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High yielding perennial biomass crops of the species Miscanthus are widely recognized as
one of the most promising lignocellulosic feedstocks for the production of bioenergy and
bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency.
Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a
sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding
and expresses desirable combinations of many traits present in the two parental species
types; however, it responds poorly to low water availability. To identify the physiological
basis of the response to water stress in M. x giganteus and to identify potential targets
for breeding improvements we characterized the physiological responses to water-deficit
stress in a pot experiment.The experiment has provided valuable insights into the temporal
aspects of drought-induced responses of M. x giganteus. Withholding water resulted in
marked changes in plant physiology with growth-associated traits among the first affected,
the most rapid response being a decline in the rate of stem elongation. A reduction in
photosynthetic performance was among the second set of changes observed; indicated
by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence
and chlorophyll content. Measures reflecting the plant water status were among the last
affected by the drought treatment. Metabolite analysis indicated that proline was a drought
stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more
abundant when stomatal conductance decreased and dry weight accumulation ceased.The
outcomes of this study in terms of drought-induced physiological changes, accompanied
by a proof-of-concept metabolomics investigation, provide a platform for identifying targets
for improved drought-tolerance of the Miscanthus bioenergy crop.
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INTRODUCTION
Decreasing water availability, as a result of climate change, will
lead to prolonged dry periods and hence reduced availability or
increased variability in water resources in mid-latitudes and semi-
arid low latitudes (IPCC, 2007). This combined with an increasing
population and increasing societal water demands will lead to
water resources being a scarce commodity for agricultural pur-
poses (Rosegrant and Cline, 2003). Drought or water deficit affects
crop yield more than any other environmental stress worldwide
(Cattivelli et al., 2008), negatively impacting on plant growth,
development, survival, and crop productivity, posing a substantial
threat to sustainable agriculture (Boyer, 1982).

Biomass from dedicated high yielding bioenergy crops, includ-
ing tropical C4 grasses from the genus Miscanthus, has been
identified as a major source for the production of renewable energy
(Carroll and Somerville, 2009; Feltus and Vandenbrink, 2012).
Hence, drought induced decreases in yield are of major concern
for the development of Miscanthus cultivars that are sustainable
and economically viable biomass feedstocks.

Miscanthus is a woody, perennial rhizomatous grass, with
a wide indigenous geographical distribution in East-Asia and
the genotypes arising from these varying climates differ in their
optimal growth condition. While a lot of the research and breeding

focus is on the development of Miscanthus hybrids and varieties
with improved lignocellulosic biomass yield and conversion effi-
ciencies, the development of drought-tolerant lines will become
increasingly important as water resources become more limiting.

Despite water use efficiency of C4 crops often being higher than
that of C3 crops (Long, 1999; Gowik and Westhoff, 2011), water
availability still dictates the maximum yields achievable by a C4

crop such as Miscanthus. The most widely grown and best stud-
ied Miscanthus species so far is Miscanthus x giganteus, a sterile
hybrid of M. sacchariflorus and M. sinensis parentage (Hodkin-
son et al., 2002). M. x giganteus, also referred to as Asian elephant
grass, probably has the greatest biomass potential to date with
reported dry matter yields after complete plant senescence of
4–32 t ha−1 year−1 in Europe with higher yields in Southern
Europe (Lewandowski et al., 2000). Growth trials in the US state of
Illinois showed an average yield of 30 t ha−1 year−1 with a signifi-
cantly higher productivity than maize (Zea mays) and switchgrass
(Panicum virgatum) in side-by-side trials (Heaton et al., 2008;
Dohleman and Long, 2009). Stabilizing crop performance under
drought, which in effect means increasing crop productivity per
unit of applied water, will be a main priority for Miscanthus in
particular when it is to be grown on marginal land, with little
irrigation.
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It has been shown that plants perceive and respond rapidly to
even small alterations in water status via physiological, cellular, and
molecular events. These responses are determined by the intensity,
duration, and rate of progression of the water stress (Chaves et al.,
2003). The different physiological changes that can be induced
upon drought are well documented. However, the type and tim-
ing of physiological responses to drought can vary in different
species and between genotypes (Merchant et al., 2007; Centritto
et al., 2009; Costa et al., 2012).

While it is clear that unimproved M. x giganteus possesses a
range of agronomically desirable traits as a bioenergy feedstock,
studies have shown it to be less drought tolerant compared to
its parent species, in particular M. sinensis (Clifton-Brown and
Lewandowski, 2000) and that drought stress negatively impacts on
its yield (Price et al., 2004; Maughan et al., 2012). Despite this, little
is known about the physiological traits associated with drought
stress in M. x giganteus.

