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The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma
membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid
domains with liquid-ordered and liquid-disordered properties. These observations are the
basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched
ordered-phase lipid domains in cell membranes that could regulate protein mobility,
localization and interaction. Here we review the evidence that nano-scaled lipid complexes
and meso-scaled lipid domains exist in cell membranes and how new fluorescence
microscopy techniques that overcome the diffraction limit provide new insights into lipid
organization in cell membranes.

Keywords: lipid rafts, membrane microdomains, super-resolution, fluorescence, cell membranes

INTRODUCTION
In the fluid mosaic model (Singer and Nicolson, 1972), the lipid
bilayer was originally viewed as a simple 2D fluid in which embed-
ded membrane proteins are able to diffuse freely in the lateral
dimension. Many observations however, showed that lipids and
membrane proteins are not homogeneously distributed in the
plasma membrane. As early as 1987 for example, it was shown that
in MDCK cells, sphingolipids first accumulate in the Golgi and are
then transported to the apical surface where they are unable to
diffuse past tight junctions at cell−cell contact sites (van Meer
et al., 1987). If the lipid distribution of the plasma membrane is
indeed regulated and non-random, this suggests that biophysi-
cal processes exist in cells that cause a lateral organization within
the membrane and/or active mechanisms have evolved by which
cells sort protein and lipids. It is highly likely that such lateral
organization is exploited for specific cell functions.

In 1997, Simons and Ikonen proposed the lipid raft hypoth-
esis in which the phase behavior of different lipid species is
exploited to create lateral heterogeneity in the plasma membrane
(Parton and Simons, 1995; Simons and Ikonen, 1997). According
to this hypothesis, the liquid-disordered phase, formed mainly
from unsaturated phospholipids, would coexist in the plasma
membrane with a liquid-ordered phases formed from saturated
phospholipids and sphingolipids in the presence of cholesterol,
which exists in the plasma membrane at concentrations of roughly
30 mole percent. In the ordered phase, a higher degree of confor-
mational order is imposed on the acyl tails of lipids by the rigid
ring structure of cholesterol. This results in an increase in the
thickness of the lipid bilayer and tighter lipid packing although
unlike the gel phase (consisting of saturated lipids in the absence of
cholesterol), liquid-ordered bilayer lipids remain laterally mobile.
In this model therefore, the plasma membrane is viewed as a
“sea” of disordered phase lipids containing stable, ordered phase

“islands” or “rafts” enriched in saturated lipids, sphingolipids and
cholesterol.

It was then hypothesized that specific membrane proteins
would have a high affinity for one phase, thereby partitioning
into this phase and being laterally sorted. This would allow lipid
rafts to serve as signaling platforms, concentrating some pro-
teins to facilitate their interaction while excluding others (Levental
et al., 2010). The specific proteins that would be concentrated in
such domains would depend on the type of membrane targeting
sequence (Brown, 2006). For example, transmembrane proteins
with a longer transmembrane domain that closely matches the
increased thickness of the ordered phase bilayer would show affin-
ity for these domains, as this would minimize the hydrophobic
mismatch energy. Similarly, proteins that are post-translationally
modified with long, saturated acyl chains would show affinity
for ordered domains in the same way as saturated bilayer lipids
themselves show ordered phase affinity.

