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The band-7 protein family comprises a diverse set of membrane-bound proteins char-
acterized by the presence of a conserved domain. The exact function of this band-7
domain remains elusive, but examples from animal and bacterial stomatin-type proteins
demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers
that form putative scaffolds. Some members, such as prohibitins (PHB) and human
stomatin-like protein 2 (HsSLP2), localize to the mitochondrial inner membrane where they
function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has
diversified and includes plant-specific members. Mitochondrial-localized members include
prohibitins (AtPHBs) and two stomatin-like proteins (AtSLP1 and -2). Studies into PHB
function in plants have demonstrated an involvement in root meristem proliferation and
putative scaffold formation for mAAA proteases, but it remains unknown how these roles
are achieved at the molecular level. In this minireview we summarize the current status
of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members
might recruit specific lipids to form microdomains that could shape the organization and
functioning of the respiratory chain.
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INTRODUCTION
Biological membranes are highly organized proteolipid domains
and there is increasing evidence of fine-scale organization into
microdomains (Whitelegge, 2011; Holthuis and Ungermann,
2013). These comprise localized assemblies of specific proteins
and lipids and are important in the spatial and temporal control
of membrane protein complex assembly and regulation. Mem-
brane microdomains are formed by specific protein–protein and
protein–lipid interactions that take place within and in the vicin-
ity of membranes, often guided by specialized proteins acting
as scaffolds. Some of the most important membrane-integrated
protein complexes occur in the inner mitochondrial membrane,
which houses the respiratory chain. Despite our increasing knowl-
edge about the composition of respiratory complexes, we have
a much less detailed understanding about the dynamics, regu-
lation, and assembly of these complexes at the molecular level
within the membrane environment. It is also unclear to what
extent scaffold proteins and interactions with specific lipids
are involved. In this review we highlight the functions of the
band-7 family of scaffold proteins in plants and speculate how
a conserved mechanism of self assembly into oligomeric ring
structures together with lipid interactions could contribute to the
creation of microenvironments within the mitochondrial inner
membrane.

BAND-7 FAMILY PROTEINS: MOLECULAR SCAFFOLD
PROTEINS WITH DIVERSE FUNCTIONS
The band-7 protein family comprises a diverse set of prokaryotic
and eukaryotic membrane proteins characterized by the presence

of a conserved “band-7” domain in the central regions of the pro-
tein sequence. The domain name stems from the first identified
member, human stomatin (or erythrocyte band 7.2b protein). The
superfamily is also known as “SPFH” according to the initials of
its members (stomatin, prohibitin, flotillin, HflC/K; Tavernarakis
et al., 1999). Band-7 family proteins generally form oligomers and
regulate the assembly and activity of super-molecular protein com-
plexes in various cellular localizations, often linked to membrane
microdomains (Browman et al., 2007). Despite its high degree of
conservation, the precise function of the band-7 domain remains
unknown in most organisms. Over the years numerous examples
have emerged demonstrating regulation of various ion channels
and transporters by stomatins (Price et al., 2004; Huber et al., 2006;
Montel-Hagen et al., 2008). Prohibitins (PHB) function in mito-
chondrial cristae formation (Merkwirth et al., 2008), flotillins are
lipid raft markers involved in trafficking events in animal cells
(Glebov et al., 2006), and prokaryotic HflC/K type proteins reg-
ulate the activity of membrane-bound proteases (Kihara et al.,
1996).

YEAST AND ANIMAL MITOCHONDRIAL BAND-7 PROTEINS
ARE INVOLVED IN THE TURNOVER OF MEMBRANE
PROTEINS AND AFFECT RESPIRATORY CHAIN
ORGANIZATION AND MITOCHONDRIAL MORPHOLOGY
A small subset of eukaryotic band-7 proteins is localized to mito-
chondria. These include PHBs and mammalian stomatin-like
protein 2 (SLP2), both of which have been implicated in regulating
the activities of mitochondrial metalloproteases, thereby affecting
processes such as cristae formation and respiratory chain assembly
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(Steglich et al., 1999; Da Cruz et al., 2008; Merkwirth et al., 2008;
Tondera et al., 2009).

