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Plant and animal microRNA (miRNA) pathways share many analogous components, the
ARGONAUTE (AGO) proteins being foremost among them. We sought to ascertain the
degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2)
and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1), which are the predominant AGO
family members involved with miRNA activity in their respective species. Transgenic
Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts
over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks
of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable
to rescue the ago1–27 allele. We conclude that, despite the evolutionary gulf between
them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis
miRNA pathway, thereby perturbing its operation, although differences have arisen such
that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.
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INTRODUCTION
MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs)
that direct the sequence-specific silencing of mRNA transcripts,
providing a critical layer of gene regulation in both plants and ani-
mals (Pasquinelli, 2012). Much of the molecular machinery that
oversees miRNA biogenesis and activity is shared between these
kingdoms and, hence, must have arisen prior to their divergence,
though it is unclear whether a basal miRNA pathway was already
in operation at this time (Axtell et al., 2011). From this shared
origin, the plant and animal miRNA pathways have followed
divergent evolutionary courses and there now exists character-
istic distinctions in the manner of their operation. Briefly, plant
miRNAs generally silence only a small handful of targets, requir-
ing near-perfect complementarity for their recognition, and do
so via a combination of transcript cleavage and a non-cleavage
mechanism/s (Brodersen and Voinnet, 2009). In contrast, ani-
mal miRNAs regulate target transcripts to which they are only
partially complementary, generally recognizing many targets and
silencing these via a non-cleavage mechanism/s (Axtell et al.,
2011; Huntzinger and Izaurralde, 2011). The question of how
the apparently similar set of components in the miRNA pathways
of plants and animals has been modified so as to generate these
functional differences is keenly relevant to our understanding of
eukaryotic gene regulation.

The best example of shared componentry between the sys-
tems, an ARGONAUTE (AGO) protein is required, without
known exception, for miRNA-mediated gene silencing (Mallory
and Vaucheret, 2010). Considered the core component of the
miRNA induced silencing complex (miRISC), AGO’s involve-
ment in miRNA-mediated silencing appears threefold. First, it
facilitates the interaction of a miRNA with its intended tar-
gets (Nakanishi et al., 2012; Schirle and Macrae, 2012). Second,
when sufficient complementarity exists, it provides the catalytic

activity for cleavage of the target mRNA (Liu et al., 2004; Meister
et al., 2004; Baumberger and Baulcombe, 2005; Rivas et al.,
2005). Finally, it orchestrates the silencing of un-cleaved targets by
recruiting the factors responsible for their translational repression
and accelerated degradation (Huntzinger and Izaurralde, 2011).

Plants and animals each exhibit a diversity of AGO proteins.
There are, for example, 10 members in Arabidopsis, which are
distinguished by the class of sRNAs that they associate with and
by their patterns of expression (Vaucheret, 2008; Mallory and
Vaucheret, 2010). Of these, Arabidopsis thaliana AGO1 (AtAGO1)
has the most prominent involvement in miRNA-mediated gene
silencing. Emphasizing the importance of its role, AtAGO1 home-
ostasis must be delicately maintained by a feedback mechanism
in which miR168 directs the AtAGO1-dependent silencing of
AtAGO1 expression. When this circuit is disturbed via the muta-
tion of AtAGO1’s miR168 target site, the over-accumulation
of AtAGO1 protein leads—somewhat counter intuitively—to
a general perturbation of miRNA-mediated regulation in the
plant, manifesting in pleiotropic defects that resemble those
apparent in a range of miRNA-pathway loss-of-function alle-
les (Morel et al., 2002; Vaucheret et al., 2004; Vazquez et al.,
2004).