The main objective of this study was to characterize the phys-
iological responses, and the timing of these responses that M. x
giganteus undergoes when exposed to water stress. This knowl-
edge is important especially considering that bioenergy crops like
M. x giganteus are expected to generate high yields on less pro-
ductive soils with minimal irrigation. Mapping the physiological
changes in M. x giganteus upon drought stress will improve our
capacity to evaluate and predict the agronomic performance of
this energy crop in response to extreme environments.

Drought elicits substantial changes in plant metabolism as
plants accumulate compatible osmolytes inside the plant cell to
retain water and maintain positive turgor pressure (Verslues and
Juenger, 2011). In addition to relevant phenotype data under
water stress we present data showing associated changes in overall
metabolite profiles.

The outcomes of this study provide a platform for the iden-
tification of potential targets for breeding improvements of the
Miscanthus bioenergy crop.

MATERIALS AND METHODS
PLANT MATERIAL
M. x giganteus rhizomes were collected in April 2012 from plants
grown as part of a field trial in Aberystwyth, UK. After brief stor-
age at 4◦C, 35 rhizomes with a weight of 20 ± 5 g were planted in
individual 25 cm diameter pots containing John Innes No. 3 com-
mercial potting compost. The pots were placed in a glasshouse at
24◦C with 18 h of light, and initial growth rate of plants recorded
during May–June 2012.

EXPERIMENTAL DESIGN
The plants were split into five groups of seven replicates with equal
standard deviations of height after 2 months of growth. These were
placed in a completely randomized design and incubated under
the same greenhouse conditions as above. All plants within the
five groups were initially watered every 2 days with water being
withheld from the water-stressed plants (two groups) from day
12. Selected plants were destructively harvested on day 12 (one
group: T0), 24 (two groups: control 1, C1; drought 1, D1), and
32 (two groups: control 2, C2; drought 2, D2). Non-destructive

measurements were performed on all plants including those to be
removed at destructive harvests on day12, 24, and 32.

PHYSIOLOGICAL MEASUREMENTS
All measurements were made every 2 days between 22 June–24
July 2012 and were taken from equivalent leaves and from the
tallest stem (at beginning of experiment) where multiple stems
were present.

Soil moisture content was recorded using a hand-held moisture
sensor (SM300 and HH2 moisture meter, Delta-T Devices Ltd.,
Cambridge, UK), taking the average of three measurements from
each pot.

Stomatal conductance was measured between 12:00 and 14:00 h
on the youngest leaf with a fully expanded ligule (leaf 0) using an
AP4 porometer (Delta-T devices Ltd, Cambridge, UK).

Chlorophyll fluorescence was measured between 10:30 and
12:00 h on three leaves per plant [leaf 0, −2 (twoleaves older than
leaf 0), and 2 (second youngest leaf after leaf 0)] with a Handy PEA
continuous excitation chlorophyll fluorimeter (Hansatech Instru-
ments Ltd., Norfolk, UK). When using the PEA, the attached leaf
was dark-adapted with a leaf clip for 30 min before the mea-
surement. During the measurement the PEA sensor unit was
held over the clip and the shutter opened. A high intensity LED
array on the sensor head provided a maximum light intensity of
3000 μmol m−2 s−1, sufficient to ensure closure of all PSII reac-
tion centers. Maximal PSII photochemical efficiency Fv/Fm (ratio
of variable fluorescence to maximum fluorescence) was calculated
automatically and recorded. The high data acquisition of 10 μs for
the first 2 ms allowed rapid chlorophyll a transients to be deter-
mined from the polyphasic curve which were used to calculate
additional parameters including performance index (PI) and the
quantum yield of electron transport (Oukarroum et al., 2007).

Chlorophyll content was measured on five leaves (−2, −1, 0,
1, 2; denomination as above) between 10:00 and 12:00 h using a
SPAD-502 m (Konica Minolta Optics Inc.). Three readings were
taken at quarterly intervals along the leaf and the mean of the
values recorded.

Relative water content (RWC) was measured on day 12, 24, and
32, using samples taken from two leaves per plant (leaf −1 and 1).
The RWC was calculated as follows and means were calculated for
each plant and treatment:

RWC (%) = [(FW − DW)/(TW − DW)] × 100

(where: FW = fresh weight, DW = dry weight, and TW = turgid
weight)

Fresh weight was determined at time of cutting, turgid weight
after 24 h in sterile distilled water and dry weight after 72 h drying
in a 60◦C oven.