The first native band-7 protein complex studied was the yeast
PHB complex. This large complex (1.2 MDa) is composed of
PHB1 and PHB2 units arranged as an oligomeric ring of 16–
20 nm diameter and is associated with the mitochondrial inner
membrane facing the intermembrane space (Nijtmans et al., 2000;
Tatsuta et al., 2005). A second PHB complex was discovered in
yeast that additionally contains a matrix-exposed AAA protease
(Steglich et al., 1999). AAA-type proteases belong to the met-
alloprotease family and contain an additional ATP-hydrolysing
domain. They are thought to function in membrane protein
quality control (Langer, 2000). PHB in yeast was found to neg-
atively regulate matrix-AAA (mAAA) activity, thereby influencing
turnover rates of mitochondrial-encoded respiratory chain sub-
units (Steglich et al., 1999). Transient associations of PHBs with
cytochrome c oxidase subunits were demonstrated in yeast, imply-
ing that the PHB complex has chaperone functions in complex
IV assembly (Nijtmans et al., 2000). Mammalian PHBs were also
shown to interact with complex IV subunits, as well as with
subunits of complex I (NADH dehydrogenase; Bourges et al.,
2004; Schleicher et al., 2008; Strub et al., 2010). Knockdown
of PHBs in mouse cells also affects mitochondrial morphology
because of altered proteolytic processing of the inner mem-
brane GTPase OPA1 (optical atrophy 1) by metalloproteases
(Merkwirth et al., 2008).

Detailed insight into band-7 protein complex formation was
gained from a cystallography study of the conserved stomatin
domain from mouse (Brand et al., 2012). The basic unit in the
crystal was found to be a banana-shaped dimer capable of form-
ing a ring-shaped structure required for stomatin function in ion
channel modulation. A ring structure was also observed by single
particle analysis of a purified stomatin complex from cyanobacte-
ria (Boehm et al., 2009), making it likely that other band-7 family
proteins might also adapt this shape as assembled complexes.
A related stomatin-like protein from human and rodents, SLP2
(stomatin-like protein 2), also forms a large (1.8 MDa) complex in
mitochondria (Reifschneider et al., 2006). Notably, no ortholog of
mammalian SLP2 is present in the yeast Saccharomyces cerevisiae.
Mammalian SLP2 is peripherally associated with the mitochon-
drial inner membrane on the side of the intermembrane space
(Hajek et al., 2007; Da Cruz et al., 2008), where it forms a com-
plex with mitofusin-2 (Mfn-2), a GTPase of the outer membrane
mediating mitochondrial fusion. Mammalian SLP2 also interacts
with PHBs in a smaller 250 kDa complex (Da Cruz et al., 2008).
Knockdown of SLP2 in HeLa cells caused increased proteolysis
of PHBs and respiratory chain subunits from complexes I and IV
by metalloproteases (Da Cruz et al., 2008), as well as a reduction
in membrane potential, but had no effect on mitochondrial mor-
phology (Hajek et al., 2007). By contrast, SLP2 knockdown in mice
was reported to be embryo lethal (Christie et al., 2012), the same as
knockouts of PHBs in mice (Merkwirth et al., 2008). A T-cell spe-
cific knockdown of SLP2 caused a reduction of complex I (NADH
dehydrogenase) subunits and reduced complex I activity (Christie
et al., 2012). Interestingly, human recombinant SLP2 was demon-
strated to bind preferentially to cardiolipin (CL) in an in vitro
pull-down assay that utilized liposomes with varying phospholipid

composition (Christie et al., 2011), although the specificity of this
interaction is debatable because the assay lacked additional con-
trol proteins. Additionally, yeast genetic studies have revealed that
enzymes involved in CL and phosphatidylethanolamine (PE) syn-
thesis pathways are essential for survival in phb knockout strains,
underlining a functional link between lipid synthesis and PHBs
(Birner et al., 2003; Osman et al., 2009).

PLANT BAND-7 PROTEINS
The band-7 protein family is more diverse in higher plants than
it is in yeast and animals, and includes a plant-specific group of
proteins classified as HIR (hypersensitive response induced), as
well as a larger number of PHBs and two stomatin-like proteins
(Nadimpalli et al., 2000). This large diversity in higher plants is
down to gene duplications and may be linked to the requirement
to adapt to environmental stress conditions (Van Aken et al., 2010).

