callose. Even though the apoplastic pH
peaked in short term responses to powdery mildew in barley, the
apoplastic pH remained acidic (Felle et al., 2004) whereas alkaline
condition would be required for gel-formation of callose (Saito
et al., 1979). An active, local regulation of the pH might be possible
through vesicle-like bodies and MVBs that were detected within

FIGURE 1 | Model of callosic papilla expansion at infection sites. The
presented model highlights similarities and differences of callosic papilla
expansion and callose/cellulose polymer network formation in Arabidopsis
epidermal leaf cells at sites of attempted powder-mildew infection in
(A) the pmr4 disruption mutant without pathogen-induced callose
deposition in the papilla, (B) wild-type, and (C) the penetration-resistant
PMR4 overexpression line. Green circles represent possible multi-vesicular
bodies (MVBs) involved in the delivery of non-callosic papilla matrix and/or

papilla-forming enzymes (gray dots) and the callose synthase PMR4 (blue
dots) to the forming papilla. Yellow dots inside the papilla matrix indicate a
putative involvement of vesicles/vesicle-like bodies in regulating the pH at
the interphase of the papilla matrix and the cellulosic cell wall to induce
gel-formation of callose (↑pH). Orange arrows indicate the direction and
strength of papilla expansion. Green: plasma membrane, red: cellulose
fibrils of the cell wall, blue: callosic papilla matrix and callose fibrils, gray:
non-callosic papilla matrix.
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the papilla structure (An et al., 2006) and could have access to
the callose/cellulose interphase for regulatory activities. A further
application of super-resolution microscopy combined with spe-
cific and efficient labeling techniques could support the analysis
of papilla expansion in all directions.
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