Plant water content was evaluated from total above ground
biomass measurements taken on day 12, 24, and 32. Fresh weight
was recorded at harvest and dry weight was the constant weight
achieved after drying in a 60◦C oven. Water content was calculated
on a dry weight basis as follows:

WC (g/g) = (FW − DW)/DW
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GROWTH MEASUREMENTS
Stem elongation was measured every 2 days from soil level to the
highest fully expanded ligule (leaf 0) using a graduated ruler. The
rate of elongation was then calculated using these measurements.

Leaf expansion was measured on leaf 0 with leaf length (from
the ligule to leaf tip) and width (midway between ligule and tip)
measured using a graduated ruler. Leaf area was calculated as
described (Clifton-Brown and Lewandowski, 2000):

Area (cm2) = 0.74 × length (cm) × width (cm)

The rate of expansion was calculated using the leaf area values.

METABOLIC ANALYSIS
Leaf samples were prepared using ground tissue from leaf 0 and
the extraction procedure followed that of Allwood et al. (2006).
Metabolites were analyzed using Direct Injection Electrospray Ion-
ization Mass Spectrometry (DI-ESI-MS) on a Micromass LCT
mass spectrometer (Micromass/Waters Ltd., UK) in negative ion-
ization mode where metabolites are singly ionized by the loss of
H+. The polar extracts were reconstituted in 0.25 mL 30 % [v/v]
methanol : H2O and 50 μL added to 200 μL inserts in 2 mL
(Waters Ltd. UK) and introduced by direct-infusion at a flow
rate of 0.05 mL min−1 in 30 % [v/v] methanol : H2O running
solvent. Data were acquired over the m/z range 100–1400 Th and
were imported into MATLAB (The MathWorks Inc., Natwick, MA,
USA), binned to unit mass and then normalized to percentage total
ion count as described in Johnson et al. (2007).

STATISTICAL ANALYSIS
Measurements were performed on all remaining plants, mini-
mum seven plants per treatment at each time point, and a mean
value calculated for each treatment at each time point. All val-
ues are expressed as mean ± SEM. All analyses were performed
using Minitab version 14 (Minitab Inc., Coventry, UK). Statisti-
cal differences were estimated from ANOVA tests at the 5% level
(p ≤ 0.05) of significance, for all parameters evaluated. Where
ANOVA indicated a significant difference, a pair-wise comparison
of means by Fisher’s least significant difference (LSD) was carried
out. Regression was used to fit lines to the data.

Metabolite data were analyzed using principal components
analysis (PCA) following accepted Metabolomics Standard Ini-
tiative procedures (Sansone et al., 2007). PCA is an unsupervised
method where no a priori knowledge of experimental structure is
given. Thus, if there is clustering of either 2D or projections of PCA
from replicate data, this indicates that the original experimental
parameters are the sources of maximal variation.

RESULTS
SOIL MOISTURE CONTENT AND RELATIVE WATER CONTENT
Figure 1 shows the variation of soil moisture content during the
experiment. The final watering of the drought stressed plants was
on day 12. From day 16 the volumetric soil moisture content
decreased significantly (p < 0.001) in water stressed plants when
compared with the watered control plants that maintained a con-
stant soil moisture content of 0.3 m3 m−3. During the course of the
drought experiment the soil moisture content readings decreased
to 0.05 m3 m−3, similar levels of soil moisture were observed

FIGURE 1 | Soil moisture. Soil moisture content was measured every
2 days over a period of 32 days. The last watering of the drought stressed
plants was on day 12. The control plants continued to be watered every
2 days for the duration of the experiment. A significant decline in soil
moisture occurred on day 16, 4 days after final watering, with a steady
decline over the remaining period to levels similar to drought in grassland
ecosystems.

during natural drought in a grassland ecosystem (Mikkelsen et al.,
2008).

Relative water content measurements determine plant water
status at destructive harvests. All plants showed high values of
leaf RWC in well-watered conditions at the beginning of the study
with an average RWC of 80% at day 12 (Figure 2A). The effect of
the water stress was evident at day 24, 12 days after water with-
drawal, with a decrease from 80% leaf RWC in control plants to
<70% in the water stressed plants. By day 32 there was a sig-
nificant (p < 0.001) treatment difference for leaf RWC between
the two groups with the water stressed group declining to <20%
leaf RWC. As expected, the total above ground biomass moisture
content (Figure 2B) followed a very similar pattern to the leaf
RWC.