While the coexistence of micron-scale, resolvable ordered
and disordered phase lipid domains was readily observed in
model membranes using fluorescence microscopy and phase-
partitioning membrane probes (Simons and Vaz, 2004), no such
structures have been observed in cell membranes. Although bio-
chemical techniques such as detergent extraction continued to
be used (London and Brown, 2000; Shogomori and Brown,
2003), the lack of direct imaging caused the lipid raft hypothe-
sis to become controversial (Munro, 2003; Glebov and Nichols,
2004; Hancock, 2006) and the definition of a lipid raft has
evolved over the years. Originally, lipid rafts were defined as
“preferential packing of sphingolipids and cholesterol in mov-
ing platforms, or rafts, onto which specific proteins attach within
the bilayer” (Simons and Ikonen, 1997). The lack of direct visu-
alization resulted in an emphasis on the sub-diffraction-limited
size of the domains such that they were described as being a
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“molecular complex in the membrane [that] consists of at least
3 molecules that includes a molecule with a saturated alkyl chain
or a cholesterol molecule that plays a critical role in the forma-
tion of the complex itself” (Kusumi et al., 2004). An example
of a yet later definition emphasizes the dynamic nature of the
domains defining rafts as “small (10–200 nm), heterogeneous,
highly dynamic, sterol and sphingolipids-enriched domains that
compartmentalize cellular processes. Small rafts can sometimes
be stabilized to form larger platforms through protein–protein
or protein–lipid interactions” (Pike, 2006). The frequent modi-
fications of the lipid raft hypothesis have questioned its validity
but the hypothesis was undoubtedly the snowball that triggered
new thinking and the emergence of new membrane models. Its
emphasis on lipids was the motivation to develop new tools for
lipid research. However, it should be kept in mind that organelle
and plasma membranes of cells contain an extremely high pro-
tein density (Takamori et al., 2006; Dupuy and Engelman, 2008).
Therefore one should not simply envisage cell membranes as sys-
tems where proteins floating in a “sea” of lipids. Instead, the
membrane must be treated as a“lipid–protein composite”in which
a very high density of transmembrane domains may impose order
on nearby lipids complimenting lipid domains organizing proteins
(Jacobson et al., 2007).

In some of these definitions, a substantial cohesion length that
is a characteristic of a phase in model membranes is no longer
included so that no distinction between nano-scaled complexes
and meso-scaled domains are made. This lack of distinction may
make it difficult to translate findings from pure lipid bilayers to
complex cell membranes because the lack of microscopically vis-
ible lipid domains in cells is not proof of the absence of lipid
rafts. Whether complexes of a few molecules could indeed be
called a phase is biophysically controversial and for this reason,
we continue to distinguish between multi-molecular complexes
and meso-scale domains. Although this limit is arbitrary, meso-
scaled domains should be above 20 nm in size and thus contain
several thousand lipids (Pralle et al., 2000).

Defining lipid phases is not an issue in model membranes
and thus lipid phase have been precisely mapped in such sys-
tems resulting in phase diagrams that show the phase behavior
at different lipid compositions (Bezlyepkina et al., 2013). It is
now recognized that the composition of the plasma membrane
of cells in most cell types lies close to the critical composition
for the liquid-ordered, liquid-disordered phase transition of lipid
mixtures containing pure unsaturated phosphatidylcholine, sph-
ingomyelin, and cholesterol (Lingwood et al., 2008). This may be
a mechanism by which small changes in composition or environ-
mental factors can cause large changes in organization. This was
recently observed when resolvable sterol-enriched domains were
found to form in the vacuole membrane of yeast cells in response
to physiological changes, such as pH (Toulmay and Prinz, 2013).

Despite the lack of direct observation of lipid phases in intact
and live cells, ordered-phase membrane domains are thought to
play a role in a wide range of cellular processes, mainly in sig-
naling at the plasma membrane and the selective trafficking of
lipid components. We have used polarity sensitive membrane
dyes, such as Laurdan, to quantify membrane order ex vivo and in
vivo in intact zebrafish embryos (Owen et al., 2010a, 2012b). Even

though fluidity differences in the plasma membrane are readily
observed between cell types and cellular conditions, clear evi-
dence of lipid phases in cell membrane could not be obtained
with diffraction-limited imaging (Gaus et al., 2003). However,
correlations between membrane order and cell functions were
established. For example during T cell activation, high membrane
order has been shown to be required for the correct localization
of membrane-associated proteins and efficient T cell signaling
(Rentero et al., 2008; Ventimiglia and Alonso, 2013). Membranes
of high order were localized at the periphery of T cell synapse
which is associated with actin and adhesion proteins, indicat-
ing a link between lipid organization and the actin cytoskeleton
(Owen et al., 2010b). In addition, sub-synaptic vesicles with a
high membrane order have also been observed, which may be
important in the trafficking of specific T cell components, such
as the raft-associated adaptor protein linker for activation of T
cells (LAT; Williamson et al., 2011). Lipid rafts have similarly
been implicated in various aspects of B cell signaling (Gupta
and DeFranco, 2007). Other roles for highly ordered mem-
brane domains include focal adhesions (Gaus et al., 2006) and
cell migration (Gomez-Mouton et al., 2004), virus entry and bud-
ding (Mañes et al., 2000; Carrasco et al., 2004; Khurana et al., 2007;
Lorizate et al., 2009), autoimmune disease (Jury et al., 2007;
Miguel et al., 2011), the blood-brain barrier (Dodelet-Devillers
et al., 2009), hormone signaling (Márquez et al., 2006; Yang
et al., 2010) and in the trafficking of lipids in polarized cells
(van Meer et al., 1987).