The Arabidopsis genome encodes 17 genes that contain the
band-7 domain (InterPro IPR001107). The gene products fall into
five distinct classes based on sequence homologies with animal
and yeast orthologs: seven genes belong to the PHBs, of which five
are expressed, two are stomatin-like (AtSLP1 and -2), four belong
to the HIR proteins (HIRs1-4), (Qi et al., 2011), three resemble
flotillins, and one protein has similarities to erlin proteins from
animals (Browman et al., 2007; Figure 1A). Arabidopsis band-7
proteins are found in various subcellular membrane localizations
according to the SUBA database (Heazlewood et al., 2007). Most
of these locations are based on mass spectrometry data from vari-
ous proteomics studies, but for PHBs, SLPs and HIRs, additional
in vivo data from fluorescent tagging experiments are available
(Marmagne et al., 2004; Van Aken et al., 2007, 2009; Qi et al.,
2011; Gehl et al., 2014). According to these data, Arabidopsis PHBs
are primarily localized to mitochondria (Van Aken et al., 2007),
although localization to the cytoplasm and the nucleus was sug-
gested in a separate study (Christians and Larsen, 2007). However,
this result is controversial because cytoplasmic localization was not
confirmed by any additional cytosolic markers. AtSLPs are found
exclusively in mitochondria (Gehl et al., 2014), whereas HIRs are
localized to the plasma membrane (Qi et al., 2011). Although noth-
ing is known about the functions of the three flotillin-like proteins
or the erlin-like protein, forward and reverse genetics studies have
started to elucidate the molecular roles of HIRs, PHBs, and SLPs.

PLANT MITOCHONDRIAL BAND-7 MEMBERS
In plants, much less is known about the specific functions of SLPs
and PHBs in mitochondria and how the complexes they form
relate to each other. Research into plant PHBs and SLPs so far
suggests that the two complexes are physically distinct and are not
functionally redundant, yet they seem to share several functions
with animal and yeast orthologs.

The best-studied plant band-7 family proteins are the PHBs.
The seven Arabidopsis PHBs fall into two classes (type I or II)
according to similarities with yeast and animal PHB1 and PHB2
(Van Aken et al., 2007, 2010). Reverse genetics has revealed diverse
functions for plant PHBs (Van Aken et al., 2007). Knockout of
AtPHB3 resulted in retarded growth of roots and shoots which was
linked to reduced cell division and expansion in apical meristems,
as well as alterations in mitochondrial morphology, indicative of a
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FIGURE 1 | Arabidopsis thaliana band-7 protein family members.

(A) Phylogenetic bootstrap tree of the Arabidopsis band-7 protein
family. PHBs (prohibitins) in blue, SLPs (stomatin-like proteins) in red,
ELP (erlin-like protein) in pink, HIRs (hypersensitive response induced
proteins) in green, FLOTs (flotillin-like proteins) in yellow. This tree
was created by the neighborhood-joining method. Reprinted with
permission by ASPB. (B) Schematic of AtSLP domains. MTS
(mitochondrial targeting sequence), N (N-terminal domain), HP
(hydrophobic patch), Band-7 (band-7 domain), CC (predicted coiled-coil
regions), C (C-terminal domain). (C) Schematic of SLP1-SLP2
hetero-oligomers embedded within the mitochondrial inner membrane.
Coloring corresponds to the scheme in B. Cardiolipin-binding to SLP
oligomers is indicated by the orange color around the hydrophobic
patches and between the inner membrane and the band-7 domains.

lack of cristae. By contrast, knockout of AtPHB4 did not result in
any obvious growth phenotypes, but a double phb3/4 mutant was
lethal. From this study it was concluded that AtPHBs are important
to sustain increased metabolic demands related to cell division in
meristems supporting differentiation in apical tissues.

A mutant in the phb3 gene was also identified as eer3-1, a loss-of
function conditional point mutation allele leading to an extreme
constitutive ethylene response in etiolated seedlings (Christians
and Larsen, 2007). An independent loss-of function allele, phb3-3
was identified in a mutagenesis screen for deficiencies in hydrogen
peroxide-induced nitric oxide (NO) accumulation (Wang et al.,
2010). This point mutation was mapped to a glycine to aspar-
tate change inside the conserved band-7 domain, but it remains
unknown what effect this mutation has on PHB complex forma-
tion. Both phb3-3 and an independent T-DNA knockout allele
showed NO-related phenotypes and increased resistance to high
salinity, pointing toward yet unknown functions of PHB3 in NO
homeostasis, possibly via the respiratory chain.

Tandem-affinity purification of tagged PHB3 revealed that it
interacts with all other expressed PHBs (1, 2, 3, 4, and 6), as well
as some enzymes and proteins of unknown function (Van Aken
et al., 2007). Some class II PHBs have also been found associated
with subcomplexes of complex I, possibly as contaminants in mass
spectrometry studies (Klodmann et al., 2010). The native PHB
complex was later characterized by two-dimensional blue native
and SDS-PAGE (Piechota et al., 2010). Arabidopsis PHBs form a
hetero-oligomeric complex of 1 MDa, but they also participate in
a 2 MDa complex together with the mAAA proteases FtsH3 and
FtsH10. No complex containing a FtsH protease without PHBs
could be identified, suggesting that the PHB complex acts as a
scaffold to stabilize the FtsH oligomeric complexes. Other studies
of PHBs in Petunia flowers and in tobacco leaves indicated links to
cellular senescence, reactive oxygen species production and mito-
chondrial morphology (Chen et al., 2005; Ahn et al., 2006). Based
on these findings, PHBs were suggested to act as universal scaf-
folds in the mitochondrial inner membrane, likely associated with
lipid microdomains that affect a variety of mitochondrial processes
(Van Aken et al., 2010).