Of four mammalian AGOs, Homo sapiens AGO2 (HsAGO2)
has the best-characterized role in the miRNA pathway. Although
HsAGO2 and AtAGO1 share only 43% amino acid identity
(Poulsen et al., 2013), they appear similar in function. Both pref-
erentially associate with sRNAs bearing a 5′U (Mi et al., 2008;
Frank et al., 2010) and may catalyze the cleavage of comple-
mentary mRNA transcripts in vitro without the participation
of any other component (Liu et al., 2004; Meister et al., 2004;
Baumberger and Baulcombe, 2005; Rivas et al., 2005). Moreover,
they interact and operate in conjunction with proteins of anal-
ogous structure and function. For example, HsAGO2 facilitates
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the non-cleavage silencing of targets (Pillai et al., 2004) in a
process dependent on the GW182 family proteins (Takimoto
et al., 2009; Zipprich et al., 2009), while AtAGO1 (Brodersen
et al., 2008; Lanet et al., 2009) and an Arabidopsis GW protein
SUO (Yang et al., 2012) each have a demonstrated involvement in
miRNA-mediated translational repression. The plant de-capping
factor VARCIOSE (VCS) (Brodersen et al., 2008) and its animal
ortholog Ge-1 (Eulalio et al., 2007) have also been implicated
in translational repression. Further to this, the loading of miR-
NAs into AtAGO1 and HsAGO2 is supported by chaperones that
are conserved between the two kingdoms (Smith et al., 2009;
Iki et al., 2010, 2012; Iwasaki et al., 2010; Earley and Poethig,
2011).

The array of similarities just outlined indicates that, despite
the evolutionary distance between them, AtAGO1 and HsAGO2
share a remarkable degree of functional conservation. Indeed, in
their recent report, Poulsen et al. (2013) integrated information
from mutational studies of AtAGO1 with structural studies of
HsAGO2 to make general inferences about the mechanics of AGO
activity, the underlying assumption being that these two proteins
are highly similar in form and function. By expressing HsAGO2
in Arabidopsis, we sought to determine whether they might be
so similar that HsAGO2 could function as a component of the
plant miRNA pathway or whether distinctions that have accu-
mulated during their parallel evolution would become apparent
when expressed in an identical cellular context, perhaps provid-
ing insight into the characteristic operational differences of the
plant and animal miRNA pathways.

MATERIALS AND METHODS
PLANT MATERIALS AND GROWTH CONDITIONS
Seeds were surface sterilized by exposure (3–6 h) to the chlo-
rine gas generated by mixing 100 mL of sodium hypochlorite
with 3 mL of concentrated hydrochloric acid in a sealed desic-
cator jar. Seeds were sown on soil (Debco Plugger mixed with
Osmocote Extra Mini fertilizer at 3.5 g/L), stratified for 48 h at
4◦C and grown under “long day” conditions (16 h light/8 h dark,
150 μmol/m2/s, 22◦C).

GENERATING 35S:HsAGO2, 35S:AtAGO1 AND 35S:4m-AGO1
TRANSGENIC PLANTS
HsAGO2 and AtAGO1 cDNAs were obtained from Sino Biological
and the Arabidopsis Biological Resource Centre respectively. Via
standard Gateway cloning procedures, each was placed into
the pMDC32 destination vector, which contains a double 35S
promoter for constitutive expression (Curtis and Grossniklaus,
2003). For the 35S:4mAGO1 construct, four silent mutations
introducing mismatches to the miR168 target site in AtAGO1,
as per (Vaucheret et al., 2004), were generated via a site directed
mutagenesis strategy based on that of (Liu and Naismith, 2008).
Constructs were transformed into Agrobacterium tumefaciens and
then transformed into Arabidopsis using the “floral dip” method
(Clough and Bent, 1998).