Most of the work to define lipid rafts experimentally has been
conducted in artificial membranes, mammalian cells (both pri-
mary and cell lines) and yeast. Progress has also been made in
analyzing membrane domains in plant cells. This has included the
observation that detergent resistant membranes extracted from
plant cell membranes (Peskan et al., 2000) which were found to
be enriched in sterols and sphingolipids, similar to mammalian
cells (Borner et al., 2005). This finding was later the subject of sev-
eral reviews (Martin et al., 2005; Grennan, 2007). The similarity
of plasma membrane order properties between plant and mam-
malian cells was reinforced by the observation that the membrane
fluidity of bacteria, plant, mammalian and fungal membrane
properties may display convergent evolution to a similar level
regardless of membrane composition between species (Kaiser
et al., 2011).

NEW INSIGHTS FROM SUPER-RESOLUTION IMAGING
Much of the controversy surrounding lipid rafts developed as a
result of their supposed small size which made them impossible to
image using standard fluorescence microscopy approaches. This
is because the resolution of a conventional fluorescence micro-
scope is limited by diffraction to above 200 nm. However, in
recent years, three families of techniques have emerged which
all break the diffraction barrier and allow imaging of cellular
structures far below the conventional 200 nm limit. These method-
ologies are structured illumination microscopy (SIM), stimulated
emission depletion microscopy (STED) and photoactivated local-
ization microscopy (PALM). Many of these techniques and now
starting to be applied to imaging plant cells (Fitzgibbon et al., 2010;
Kleine-Vehn et al., 2011). The major advantages and disadvantages
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Table 1 | Summary of super-resolution imaging techniques to probe membrane organization below the diffraction limit.

PALM/STORM STED SIM NSOM

Lateral resolution 20–30 nm 60–100 nm 100–120 nm 20–30 nm

Image speed Minutes Seconds Seconds Seconds

Image and sample geometry 2D or 3D image of fluorophores

close to coverslip

2D image at any focal plane 3D image over entire cell Only surface proteins

Equipment complexity Simple Complex Intermediate Complex

Analysis complexity Complex Simple Intermediate Intermediate

of the techniques discussed here are summed up in Table 1 for
typical biological samples.

In SIM, the sample is illuminated with a grid pattern, which
is then shifted while multiple images are acquired. A super-
resolution image is then calculated computationally from the
data. SIM can achieve resolutions of around 100 nm in lateral
direction, can perform 3D imaging in live cells (although this is
still technically challenging) and uses conventional fluorophores
(Gustafsson, 2000; Kner et al., 2009; Shao et al., 2011).

Stimulated emission depletion microscopy uses a doughnut-
shaped depletion laser beam to de-excite fluorophores at the
periphery of a confocal excitation spot. This narrows the size of
the spot thereby increasing the resolution. Depending on what
laser powers the sample can tolerate from the depletion beam, res-
olutions of 50–100 nm laterally are typically possible in biological
samples. The technique is built on a conventional laser-scanning
microscope and has been applied to live cell imaging (Hell and
Wichmann, 1994; Hein et al., 2008; Vicidomini et al., 2011).

Photoactivated localization microscopy and related techniques
image and localize individual fluorophores, which typically results
in localization precisions of individual molecules of around 20–
30 nm. While the technique has long acquisition times and is
generally a 2D technique based on total internal reflection fluores-
cence (TIRF) illumination, progress is being made in establishing
3D PALM as well as higher-speed imaging for live cell analysis
(Betzig et al., 2006; Rust et al., 2006; Klein et al., 2011).