The two other mitochondrial band-7 family members,
stomatin-like proteins (SLPs) were established as mitochondrial
proteins in various proteomics studies (Millar et al., 2001; Hea-
zlewood et al., 2004; Dunkley et al., 2006). SLP1 has also been
identified in detergent-resistant membrane fractions thought to
be derived from the plasma membrane (Borner et al., 2005).
The AtSLP1 protein was also shown to be capable of binding to
Zn2+ (Tan et al., 2010) and is threonine-phosphorylated within
its hydrophilic C-terminus (Ito et al., 2009). Both AtSLP tran-
scripts were upregulated in the phb3 mutant, and AtSLP2 has been
identified as a stress-responsive gene in a number of microarray
experiments (Van Aken et al., 2009).

Our own work has dealt with functionally characterizing
AtSLP1 (At4g27585) and AtSLP2 (At5g54100). Both AtSLPs have
one conserved band-7 domain, as well as one hydrophobic stretch
located within this conserved domain (Figure 1B). We have iden-
tified a class II (-3R) mitochondrial targeting sequence (MTC)
in both SLP sequences, which, upon cleavage, results in a short
N-terminal sequence that is probably located in the mitochondrial
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matrix. The bulk of the proteins likely reside in the intermem-
brane space. Mature SLP1 is slightly longer (368 amino acids)
than SLP2 (360 amino acids), and it possesses a unique hydrophilic
C-terminus not present in SLP2 that harbors the phosphorylation
site (Ito et al., 2009).

We have localized SLP1 to a large protein complex (3 MDa)
in the mitochondrial inner membrane where it most likely inter-
acts with AtSLP2, possibly organized in a ring shape. Sequence
homologies suggest that AtSLPs are the plant orthologs of animal
SLP2. Knockout of AtSLP1, but not AtSLP2 affects the abundance
of complex I and related supercomplexes, but not other respiratory
complexes (Gehl et al., 2014). We interpret this specific effect on
complex I either as a consequence of deficient complex I assembly,
or an increased complex I turnover that is mediated by proteases
(likely of the AAA-type) in the inner membrane.

We also hypothesize that complex I deficiency in the absence
of SLP1 is related to changes that occur in the local membrane
environment. The sequence homology of AtSLPs with human
SLP2 may suggest that Arabidopsis SLPs can also bind to specific
mitochondrial inner membrane lipids such as CL and PE. Lipid-
binding could occur at residues located within the hydrophobic
SLP membrane anchor, and may help stabilize the membrane
anchorage of the SLP oligomers. Additionally, residues found
within the band-7 domain could bind to lipids, possibly to keep
the SLP complex in close proximity to the inner membrane
(Figure 1C). This scenario resembles binding of cholesterol by the
stomatin proteins podocin and C. elegans Mec-2 to the N-terminal
hydrophobic domains and the band-7 domain (Huber et al., 2006).

Cholesterol binding was mapped to, a conserved proline residue
located just upstream of the band-7 domain that proved to be
crucial for ion channel regulation by Mec-2.

In a similar manner, the plant PHB complex is likely to bind
lipids (CL and/or PE) and assembles into a ring-shaped struc-
ture, with the C-termini facing the intermembrane space. Protein
interaction data derived from PHBs so far suggest no physical
associations between SLPs and PHBs in Arabidopsis (Van Aken
et al., 2007; Piechota et al., 2010), and it is not clear how the two
complexes relate to each other functionally. Because of their differ-
ent gene expression patterns in Arabidopsis based on microarray
data and on promoter-GUS fusion plants (Van Aken et al., 2007;
Gehl et al., 2014) and the differing growth phenotypes of knock-
out mutants, we conclude that PHBs and SLPs are not functionally
redundant. For example, class I PHBs are highly expressed in
root meristem tissue and single phb3 knockout mutants have a
dwarfed growth phenotype with short roots, whereas class I dou-
ble phb mutants are embryo lethal. By contrast, SLP genes are not
highly expressed in root meristems, and slp1/2 double knockout
plants are viable and do not show abnormal growth morphology
(Gehl et al., 2014). Currently nothing is known about respira-
tory chain function and the abundance of supercomplexes in phb
mutants.