RNA EXTRACTION AND cDNA SYNTHESIS
Total RNA was extracted from whole rosettes of plants at differ-
ent growth stages, using TRIzol (Invitrogen) with the following

modifications made to the manufactures protocol: (1) approx-
imately 500 mg of plant material was used with 1 mL of Trizol
reagent for each extraction; (2) homogenization of tissues was
achieved using a mortar and pestle; (3) the chloroform extrac-
tion step was repeated twice; (4) precipitation of RNA was carried
out overnight at −20◦C to maximize the recovery of sRNAs.
30–50 μg of RNA from each sample was treated with RQ1 RNase-
Free DNase (Promega) in separate 100 μL reactions, according
to the manufacturer’s protocol, with the addition of RNaseOut
Recombinant RNase Inhibitor (Invitrogen) (1 μL/10 μg RNA).
Treated RNA was then purified using Qiagen RNAeasy cleanup
kit according to the manufacturer’s protocol. cDNA synthe-
sis was carried out using SuperScript III Reverse Transcriptase
(Invitrogen) and an oligo dT primer according to manufac-
turer’s protocol. For each sample, 250 ng −5 μg of purified RNA
was used in separate 20 μL reactions. These were subsequently
diluted in 980 μL nuclease free distilled water before qRT-PCR
analysis.

QUANTITATIVE REAL-TIME PCR (qRT-PCR)
For qRT-PCR, 9.2 μL of each cDNA sample was added to
10 μL of SensiFAST SYBR No-ROX mix (Bioline) with 0.8 μL
of forward and reverse primers (10 μmol each). For the mea-
surement of un-cleaved mRNA levels of miRNA target genes,
qRT-PCR primers were designed so their amplicon would span
the target site for their associated miRNAs, meaning that cleaved
transcripts would not contribute to the measured abundance.
qRT-PCR reactions were carried out on a Rotor-Gene 2000 real
time PCR machine (Qiagen) in triplicate. The “housekeeper”
CYCLOPHILIN (At2g29960) was used to normalize mRNA levels
of each gene using the comparative quantitation program in the
Rotor-Gene 6 software package provided by Qiagen and average
values were calculated from triplicate measurements.

qRT-PCR ASSAYS FOR MATURE miRNAs
Customized Taqman sRNA assays (Applied Biosystem) were used
to quantitate mature miRNAs and amiRNAs according to the
manufacturer’s protocol, apart from the following modifications:
(1) for each RNA sample, the retro-transcription was multiplexed
with looped-RT primers for the miRNA/amiRNA of interest and
the small RNA sno101; (2) the cDNA synthesized (15 μL) was
diluted with 86.4 μL nuclease free distilled water and 9 μL of
this cDNA solution was used in each qRT-PCR reaction, along
with 10 μL SensiFAST Probe NO-ROX mix (Bioline) and 1 μL
Taqman probe (Applied Biosystems). qRT-PCR reactions were
carried out on a Corbett Rotor-Gene 2000 real time PCR machine
(Corbett) in triplicate as above. The abundance of each mature
miRNA/amiRNA was normalized to sno101 using the compara-
tive quantitation analysis program from Rotor-Gene 6 software
(Corbett) and average values were calculated from triplicate mea-
surements.

RESULTS
EXPRESSION OF HsAGO2 IN Arabidopsis RESULTS IN PLEIOTROPIC
DEVELOPMENTAL DEFECTS
A cDNA for HsAGO2 was placed under the control of a double
35S promoter and the resulting binary vector (35S:HsAGO2) was
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transformed into wild type Arabidopsis. Roughly half (17/35) of
all 35S:HsAGO2 primary transformants displayed morphological
abnormalities of varying severity. At its mildest, the 35S:HsAGO2
phenotype was characterized by increased leaf-serration rela-
tive to wild type. Reduced rosette size, accelerated senescence
and flat, broad leaves were additional features in more severely
affected transformants and, in several, upward leaf-curl was
also apparent (Figure 1A). Plants were grouped according to
the perceived severity of their abnormalities and these assign-
ments were well correlated with the abundance of HsAGO2
mRNA recorded in each set (Figure 1B). Hence, the expression
of HsAGO2 is able to generate pleiotropic developmental defects
in Arabidopsis.