These methods have delivered previously unattainable data
on membrane lipid domains and any proteins have been shown
to be clustered within the plane of the membrane using super-
resolution methods which otherwise appear homogeneous in
conventional resolution systems (Owen et al., 2012a). PALM
(Figure 1) can be used to map the localization of raft and
non-raft targeted fluorescent fusion proteins and a quantitative
analysis can distinguish protein clusters from random distri-
butions, frequently identifying clusters on scale of 50–100 nm
(Owen et al., 2010c, 2012a,c; Sengupta et al., 2011; Sengupta and
Lippincott-Schwartz, 2012). One of the earliest single-molecule
super-resolution data demonstrated the nano-scale clustering of
Hemagglutinin (Hess et al., 2007), which is thought to cluster in
lipid rafts (Takeda et al., 2003) and was more recently shown to
cluster in an actin-dependent manner (Gudheti et al., 2013). Sen-
gupta et al. (2011) used PALM and pair-correlation analysis to
show that glycosylphosphatidylinositol (GPI)-anchored proteins
formed nano-clusters there were sensitive to the cellular levels

of cholesterol and sphingomyelin and cross-correlated with actin
after antibody cross-linking (Sengupta et al., 2011). Similarly, we
used a distribution analysis based on Ripley K-function to quan-
tify the non-random distribution of membrane proteins (Owen
et al., 2010c) and identified for example that the conformational
states of the kinase Lck can regulate clustering, thereby linking
intramolecular arrangement to intermolecular patterning (Rossy
et al., 2013). However, it is not clear to which extent protein
clustering reflects the underlying lipid organization. In unpub-
lished data, we found that even weak protein–protein interactions
induced by the fluorescent protein mEOS2 could cause cluster-
ing of raft-favoring and non-raft lipid anchors independently of
the membrane fluidity. This suggests that protein interactions
could easily override that partitioning preference of a protein
into lipid phases. Hence localizing proteins may not be suffi-
cient to map the distribution and geometry of lipid domains
in cell membranes. To our knowledge, there are currently no
lipid probes available that could be used to map lipid domains
in cell membranes with PALM. Since the partitioning of flu-
orescent lipids into liquid-order and liquid-disordered phases
differs markedly whether phases in model membranes or cell-
derived membrane vesicles are examined (Sezgin et al., 2012), one
can also not solely rely on the distribution of different lipids to
map lipid domains. Hence more sophisticated lipid probes are
needed to utilize the localization power of PALM to image lipid
domains.

Excitingly, super-resolution microscopy also has the ability to
generate new information on molecular dynamics. STED has been
combined with fluorescence correlation spectroscopy (FCS) – a
method for determining molecular diffusion coefficients based on
fluorescence fluctuation analysis (Figure 2). This allows dynamics
to be analyzed on sub-resolution length scales similar to what
has been achieved previously with near-field scanning optical
microscopy (NSOM) based techniques (Vobornik et al., 2008), but
with a controllable spot size. Using STED FCS in cells, it was shown
that sphingolipids and glycophosphatidylinositols (two putative
raft markers) become transiently arrested in the plasma membrane
whereas phosphoglycerolipids (non-raft molecules) do not. This
trapping was cholesterol dependent, occurred in ∼20 nm areas
and lasted on the order of tens of milliseconds (Eggeling et al.,
2009). A similar observation using STED FCS was also shown for
cytoskeletal-dependent transient trapping (Mueller et al., 2011).
Interestingly, a modified saturated phosphoethanolamine could
be used to map liquid ordered domains in model systems below
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FIGURE 1 | Photoactivated localization microscopy analysis of protein

clustering at the cell surface. Photo-activation or stable dark states of
fluorophores are exploited to limit the number of fluorescent molecules
in each image frame. The fluorescence of individual molecules are
captured with a camera and the center of the point-spread function
(PSF) calculated to localize the molecules with nanometer precision.
During the imaging processes, the fluorescence molecules are bleached
so that the combination of photo-activation and photo-bleaching gives

the appearance that molecules “blink” during the acquistion. Over
successive frames, an image of all fluorescent molecular positions is
built up. The molecular coordinates can be used to generate an image
and be quantitatively analyzed to reveal the local density of fluorescent
molecules (here based on Ripley K-function before and after application
of a threshold) and hence clusters of proteins at the plasma membrane
identified. For details on the cluster analysis, please see Williamson
et al. (2011).