The rate of stem elongation remained fairly constant in the well-
watered plants, with fluctuations in growth rate most likely caused
by changing identities of the uppermost leaf with a fully expanded
ligule (leaf 0). Stem elongation rates in well-watered and water-
stressed Miscanthus diverged significantly (p = 0.01) at day 20
(Figure 3A) which corresponds to a soil moisture content of below
0.2 m3 m−3 in the water-stressed plants (Figure 3B). Elongation
ceased completely at a soil moisture content of <0.05 m3 m−3.

The general effect of mild drought on leaves is a reduction in leaf
number (data not shown), rate of expansion and final leaf size. The
rate of leaf expansion in well-watered plants was constant through-
out the experiment; and decreased in water-stressed plants toward
the end of the experiment (Figure 4B). Leaf area in water-stressed
plants did not significantly increase after day 26 (Figure 4A) and
rate of expansion was significantly different (p = 0.047) between
the two treatment groups at day 28 (Figure 4B).

To determine the effect of drought on plant harvestable yield,
we measured the fresh weight and dry weight of the above ground
biomass at three time points (Figure 5). Biomass increased in
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FIGURE 2 | Leaf relative water content and above ground biomass

moisture content. The control plants maintained a constant leaf RWC of
between 72 and 80% throughout the duration of the investigation (A). In

water-stressed plants leaf RWC declined from 80% at the start of the
investigation to <20% by day 32. Total above ground biomass moisture
content followed a very similar pattern to the leaf RWC (B).

FIGURE 3 | Stem elongation. Control plants showed a fairly constant rate of stem elongation throughout the investigation (A). Water-stressed plants showed
a significant decrease in elongation rate from day 20 (A) when the soil moisture decreased to <0.2 m3 m−3 (B).

control plants throughout the investigation with a 79% increase
in fresh biomass over 12 days between day 12 and 24 (Figure 5A)
and an 84% increase in dry biomass (Figure 5B) during the same
time period. Biomass increased a further 25% (fresh biomass) and
30% (dry biomass) during the following 8 days (Figures 5A,B). In
water-stressed plants fresh biomass increased 31.5% over 12 days
between day 12 and 24, and decreased by 40% between day 24 and
32. Biomass dry weight increased in water-stressed plants between
day 12 and 24 to a similar extent as in well-watered plants and
no further increase in biomass was measured in drought-stressed
plants (Figure 5B).

PHOTOSYNTHETIC PRODUCTIVITY
The chlorophyll content of leaves declined under drought stress
(Figure 6). Chlorophyll content was determined for five leaves
per plant, with no significant differences between the five leaves.
The leaf chlorophyll content was constant in well-watered plants
throughout the duration of the experiment (Figure 6). Water-
stressed plants maintained chlorophyll levels until day 28 when a
uniform significant decline in chlorophyll content occurred across
all leaves (p < 0.02). At day 32 there was a 42% decline in leaf
chlorophyll content of the water-stressed plants compared to the
control well-watered plants.
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FIGURE 4 | Leaf area and expansion of leaf 0. Leaf area showed a linear
increase in control plants throughout the experiment while no significant
increase after day 26 was observed in water-stressed plants (A). Rate of leaf

expansion remained constant in control plants and decreased gradually in
drought treatment plants (B). The leaf expansion rate became significantly
different between the two treatments at day 28.

FIGURE 5 | Above ground biomass. Fresh (A) and dry weights (B) of the
sampled plants were measured at each harvesting point (n = 7). Fresh and
dry biomass of control plants increased throughout the experiment.
Water-stressed plants only showed a small increase in fresh weight

between day 12 and 24 and a significant decrease at day 32. Dry weight
accumulation was similar between the two treatments up to day 24 but dry
biomass did not increase further in stressed plants between day 24
and 32.

Chlorophyll fluorescence is a widely used method to research
photosynthetic efficiency (Genty et al., 1989; Strasser et al., 1995)
and was determined in three leaves per plant, with no signifi-
cant differences being found between the leaves (p < 0.05). Levels
of chlorophyll fluorescence were maintained at 0.8 Fv/Fm in all
leaves under controlled conditions and decreased under drought

conditions (Figure 7A). The treatment groups became signifi-
cantly different at day 28 (p < 0.04) across all different numbered
leaves measured. Calculated PI was slightly more sensitive to
drought treatment, and treatment groups were significantly dif-
ferent after 26 days (Figure 7B). To test if electron transport prior
to the primary plastoquinone (Qa) determined drought induced
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FIGURE 6 | Chlorophyll content. Chlorophyll content was measured in
five leaves per plant using a SPAD meter. Leaf 0 is shown because no
significant differences were seen between the different leaves. Chlorophyll
content was maintained in the well-watered plants for the duration of the
experiment and decreased from day 28 under water-stressed conditions.

changes in PI the correlation between log(PI) and log(ϕo) (ϕo is
the quantum yield of electron transport) was tested as described
in Oukarroum et al. (2007) and was found to be linear (data not
shown).