HsAGO2 EXPRESSION AND AtAGO1 OVER-EXPRESSION GENERATE
INDISTINGUISHABLE MORPHOLOGICAL PHENOTYPES IN Arabidopsis
The serration and upward leaf-curl seen in 35S:HsAGO2 trans-
genic plants are features observed in a number of previ-
ously described miRNA-pathway loss-of-function alleles (Morel
et al., 2002; Vaucheret et al., 2004; Vazquez et al., 2004),
hinting that endogenous miRNA activity might be perturbed
by HsAGO2 expression. Since over-expression of endogenous
AtAGO1, elicited by the mutation of its miR168 target site, leads
to a miRNA-pathway loss-of-function effect (Vaucheret et al.,
2004, 2006), the excessive expression of HsAGO2, unregulated
by any homeostatic mechanism, might perturb miRNA activity
in a similar fashion. To test this, we wished to directly compare
35S:HsAGO2 plants to transgenic plants over-expressing AtAGO1.
To generate these, a cDNA for AtAGO1 was placed under a dou-
ble 35S promoter (35S:AtAGO1) and, in a separate construct
(35S:4mAGO1), four silent mutations identical to those described
by Vaucheret et al. (2004) were created, introducing four mis-
matches to AtAGO1’s miR168 target site, which should render it
resistant to miR168-mediated regulation. Both constructs were
transformed into wild type plants and their primary transfor-
mants were grown alongside 35S:HsAGO2 plants. Populations
of transformants for all three constructs were morphologically
indistinguishable, each eliciting phenotypes characterized by ser-
ration and broad, flattened leaves (Figure 2A). These abnormal
phenotypes were associated with elevated AtAGO1 mRNA lev-
els (Figure 2B), ruling out co-suppression of the endogenous
gene as an alternative explanation. The similarity of plants
expressing HsAGO2 to plants over-expressing AtAGO1 is con-
sistent with the possibility that HsAGO2 expression perturbs
endogenous miRNA activity and suggests that the HsAGO2
protein behaves similarly to AtAGO1 in an over-expression
context.

HsAGO2 PLANTS EXHIBIT MOLECULAR CHARACTERISTICS OF
miRNA-PATHWAY LOSS-OF-FUNCTION ALLELES
Seeking further evidence that HsAGO2 expression per-
turbs endogenous miRNA activity, the abundance of
un-cleaved mRNA for each of five miRNA targets was
measured in HsAGO2 transformants that displayed obvi-
ous or mild/no morphological abnormalities. The same
analysis was performed for 35S:AtAGO1 and 35S:4mAGO1
transformants, with wild type plants and ago1–27, a partial

FIGURE 1 | Expression of HsAGO2 generates morphological defects in

Arabidopsis. (A) 22-day old primary transformants for the 35S:HsAGO2
construct were categorized based on the apparent severity of their
morphological phenotypes. Increased leaf serration distinguished “mild”
phenotypes from wild type (WT), “obvious” phenotypes were characterized
by broadened leaves, serration, accelerated senescence and some upward
leaf-curl, while phenotypes considered “severe” were distinguished by
strong upward leaf-curl in addition. Scale bars represent 10 mm. (B) The
abundances of HsAGO2 mRNA was measured in total RNA from sample
pools composed of 4–8 transformants, 22-days old, from each
morphological category. Wild type (WT) and ago1–27 plants, grown in
parallel, were included as controls. All measurements are normalized to
CYCLOPHILIN mRNA. Data is averaged from three technical cDNA
replicates, each of which comprised triplicate measurements, and error
bars depict standard error of the mean.

loss-of-function allele of AtAGO1 (Morel et al., 2002), serving as
controls.

The five miRNA targets examined, AtAGO1 (miR168),
DCL1 (miR162), PHABULOSA (PHB) (miR165/166), MYB33
(miR159), and CUP-SHAPED COTYLEDONS 2 (CUC2)
(miR164), all showed elevated un-cleaved mRNA abundances
in ago1–27 plants relative to wild type (Figure 2B), consistent
with what has previously been reported (Morel et al., 2002).
HsAGO2 plants displaying obvious aberrant phenotypes also
exhibited greater mRNA accumulation than transformants
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A