FIGURE 2 | Stimulated emission depletion microscopy microscopy

and FCS diffusion laws. (A) By combining a red-shifted, “doughnut”-
shaped depletion beam with a confocal laser beam, the excitation spot
and hence PSF can be narrowed. (B) FCS measures the time
fluorescent molecules take to diffuse through the focus of a stationary
beam. By decreasing the PSF width, the transit time becomes shorter

so that even short lived complexes can be detected whose existence is
canceled out when a larger observation area is used (Wawrezinieck et al.,
2005). (C) By varying the PSF width, a plot of transit time vs spot size
can be generated that reveals free diffusion (green), or membrane
heterogeneity caused by an actin meshwork (blue), or membrane
domains (red).

Frontiers in Plant Science | Plant Cell Biology December 2013 | Volume 4 | Article 503 | 4

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


“fpls-04-00503” — 2013/12/11 — 16:26 — page 5 — #5

Owen and Gaus The current state of the lipid raft hypothesis

the diffraction limit (Honigmann et al., 2013) but showed no trap-
ping in cells (C. Eggeling, personal communication). Collectively,
the STED FCS data in cell membranes point more toward lipid
complexes that are short lived, rather than lipid domains that
may be positionally and temporally stable. Chemical modification
of lipids may affect their dynamics and complex formation and
hence like PALM, this super-resolution technique also depends on
the availability of well-characterized probes for lipid research.

We would like to point out that near field scanning-type
imaging approaches such as NSOM can analyze membrane organi-
zation at smaller length scales than are possible using conventional
microscopy. In NSOM, the effects of diffraction are circumvented
by placing the detector (typically a fiber) very close (much less
that the wavelength of light) to the sample, detecting the emitted
fluorescence and then raster-scanning to build up an image which
can result in lateral resolutions of less than 10 nm. For example,
this technique has been used to show that GPI-anchored proteins,
commonly used as lipid raft markers, are arranged in nano-scale
clusters on the surface of immune cells (van Zanten et al., 2009).
These “hotspots” were found to be essential for integrin-based cell
adhesion. In T cells, NSOM was used to detect clusters of CD3,
CD4, and CD8 membrane proteins on the cell surface on nano-
and meso- length-scales (Zhong et al., 2009). In a similar study,
NSOM showed that the nanoscale organization of proteins and
lipids in T cells was temperature dependent (Chen et al., 2009),
consistent with the classical lipid raft hypothesis and the obser-
vation of cold-induced activation of T cells (Magee et al., 2005).
Similar to STED, NSOM has also been paired with FCS to reveal
differences in anomalous diffusion of phosphoethanolamine and
sphingomyelin (Manzo et al., 2011).

Although not a super-resolution technique, we recently used
fluorescence lifetime imaging microscopy (FLIM) to gain insights
into lipid organization in cell membranes below the diffraction
limit. This was possible because we used an unbiased unmixing
approach, the so-called phasor apporach, to map the spec-
tral signatures of Laurdan in each pixel. We could show that
Laurdan in the plasma membrane of HeLa show is not a homoge-
nous phase of intermediate order but a mixture of ordered and
disordered domains. By using the pure lipid mixtures of 70:30 sph-
ingomyelin:cholesterol and 100% dioleoylphosphatidylcholine as
reference points for liquid-ordered and liquid-disordered phases,
we estimated that ∼76% of the plasma membrane is covered with
ordered phases. This approach could not tell us whether Laurdan
with an ordered FLIM signature comes from a continuous phase or
from many domains and complexes with a large variation in sizes,
simply because the data acquisition was still diffraction limited.
One should also take into consideration that the liquid-ordered
and liquid-disordered membranes in cells may have significantly
different properties than the pure lipid mixtures that we used
as reference data. It was for example shown that the difference
in membrane order between phase-separated ordered and disor-
dered domains in plasma membrane vesicles was much smaller
than the differences observed in model membranes (Kaiser et al.,
2009). However, combining environmentally sensitive probes with
super-resolution technique may allow us for the first time to
directly measure the bilayer properties of cell membranes. Unfor-
tunately with Laurdan, this is not possible since it neither has a