After cessation of watering, stomatal conductance was
unchanged for 10 days (day 22). A significant difference
(p = 0.002) between the two treatment groups was first observed at
day 24. A rapid increase in resistance, corresponding to a decrease
in stomatal size, from day 28 then followed until the end of the

FIGURE 8 | Stomatal conductance. Under controlled well-watered
conditions stomatal conductance remained constant throughout the
experiment. Water stress caused increased stomatal resistance and
therefore a decrease in stomatal conductance, this became significantly
different between the two treatments at day 24.

experiment at day 32 (Figure 8). The decrease in stomatal con-
ductance preceded change in leaf area of the whole plant both in
terms of new growth (leaf expansion Figure 4) and senescence of
older leaves (chlorophyll content Figure 6).

METABOLOMICS
The polar/non-polar extracts from the samples were assessed using
direct infusion electrospray ionization mass-spectrometry (DI-
ESI-MS) and the derived spectra analyzed using PCA (Figure 9).

FIGURE 7 | Chlorophyll fluorescence. The maximum quantum yield (F v/F m)
(A) was maintained in well-watered plants for the duration of the experiment
and decreased significantly in water-stressed plants from day 28. F v/F m was
measured in three leaves per plant and no significant differences were seen

between the different leaves. Shown here is leaf 0. Performance index (B),
which incorporates more parameters than (F v/F m), was compared across the
two treatments and was slightly more sensitive to drought differing
significantly between the two treatments at day 26.
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FIGURE 9 | Principal components analysis (PCA) of metabolite profiles

from well-watered and water-stressed Miscanthus plants. Polar and
non-polar extracts from leaf samples of Miscanthus plants at the start of the
experiment day 12 (T0) and from well-watered control plants at day 24 (C1)
and day 32 (C2) and also from water-stressed plants at day 24 (D1) and day 32
(D2) were analyzed using direct infusion electrospray ionization
mass-spectrometry (DI-ESI-MS). Derived spectra were analyzed by PCA both
including C2, D2 (A, D) and excluding C2, D2 (E, F). PCA plots (A) and (D) are

based on data for all metabolites in the spectrum. PCA plots (E) and (F) are
based on m/z within the spectra which were tentatively linked to metabolites
forming the proline biosynthetic pathway namely L-glutamate (147 m/z );
L-ornithine (132 m/z ); L-glutamate-semi-aldehyde (131 m/z ),
(S)-pyrroline-5-carboxylate (113 m/z ), and L-proline (115 m/z ). (B) The
percentage contribution by each m/z to the variation explained by PC1 in (A).
(C) Percentage to total ion count contributed by each of the five metabolites
tentatively associated with proline biosynthesis.
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PCA of derived spectra from all metabolites extracted across three
time points and two treatments indicated that metabolites from
the D2 group were distinctive to all other samples (Figure 9A).
Analysis of the loadings showed that proline ranked amongst the
major sources of variation (Figure 9B) contributing 2.78% to the
total variation explained by PC1. Thus, m/z tentatively linked to
the proline biosynthetic pathway were extracted from the spectra
and all exhibited increased accumulation in the D2 group whilst
m/z 115 (L-proline) and m/z 131 (L-glutamate-γ-semialdehyde)
also increased in the D1 group Figure 9C). Separate analysis of
m/z linked to proline biosynthesis by PCA again displayed clear
separation of the D2 samples, further suggesting a significant con-
tribution by this pathway to the Miscanthus drought response
(Figure 9D). However, other analyses had suggested that Miscant-
hus plants at day 32 (20 days after cessation of watering) were under
severe stress (Figures 6 and 7). Thus, the metabolomic data were
re-analyzed with D2 and C2 samples excluded to highlight early
responses which could be associated with drought tolerance mech-
anisms. The resulting PCA suggests that the metabolite profiles
for some D1 samples were distinctive from the controls but oth-
ers were not (Figure 9E). Similarly, when analyzing m/z linked to
proline biosynthetic metabolites some D1 separation was observed
but not for all samples (Figure 9F).