B

FIGURE 2 | Overexpression of HsAGO2 or AtAGO1 results in similar

morphological and molecular phenotypes. (A) 24-day old primary
transformants for the 35S:HsAGO2, 35S:AtAGO1, and 35S:4mAGO1
constructs, grown in parallel, were categorized as exhibiting an obvious
abnormal morphological phenotype, characterized by broad, flattened,
serrated leaves, or no/mild abnormal phenotype. Wild type (WT) and
ago1–27 plants were grown in parallel as comparators. Scale bars represent
10 mm. (B) The abundances of HsAGO2 mRNA and un-cleaved mRNA for
AtAGO1, PHB, MYB33, CUC2, and DCL1 were measured in total RNA from
sample pools composed of 4–8 transformants, 24-days old, from each
morphological category for each construct. Wild type (WT) and ago1–27

plants, grown in parallel, were included as controls. Measurements of
“un-cleaved” mRNA are obtained by using a qRT-PCR amplicon spanning the
cleavage site for each transcript, such that cleaved mRNA does not
contribute to the recorded abundance. All measurements are normalized to
CYCLOPHILIN mRNA. Data is averaged from two technical cDNA replicates,
each of which comprised triplicate measurements, and error bars depict
standard error of the mean. Values marked with * are significantly larger
(P < 0.05) than their corresponding measurements in WT samples, those
with ** are significantly larger (P < 0.05) than both WT and their
corresponding none/mild sample, whilst those marked with φ are significantly
larger (P < 0.05) than their corresponding none/mild sample but not WT.
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showing no/mild aberrant phenotypes or wild type com-
parators for AtAGO1, PHB, MYB33, and CUC2 (P < 0.05)
(Figure 2B). The same was generally true for 35S:AtAGO1 and
35S:4mAGO1 transformants and it could not be said that, across
the board, any one of the three constructs generated a more
severe molecular phenotype than the other two (Figure 2B).
For each construct, DCL1 levels were not significantly increased
relative to wild type but were higher in transformants that
displayed an obvious aberrant phenotype than those that did
not (P < 0.05) (Figure 2B). Thus, the exhibition of morpho-
logical defects among transformants of all three constructs
corresponded with a general increase in the mRNA abundance
of miRNA targets, implying a perturbation of miRNA activity
in each.

The apparent perturbation of miRNA activity in plants
expressing HsAGO2 at high levels seems to imply an interac-
tion between the HsAGO2 protein and some component/s of
the endogenous miRNA pathway, the most obvious candidate

being miRNA molecules themselves. Hence, mature miRNA lev-
els for two highly abundant miRNAs, miR159a and miR166, were
measured in 35S:HsAGO2 transformants from the same morpho-
logical categories as above, with 35S:AtAGO1 and 35S:4mAGO1
transformants, wild type and ago1–27 again included for compar-
ison. Transformants of all three constructs displaying no aberrant
phenotype showed miRNA accumulation roughly equivalent to
wild type (Figure 3). MiR159a and miR166 levels were decreased
in transformants displaying an obvious aberrant phenotype,
though these decreases were not always found to be statisti-
cally significant compared to wild type (P < 0.05) (Figure 3).
Since miRNA levels were also lower in ago1–27 than in wild
type (Figure 3), this result is consistent with the notion that the
three constructs behave as miRNA-pathway loss-of-function alle-
les. The decreased accumulation of mature miRNAs could not
be explained by changes at the transcriptional level, since parallel
decreases in pri-miRNA abundances were not observed (data not
included).

FIGURE 3 | miRNA abundances decrease in AGO overexpressing plants.