stable dark state for PALM nor is it STED-compatible due its fast
photo-bleaching. But with more environmentally sensitive probes
being developed (Bacia et al., 2004), we remain hopeful to one
day characterize and map lipid complexes and domains in cell
membranes.

THE EFFECT OF THE ACTIN CYTOSKELETON
One of the biggest changes to our current understanding of mem-
brane heterogeneity has been an elevation of the role of the
cytoskeleton (Edidin, 2006). The cortical actin mesh has frequently
been a target for new super-resolution based imaging methods, for
example 3D PALM (Xu et al., 2012, 2013), SIM (Brown et al., 2011)
and STED (Rak et al., 2011). The density and dynamics of the cor-
tical actin network make this structure a defining feature of cell
membranes.

Firstly, the cytoskeleton can directly influence the diffusion and
clustering of membrane proteins. The main theory here is the
“picket fence” or “hop diffusion” model first developed by Kusumi
et al. (2005). This theory holds that the cortical actin cytoskele-
ton forms a meshwork under the plasma membrane to which it
is anchored by actin and bilayer-associated proteins. Molecules
diffusing in the plasma membrane encounter these proteins as
barriers causing them to be trapped in so called “transient con-
finement zones.” From time-to-time, lipids and proteins may be
able to “hop” over these barriers thereby becoming trapped in a
new zone (Fujiwara et al., 2002; Kusumi et al., 2005; Morone et al.,
2006). Such compartmentalization would be a size-dependent
process where proteins containing a large intracellular domain
or transmembrane proteins would experience a greater barrier to
diffusion caused by the underlying mesh (Heinemann et al., 2013).
Where membrane proteins are linked to the dynamic cortical actin
mesh, it has been shown that fluctuations in the cytoskeleton
can cause transient focusing (clustering) of the plasma mem-
brane proteins (Chaudhuri et al., 2011) as the actin grid spacing
fluctuates. Actin-tethered membrane proteins may also form clus-
ters via short, dynamic actin fibers aligning assembling into aster
formations (Gowrishankar et al., 2012; Figure 3).

It has recently been shown that many membrane proteins
have their diffusion and distributions regulated by cortical actin
(Gudheti et al., 2013; Mattila et al., 2013). While much of the early
work on hop diffusion was performed using extremely high speed
single molecule and single particle tracking to map confinement
zones, this area has also proves fertile for the use of variable spot-
size FCS (Figure 2). By performing FCS experiments over a range
of size scales, it is possible to infer information on the underly-
ing, sub-resolution organization without requiring more complex
super-resolution hardware. These so called “FCS diffusion laws”
make it possible to determine whether it is transient confinement
zones or membrane lipid domains that exert the greatest influence
on diffusion within the bilayer (Lenne et al., 2006; Lasserre et al.,
2008). For example, the lipid ganglioside GM1, one of the archety-
pal lipid raft components is influenced mainly by lipid domains,
whereas the large transmembrane protein Transferrin-1 has strong
interactions with the cytoskeletal meshwork (Wawrezinieck et al.,
2005).

It may also be the case that the cytoskeleton causes an increase
in membrane lipid order (the abundance of the liquid-ordered
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FIGURE 3 | Actin-induced clustering of membrane proteins.

(A) Membrane molecules (red) which are tethered to the underlying actin
filaments (blue) may undergo transient clustering as the actin mesh flexes.

(B) Proteins anchored to short, dynamic actin strands may undergo clustering
in response to actin aster formation that requires a motor such as myosin and
is therefore an energy-dependent process.

phase) and therefore influences diffusion and distributions
indirectly by regulating the bilayer phase behavior. Blocking actin
polymerization using latrunculin causes a decrease in membrane
order observed with the environmentally sensitive membrane
probe di-4-ANEPPDHQ (Jin et al., 2006). Membrane order was
also low in plasma membrane blebs in which the bilayer had been
detached from the underlying cytoskeleton. Stabilization of the
actin meshwork using jasplakinolide had the opposite effect and
caused an increase in membrane order (Dinic et al., 2013).