DISCUSSION
Drought or water deficit is one of the most important factors
affecting plant growth, development, survival, and crop produc-
tivity, posing a substantial threat to sustainable agriculture. Even
the most productive agricultural regions experience short peri-
ods of drought and occasional severe drought periods. This has
recently become more of an issue due to concerns over the effects
of climate change on global agricultural productivity and hence
food security and the socio-economic impacts associated with this.
Although predictability of precipitation is uncertain, there seems
to be a consensus among climate models showing that agricultural
areas will be exposed to increasing periods of drought conditions
(Falloon and Betts, 2010; Gornall et al., 2010; Trnka et al., 2011).
As water resources become more limiting, the development of
drought-tolerant crops will become increasingly important.

However, studies that seek to ameliorate the negative impact of
drought on agricultural productivity have been mostly focussed
upon annually harvested food crops. Many of these studies
highlight the particular stages of development that are highly
susceptible to drought. For grain crops drought is particularly
impactful on crop yield if the water stress coincides with the
period of grain filling because the harvest index is largely depen-
dent on assimilate partitioning into grain. As a consequence
the mechanisms to improve yield under drought in food crops
include for example either avoidance of drought during grain fill-
ing such as early crop growth (Fischer et al., 1998; Araus et al.,
2002; Farooq et al., 2011), or drought tolerance during grain fill-
ing such as stay-green phenotypes (Thomas and Howarth, 2000;
Harris et al., 2007). Miscanthus is an undomesticated new crop,
with several characteristics that distinguish it from many other
crops previously studied in drought research. It is a high yield-
ing crop in which all above ground biomass is harvested annually.
This distinguishes it from other biomass crops, such as trees, in

which biomass is harvested after several years growth. There-
fore Miscanthus represents a mix of annual harvested yield and
a perennial growth habit. Because of this unusual combination
it is appropriate to consider the particular sensitivities that affect
Miscanthus growth and that potentially impact upon yield under
drought conditions. We have studied a wide range of physiological
responses that may be affected by drought conditions to compare
and contrast the responses in Miscanthus with those in other more
conventional crops. We have focussed on M. x giganteus because
much agronomic research has been done on this sterile triploid
hybrid species in Europe and the USA, and it is most widely grown
for commercial purposes within the Miscanthus genus. Another
reason for focussing on M. x giganteus is because drought has been
predicted to have a strong negative impact on its performance in
terms of biomass yield (Richter et al., 2008; Heaton et al., 2010).

The first observed physiological response in M. x giganteus
under water stress conditions was a decrease in the rate of
stem elongation. This stem elongation was significantly different
between control and drought from day 20. This is consistent with
many crop species in which growth inhibition during drought
is primarily due to loss of turgor arising from lack of water
availability (Farooq et al., 2009). Inhibition of stem elongation
and leaf expansion reduces the demand for metabolites in the
plant enabling the synthesis of protective compounds required for
osmotic adjustment (Chaves et al., 2003). Leaf and stem elonga-
tion have been shown to be sensitive to changes in plant and soil
water status in other species including maize (Hsiao et al., 1970;
Westgate and Boyer, 1985). Sobrado (1986) reported a strong
relationship between leaf expansion rate and predawn leaf tur-
gor in tropical maize varieties; however the relative stem and leaf
extension rate was barely associated with grain yield under stress.
Miscanthus is cultivated for lignocellulosic biomass and all above
ground biomass is harvested and stem traits (elongation and stem
number) correlate strongly with yield (Robson et al., 2013). We
therefore expected to see significant associations between, in par-
ticular, stem elongation rate under stress and yield in Miscanthus.
Comparing day 24 and 32 there is little stem elongation and leaf
expansion indicating that growth becomes negligible when the
soil moisture content drops below 0.1 m3 m3, reflected by the dry
above ground biomass remaining constant over this period.

Measures reflecting the plant water status (leaf RWC, above
ground water content and fresh weight) showed a decrease on
day 24, becoming significantly different from that of the controls
by day 32. The dry weight of drought-treated plants remained
the same between day 24 and 32. These results indicate a loss of
water from above ground tissues under mild to moderate drought
stress but not diminished biomass accumulation. The fact that the
mean dry weight between control and treatment were the same on
day 24 was somewhat surprising given that a significant reduction
in stem elongation was observed in drought treated plants from
day 20 onward. However, our data show that photosynthesis is
rather resilient in M. x giganteus under drought stress (discussed
below) not showing any significant impact on photosynthetic
performance prior to day 24.