DO PLANT PROHIBITINS AND STOMATIN-LIKE PROTEINS
COOPERATE IN RESPIRATORY CHAIN ASSEMBLY?
We suggest that a possible solution to the apparent functional
specificity of SLPs and PHBs despite overlapping properties of the

FIGURE 2 | Summary scheme of SLP and PHB functions across species.

The SLP and the PHB complexes are localized to the mitochondrial inner
membrane where they probably bind to cardiolipin and/or
phosphatidylethanolamine and participate in the assembly of complexes I and
complex IV. In animal cells, SLPs and PHBs have been located to the same
complexes (250 kDa) and have been demonstrated to interact. Both are
implied to inhibit the activities of chaperone-like proteases of the AAA type
which are also embedded in the inner membrane. PHBs from plants and from
yeast form a complex with mAAA proteases. AAA proteases are known to
participate in mitochondrial quality control (MQC) mechanisms that ensure
appropriate electron transport chain (ETC) assembly and functioning.

Mammalian AAA proteases are also known to participate in the proteolytic
processing of OPA-1 that determines cristae morphology in animal cells.
Mitochondrial morphology itself was recently demonstrated to influence the
assembly status of supercomplexes in mouse cells. Literature references are
as follows: (1) Christie et al. (2011), (2) Osman et al. (2009), (3) Christie et al.
(2012), (4) Da Cruz et al. (2008), (5) Gehl et al. (2014), (6) Nijtmans et al. (2000),
(7) Bourges et al. (2004), (8) Acín-Pérez et al. (2008), (9) Eubel et al. (2003), (10)
Cogliati et al. (2013), (11) Merkwirth et al. (2008), (12) Tondera et al. (2009), (13)
Steglich et al. (1999), (14) Kolodziejczak et al. (2007), (15) Piechota et al. (2010).
Coloring indicates which model system was studied: red (animals), brown
(yeast), green (plants).
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proteins could be that the two complexes cooperatively connect
mitochondrial quality control (MQC) by proteases with respi-
ratory chain assembly (Figure 2). Evidence from our work and
from mice and HeLa cells points toward a specific function for
the SLP complex in the assembly and/or turnover of complex
I (Da Cruz et al., 2008; Christie et al., 2012; Gehl et al., 2014).
Studies into yeast and mouse PHBs suggest that the PHB com-
plex likely functions in the assembly or turnover of complex IV
(Nijtmans et al., 2000; Strub et al., 2010), although other stud-
ies imply that it is also related to complex I (Bourges et al., 2004;
Acín-Pérez et al., 2008). Cardiolipin-binding by SLP and PHB ring
complexes could directly affect the formation of functional super-
complexes which are known to be dependent on the incorporation
of multiple CL molecules internally and at the interphases between
complexes (Bazan et al., 2013; Pineau et al., 2013). The SLP and
PHB complexes likely change their local membrane environment
by specifically sequestering CL and/or PE, possibly by forming a
localized network of rings that helps respiratory chain assembly
at specific sites. This could take place in a coordinated fashion
between both complexes, such that both rings affect the mem-
brane environment and each other by altering the tension, charge
distribution and possibly even curvature of the inner membrane.
Membrane-bound AAA-proteases likely contribute to turnover
rates of respiratory chain components as part of MQC. In ani-
mal cells metalloproteases also help processing OPA1, thereby
determining cristae ultrastructure and mitochondrial morphol-
ogy (Merkwirth et al., 2008; Tondera et al., 2009). Recently, cristae
morphology governed by OPA1 processing has also been linked
to the assembly status of supercomplexes, although a direct con-
nection between OPA1 and supercomplexes is so far missing
(Cogliati et al., 2013). In plants, no OPA1-like protein exists
and the mechanism determining cristae morphology remains
unknown.

In summary, we place SLP and PHB complexes at the heart
of a mechanism that incorporates AAA proteases and phospho-
lipids, thereby affecting respiratory chain function at the point
of assembly and turnover. We hypothesize that CL/PE binding
by SLPs/PHBs creates defined areas of respiratory chain assem-
bly and quality control. Currently this theory is speculative, but
could be addressed experimentally. Firstly, a detailed inventory
about defects in the respiratory chain in the respective Arabidopsis
mutant backgrounds is needed, in combination with an analysis of
the lipid-binding properties of AtPHBs and AtSLPs. These results,
together with complementary structure-function approaches and
high resolution imaging techniques will give new insights into the
extent of cooperation between these protein complexes and will
clarify where their specificities lie. This information will not only
advance our understanding of inner membrane compartmenta-
tion, but also help to elucidate band-7 protein function throughout
the kingdoms.
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