It has been hypothesized that the cytoskeleton may cause “pin-
ning” of local membranes in an ordered state, which then act as
nucleation sites for the development of ordered-phase domains.
Using computer modeling, it was demonstrated that if such pin-
ning took place in a membrane that was very close to the critical
composition for fluid – fluid phase coexistence, small critical
fluctuations could cause many of the properties attributed to
rafts, such as their small size and transient nature (Machta et al.,
2011). Moreover, these critical fluctuations caused the forma-
tion of transient channels within the plans of the membrane,
which could potentially regulate the interactions of membrane
proteins over multiple length scales. This fits with the recent
observation that the plasma membrane of cells contains a much
higher coverage of the ordered phase than previously thought
(Owen et al., 2012c) so that interactions may be controlled by
which phase is the percolating “sea” phase and which phase rep-
resents the “islands” (Figure 4). While we have do direct evidence
that phase geometry frequently change in cell membranes, cover-
age of 30–70% of either phase afford the possibility that protein

interactions occur during the meso-scaled remodeling of phase
geometries.

The high level of ordered-phase coverage could be the result
of the extremely high density of membrane proteins (estimated
at 23% protein coverage for the red blood cell membrane; Dupuy
and Engelman, 2008) in the bilayer which impose order on the
surrounding 1–2 shells of lipids adjacent to the protein (Jacobson
et al., 2007). Such is the typical density of transmembrane domains
(Takamori et al., 2006) that the membrane can be considered a
lipid-protein composite and therefore the lipid properties may
be dominated by transmembrane proteins (Jacobson et al., 2007).
The switching of the“percolating”to the“island”phase could allow
large changes in organization in response to very small changes in
the physical environment (Lingwood et al., 2008). In this model,
the partitioning of proteins into distinct phases is no longer the
controller of specific interactions that then take place under static
conditions. Instead, the switching of the percolating phase would
allow selective mixing of components and hence would provide
dynamic regulation. Such changing connectivity of different mem-
brane domains and sub-regions has previously been observed by
NSOM microscopy and in silico simulations (van Zanten et al.,
2010). If such percolating phase switching indeed takes place,
the dynamic properties of the cortical actin undoubtedly play a
role.

CONCLUSION
Newly developed imaging techniques which allow super-
resolution are dramatically increasing our understanding of the
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FIGURE 4 | A new membrane model based on percolating phase

switching. A new membrane model emerged from our data that indicates
that the plasma membrane is indeed a mixture of ordered (red) and
disordered (blue) phases where the ordered phase is the majority. Without
changing the fraction, protein interactions may be regulated when the
geometry of the phases switches (red arrows) from the percolating to the
“island” phase. In so-called critical fluctuations, even small perturbations
can trigger large-scale changes such as phase geometry.

complexity of cell membrane organization. While the basic prin-
ciples of the original lipid raft hypothesis – ordered membranes
based on cholesterol and saturated lipids – may remain, more
details have already emerged that cause the distinction between
lipid domains into which certain proteins may partition and lipid
complexes that may contain multiple proteins. Other forces at
work include direct protein–protein interactions, ordering of shell
lipids by protein transmembrane domains, critical transient lipid
composition fluctuations and a complex interplay between the
bilayer and the underlying actin cytoskeletal meshwork. This
structure may influence the distribution of membrane proteins
directly or via its effects on membrane lipid order. Further tech-
nological advances, particularly the development of functional
probes that report on the membrane environment are undoubt-
edly needed to answer many of the outstanding questions of the
organizational hierarchy of cellular membranes. What started as
one hypothesis that brought lipids back into the focus has now
evolved into a number of competing membrane models that are
not mutually exclusive. Excitingly, as we understand more of how
cell membranes are organized, we also gain deeper insight into
functional processes such as receptor signaling and cargo-driven
endocytosis.
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