Photosynthesis is one of the key processes of primary
metabolism and as such plays a major role in the plants
response to low water stress conditions (Chaves et al., 2003). The

Frontiers in Plant Science | Plant Physiology November 2013 | Volume 4 | Article 468 | 8

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


“fpls-04-00468” — 2013/11/21 — 22:32 — page 9 — #9

Ings et al. Drought induced responses in Miscanthus

photosynthetic process is affected by water deficits and the impact
varies with intensity of the stress. At day 24 changes in photosyn-
thetic measurements were seen with an increase in stomatal resis-
tance. An initial moderate, but significant, increase was observed
for 4 days when soil moisture dropped below 0.1 m3 m3(day 24–
28) before rapid increases in resistance were observed under more
severe drought conditions. Stomatal closure, caused by drought
induced ABA synthesis, prevents water loss through transpira-
tion. The stomatal conductance to water vapor decreases as the
resistance increases. This leads to a decrease in intercellular car-
bon dioxide concentration and therefore inhibits photosynthesis.
It has been previously shown that M. x giganteus shows little
stomatal regulation under mild drought compared to M. sinen-
sis which has shown more effective stomatal control under water
limiting conditions (Clifton-Brown and Lewandowski, 2000). In
addition to reduced CO2 diffusion through the stomata, water
stress also results in reduced CO2 diffusion through the leaf mes-
ophyll (Lawlor and Cornic, 2002). It was therefore expected that
changes in chlorophyll content and fluorescence would be seen
shortly after the changes to stomatal aperture. However, these
two proxy measurements for photosynthetic performance were
only affected toward the end of the experiment when drought was
more severe, suggesting that M. x giganteus employs a drought tol-
erance strategy, i.e., it continued to function in spite of water stress
indicating lack of drought adaptation, compared to the drought
avoidance strategy previously seen in M. sinensis. Fv/Fm is however
not particularly sensitive to changes in photosynthetic capacity
under drought (Percival and Sheriffs, 2002), and therefore may not
be able to detect the initial decrease in photosynthesis, explaining
the delay seen between increased stomatal closure and decrease
in photosynthetic performance. The response seen in M. x gigan-
teus is similar to the response seen in maize where dehydration
tolerant genotypes were shown to maintain open stomata and
active photosynthesis under mild drought conditions (Benesova
et al., 2012). Unlike Fv/Fm which utilizes only extreme values of
chlorophyll fluorescence, the PI parameter is more comprehensive
and incorporates multiple parameters including absorption and
trapping of excitation energy, electron transport beyond the pri-
mary plastoquinone and dissipation of excitation energy. The PI
parameter has been used in several studies of photosynthetic per-
formance (Clark et al., 2000; Hermans et al., 2003; Strauss et al.,
2006; Oukarroum et al., 2007). In this study PI was slightly more
sensitive than the maximum quantum yield of PSII (Fv/Fm). The
log linear correlation between PI and the quantum yield of elec-
tron transport suggests that changes in electron transport beyond
Qa determined the changes in PI during drought treatment, a sim-
ilar result was seen in drought studies of barley cultivars, mung
bean (Vigna radiata) and Brassica (Brassica juncea; Misra et al.,
2001; Oukarroum et al., 2007).

Biochemical tolerance responses of crops to drought have been
linked to changes in the metabolic pathways leading to production
of sugars, sugar alcohols, amino acids, and polyamines (reviewed
in Seki et al., 2007). Therefore, metabolomics-based approaches
are particularly appropriate when investigating plant responses to
drought. In this work, we sought to demonstrate the validity of
our metabolomics approach to investigate drought in Miscanthus
rather than conduct an in depth characterization. However, to

demonstrate the biological relevance of our study, we extracted
m/z corresponding to the proline biosynthetic pathway, one of
the largest sources of variation in our experiment, and sought to
describe treatment difference based solely on these variables.