The abundances of miR159a and miR166 were measured in total RNA from
sample pools composed of 4–8 transformants, 24-days old, from each
morphological category for each construct. Wild type (WT) and ago1–27
plants, grown in parallel, were included as controls. miRNA levels are
normalized to the small RNA sno101. Data is averaged from two technical

cDNA replicates, each of which comprised triplicate measurements, and error
bars depict standard error of the mean. Values marked with ∗ are significantly
smaller (P < 0.05) than corresponding measurement in WT samples, those
with ∗∗ are significantly smaller (P < 0.05) than both WT and their
corresponding none/mild sample, whilst those marked with φ are significantly
smaller (P < 0.05) than their corresponding none/mild sample but not WT.

www.frontiersin.org April 2013 | Volume 4 | Article 96 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Deveson et al. HsAGO2 inhibits plant miRNA activity

In sum, 35S:HsAGO2 transformants and AtAGO1 over-
expressers are morphologically indistinguishable, display simi-
larly elevated mRNA abundances for five miRNA targets and
comparable reductions in the accumulation of two mature miR-
NAs. Collectively, these findings strongly argue that HsAGO2
inhibits endogenous miRNA activity and behaves in a similar
fashion to its plant counterpart, at least in an over-expression
context.

35S:HsAGO2 IS UNABLE TO RESCUE THE ago1–27 ALLELE
That HsAGO2 expression generates a miRNA-pathway loss-of-
function phenotype does not necessarily imply that the protein
lacks functionality in the plant cell, since the over-expression
of AtAGO1 similarly inhibits endogenous miRNA activity. With
the anticipation that a functional HsAGO2 protein might alle-
viate an ago1 loss-of-function allele, the 35S:HsAGO2 con-
struct was transformed into ago1–27, as were 35S:AtAGO1 and
35S:4mAGO1. Both AtAGO1 constructs were able to complement
the ago1–27 morphological phenotype, yielding transformants
resembling wild type plants with similar frequencies. Full or par-
tial complementation was observed in 15/38 transformants of
35S:AtAGO1 and 20/46 for 35S:4mAGO1 (Figure 4). This implies
that, although both constructs can inhibit miRNA activity in
a wild type background, they are also able to fully or par-
tially restore AGO1 activity in the ago1–27 mutant background.
By contrast, none of the 68 transformants for 35S:HsAGO2
showed even partial phenotypic complementation, with the
majority exhibiting an even more severely aberrant phenotype

than ago1–27 (Figure 4). This result argues that, whilst HsAGO2
behaves just like AtAGO1 in an over-expression context, the
human protein, unlike its plant counterpart, is seemingly inca-
pable of facilitating the efficient silencing of miRNA targets in
Arabidopsis.

DISCUSSION
In both plants and animals, an AGO protein is required for
miRNA-mediated gene silencing. The best-studied AGO proteins
of each kingdom, AtAGO1 and HsAGO2 are believed to share
a high degree of functional conservation. Seeking to determine
the full extent of their similarity, we constitutively expressed
HsAGO2 in Arabidopsis. 35S:HsAGO2 transformants displayed
abnormal phenotypes indistinguishable from those of transgenic
plants over-expressing AtAGO1, with both groups resembling
miRNA-pathway loss-of-function alleles at the morphological
and molecular levels and exhibiting similar decreases in the abun-
dances of mature miRNAs. We are aware of no other attempt to
express a component of the animal miRNA pathway in planta, or
vice versa, and our results indicate that, despite the evolutionary
gulf between the two systems, the HsAGO2 protein retains the
ability to interact with some component/s of the plant miRNA
pathway and behaves similarly to AtAGO1 in an over-expression
context.

Whilst HsAGO2 behaves just like AtAGO1 in an over-
expression context, it was unable to rescue the ago1–27 allele,
indicating that it is insufficient for the efficient silencing of
miRNA targets in Arabidopsis. This is unsurprising, given that