Drought induced accumulation of proline, caused by both acti-
vation of its biosynthesis and the inactivation of its degeneration,
is considered to act as an osmoprotectant, a ROS scavenger, and a
molecular chaperone stabilizing the structure of proteins, thereby
protecting cells from damage caused by stress (Delauney and
Verma, 1993; Hare and Cress, 1997; Szabados and Savoure, 2010).
For example, overproduction of proline has been shown to result in
increased tolerance to osmotic stress in transgenic plants (Kishor
et al., 1995; Zhu et al., 1998; Yamada et al., 2005). Here we have
shown that proline biosynthesis is a drought-affected metabolic
trait in M. x giganteus. In our analyses, m/z linked to metabolites
in the proline pathway allowed responses at day 24 to be dis-
tinguished between treatments (D1 and C1), thereby suggesting
that biochemically relevant changes linked to drought were being
measured in our experiment. It is generally accepted that under
conditions of water deprivation or extreme salinity, proline accu-
mulation serves as a defense against osmotic challenge by acting as
a compatible solute (Hare and Cress, 1997). The metabolite analy-
sis has shown that at D1, corresponding to mild-moderate drought
conditions, the precursor for proline biosynthesis L-glutamate-
semi-aldehyde and L-proline itself began to increase. Signifi-
cantly, L-glutamate-semi-aldehyde and L-proline are respectively
the products of two enzymes, pyrroline-5-carboxylate synthetase
(P5CS), and pyrroline-5-carboxylate reductase (P5CR) which play
major roles in the proline biosynthetic pathway (Delauney and
Verma, 1993). Further increases in proline metabolite concen-
trations within the leaves confirm the importance of proline in
the drought stress response of Miscanthus. This could be due to
the function of increased proline as a molecular chaperone able
to protect protein integrity and enhance the activities of differ-
ent enzymes (Rajendrakumar et al., 1994). The enhanced rate of
proline biosynthesis in chloroplasts can contribute to the stabiliza-
tion of redox balance and maintenance of cellular homeostasis by
dissipating the excess of reducing potential when electron trans-
port is saturated during adverse conditions (Szabados and Savoure,
2010).

With Miscanthus, metabolomics could not only define the
mechanisms of drought tolerance but also indicate biochemical
markers for maximal biomass yield under drought to be exploited
in germplasm selection/ breeding programes. This current work is
the first application of metabolomics to investigate drought in Mis-
canthus. In applying these approaches, we demonstrated the use
of appropriate sampling so that multivariate models describing
the underlying biochemical changes could be defined. The bio-
chemical changes detected by our metabolite profiling approach
were sufficiently pronounced to give treatment specific separation
by non-supervised PCA. These experimental data are currently
being analyzed in great detail to identify further potential sources
of drought tolerance.

The application of progressive drought enabled us to monitor
and evaluate the physiological changes in M. x giganteus triggered
over a period of 20 days after cessation of watering. A moderate
drought treatment may allow plants to reach a new homeostasis
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with reduced growth (Harb et al., 2010) and a better understanding
of this response will allow for the selection of plants that can toler-
ate limited water availability in temperate climates (Skirycz et al.,
2011). M. x giganteus is currently grown over a range of geogra-
phies that are expected to experience more erratic climatological
conditions including prolonged periods of drought. The progres-
sive decrease in soil moisture content in drought-treated M. x
giganteus plants allowed us to monitor the associated physiologi-
cal changes throughout the experiment, summarized in Figure 10,
providing valuable information on how M. x giganteus responds to
drought stress. We have shown here that stem elongation is the first
measure to be affected. This is therefore a good indicator of early
or mild drought stress, with photosynthetic ability being affected
under more severe stress. Stomatal conductance was one of the last
physiological responses to be affected by drought stress in Miscant-
hus, this confirms a previous study that suggested M. x giganteus
was poor at controlling stomatal aperture (Clifton-Brown and
Lewandowski, 2000). Growth is one of the most drought-sensitive
physiological processes with water-stress limiting growth more
than any other abiotic stress (Shao et al., 2008). The influence
of water deficit and assimilate distribution depends on the stage
of growth, with the most rapidly growing organ being most vul-
nerable to the stress (Nandwal et al., 1992). However the initial
decline in elongation growth in drought-stressed Miscanthus was

not associated with decreased biomass accumulation but resulted
from a redistribution of resource allocation. Since all above ground
biomass is harvested in Miscanthus, redistribution of resources
among aerial parts of the plant will not affect yield and therefore
despite this being the most dramatic and sensitive response it is
unlikely to be a useful breeding target for mild drought conditions.
However, a shift in assimilate partitioning between structural
and non-structural carbohydrates could potentially impact on
biomass quality and conversion for bioenergy and bioproducts.
It is possible that resources are also redistributed to rhizomatous
tissue which would affect yield and it will be interesting to fol-
low resources in drought-stressed plants to determine the relative
sensitivities of different resource allocations. Such detailed phys-
iological data provides a platform for the future integration of
physiological events with associated drought-induced metabolites
and transcripts, enabling the identification of genes and pathways
for the improvement of drought tolerance in Miscanthus through
implementation in Miscanthus breeding programes and/or genetic
engineering approaches.
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