FIGURE 4 | HsAGO2 cannot complement the ago1–27 mutation. 22-day
old transformants of 35S:HsAGO2, 35S:AtAGO1, and 35S:4mAGO1 in the
ago1–27 background were categorized based on their morphologies as
being non-complemented (resembling ago1–27), partially complemented
(intermediate phenotype) or fully complemented (resembling wild type). The

left image shows representative non-complemented transformants for the
35S:HsAGO2 construct, alongside wild type (WT) and ago1–27 controls. Scale
bar represents 10 mm. The right image shows a representative group of
transformants for each construct, alongside WT and ago1–27, with plants that
were scored as being partially (yellow) or fully complemented (red) highlighted.
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even the closest homologue of AtAGO1, AtAGO10—with which
it shares 75% amino acid identity compared to just 43% for
HsAGO2 (Poulsen et al., 2013)—expressed from AtAGO1’s pro-
moter, is unable to rescue the same allele (Zhu et al., 2011). In
fact, ectopic expression of AtAGO10 from the AtAGO1 promoter
yielded upward leaf-curl and exacerbated the ago1–27 allele (Zhu
et al., 2011), just as we observed for the 35S:HsAGO2 construct.
While AtAGO10 associates with miRNAs and is capable of cleav-
ing target transcripts in vitro, it is not an efficient gene-silencer
in vivo and instead attenuates AtAGO1-associated miRNA activ-
ity by sequestering miRNAs, having a particular preference for
miR165/166 (Zhu et al., 2011). The HsAGO2 protein is also suffi-
cient for sRNA-directed mRNA cleavage in vitro (Liu et al., 2004;
Meister et al., 2004; Rivas et al., 2005) but apparently fails to effi-
ciently silence miRNA targets in planta. It seems therefore that a
basal cleavage activity, demonstrable in vitro, is not sufficient for
proper miRNA-mediated gene silencing in planta. Consequently,
we suggest that the AtAGO1 protein is distinguished by some
specialization, perhaps allowing it to interact with an unknown
factor/s that is additionally required for efficient silencing, which
is essential for its function. The requirement for an additional
factor/s could explain the somewhat counterintuitive observa-
tion that AtAGO1 over-expression generates a miRNA-pathway
loss-of-function effect; an excess of AtAGO1 protein might titrate
miRNAs and other necessary components of the miRISC into
separate, incomplete complexes, each unable to facilitate miRNA-
guided gene silencing, thereby inhibiting endogenous miRNA
activity. Such an explanation was proposed by Vaucheret et al.
(2004), who first reported a perturbation of miRNA activity by
AtAGO1 over-expression. Here it must be noted that Vaucheret
et al. (2006) reported modest increases in the accumulation of
mature miR159a and miR166 in transgenic plants over-expressing
AtAGO1, the opposite result to what we observed. The founda-
tion of this contradiction might lie in the fact that the two studies
employed different protocols for the extraction of total RNA from
plant tissues, although this explanation cannot be substantiated
here. That both the AtAGO1 and the 4mAGO1 transgenes were,

in the present study, expressed from a constitutive double 35S
promoter in, as opposed to the endogenous promoter of AtAGO1
(Vaucheret et al., 2006), is another point of difference between
the two approaches, and may have contributed to their divergent
outcomes.

The miRNA pathways of plants and animals utilize similar
molecular machinery but exhibit characteristic distinctions in
the manner of their operation, presumably the manifestation
of componential modifications that have accumulated through-
out their parallel evolutionary histories. The most important of
these is the differential requirements for target recognition in
each, animal miRNAs commonly regulating targets that would be
ignored in plants for their insufficient complementarity (Axtell
et al., 2011). Given the intimacy of their involvement in miRNA-
mediated gene silencing, one could reasonably speculate that
some intrinsic difference in the AGO proteins of plants and ani-
mals might underpin their differential target specificities. Because
HsAGO2 was apparently unable to efficiently silence miRNA tar-
gets in planta, we were unable to address the possibility that
an animal and a plant AGO might regulate distinct sets of tar-
gets when expressed in an identical cellular context. However, it
was recently reported that cleavage-impaired AtAGO1 mutants,
which are defective in gene silencing activity, successfully co-
precipitate with both miRNAs and mRNAs, suggesting that their
ability to recognize and bind to target transcripts remains intact
(Carbonell et al., 2012). Thus, an avenue for future work will be
to attempt to elucidate the target profile of HsAGO2 in planta
via co-precipitation experiments, potentially revealing differential
specificities for an animal and plant AGO.
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