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One major constraint upon the application of molecular crop breeding approaches is the
small number of genes linked to agronomically desirable traits through defined biochemical
mechanisms. Proteomic investigations of crop plants under abiotic stress treatments have
identified many proteins that differ in control versus stress comparisons, however, this
broad profiling of cell physiology is poorly suited to ranking the effects and identifying the
specific proteins that are causative in agronomically relevant traits. Here we will reason
that insights into a protein’s function, its biochemical process and links to stress tolerance
are more likely to arise through approaches that evaluate these differential abundances
of proteins and include varietal comparisons, precise discrimination of protein isoforms,
enrichment of functionally related proteins, and integration of proteomic datasets with
physiological measurements of both lab and field-grown plants. We will briefly explain how
applying the emerging proteomic technology of multiplexed selective reaction monitoring
mass spectrometry with its accuracy and throughput can facilitate and enhance these
approaches and provide a clear means to rank the growing cohort of stress responsive
proteins. We will also highlight the benefit of integrating proteomic analyses with cultivar-
specific genetic databases and physiological assessments of cultivar performance in
relevant field environments for revealing deeper insights into molecular crop improvement.
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CROP LOSSES DUE TO ABIOTIC STRESS AND THE PROMISE
OF APPLYING MOLECULAR TECHNIQUES TO CROP
IMPROVEMENT
Analyses by agricultural researchers and humanitarian organiza-
tions have continually found that abiotic stresses such as drought,
extreme temperatures, and unfavorable soil conditions are respon-
sible for significant decreases in crop yield and can have adverse
economic and nutritional consequences for local populations
(Boyer, 1982; Mittler, 2006; Witcombe et al., 2008). Given the
vast increase in molecular understanding of plant biology over
the last decade, as well as the successful application of molecu-
lar techniques in the field of biomedicine, it has been proposed
that the approaches and techniques of molecular biology should
be applied to crop improvement strategies in order to increase
the abiotic stress tolerance of crops. It is hypothesized that these
approaches would generate agronomically useful germplasm with
greater speed and precision than classical breeding (Moose and
Mumm, 2008; Tester and Langridge, 2010). The first step in any
molecular breeding strategy involves defining a suite of candidate
genes that possess molecular functions that will enhance the stress
tolerance. To date, this has been the rationale of many plant pro-
teomics studies carried out in a wide range of important crop
plants. Here, we will critically assess the current state of crop pro-
teomics research and its progress toward the aim of novel gene
discovery for abiotic stress tolerance. We will propose a workflow
that combines laboratory-based discovery proteomics followed by

selected reaction monitoring (SRM) mass spectrometry (MS) of
field-grown plants, with the aim of convincing readers that such an
approach could contribute more relevant information to advance
both gene discovery and gene evaluation for crop improvement
programs (Figure 1).

A CRITIQUE OF PROTEOMIC INVESTIGATIONS INTO ABIOTIC
STRESS TOLERANCE IN PLANTS
Cellular physiology is underpinned by the composition and func-
tion of the proteome, and the power of proteomics techniques
lies in their ability to quantitatively analyze large numbers of pro-
teins in parallel, providing rich sets of information with which
to explain the molecular mechanisms that underpin cellular func-
tion. The plant proteomics literature is characterized by two major
threads. The first is the descriptive cataloging of which proteins
are expressed in which tissue (Baerenfaller et al., 2011; Lee et al.,
2012), localized to which organelle (Heazlewood et al., 2007; Eubel
et al., 2008; Taylor et al., 2011), or bound within which protein
complex (Remmerie et al., 2011). The second thread is made up
of comparative studies that identify differences in protein profiles
between tolerant versus sensitive genotypes (Vincent et al., 2007;
Jacoby et al., 2010; Pang et al., 2010), or between control plants and
plants exposed to environmental stress conditions (Taylor et al.,
2005; Kosova et al., 2011). The results from comparative studies
are framed as gene discovery exercises, where proteins induced by
stress or proteins of higher abundance in the tolerant genotype are
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FIGURE 1 | Proposed workflow that combines laboratory-based discovery proteomics followed by selected reaction monitoring mass spectrometry

of field-grown plants to gain more relevant information to advance both gene discovery and gene evaluation for crop improvement programs.
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positioned as logical candidates for improving stress tolerance in
crops, particularly when their molecular functions involve stress
related processes such as redox defense or signal transduction.
The information gathered by proteomic studies of these kinds
has increased the scientific understanding of plant biology, with
the results from descriptive proteomic studies being particularly
valuable for accurately defining expression profiles across tissue
and the subcellular localizations of proteins, while the results of
the control versus stress experiments have defined many proteins
which are induced in response to stress, significantly increasing our
knowledge of how cellular physiology responds to environmental
challenge.

However, the value of the above mentioned approaches as
gene discovery and ranking strategies for future crop improve-
ment is less clear. Many limitations of the approach and results
derived from these experiments must be taken into account before
committing to pursue any one protein in a molecular breeding
program. First is the common observation that a small subset
of the stress responsive proteins are repeatedly identified across
a number of different stress experiments, the so called “déjà vu”
phenomenon (Petrak et al., 2008). While these proteins undoubt-
edly play a role in stress response and will be consistently expressed
under a wide range of stresses, and their repeated identification
might be seen as evidence of their high value, it is likely they
will be poor candidate genes for crop improvement, as it is likely
that elite agronomic varieties will already increase expression of
these proteins in response to stress due to their generalized stress
responsiveness. Rather, it is the rarely observed changes in spe-
cific experiments that likely hold the key as useful gene traits. A
second criticism is the common focus in proteomics papers on
the proteins that increased in abundance, over and above those
that decreased, and the ranking of fold changes as a proxy for
importance. Given the diverse impact of changing the abundance
of protein in the control of biochemical pathways, small changes
can have large effects and large changes can have small effects,
depending very much on the protein in question and its tissue
distribution. A third criticism concerns the choice of genotypes
and growth conditions used to generate tissue for many of these
proteomics studies. To date, proteomics researchers have only
sampled a very small portion of the wide diversity that exists
between crop varieties, with many experiments repeatedly doc-
umenting the stress responses of reference genotypes (e.g., rice
cv. Nipponbare, wheat cv. Chinese Spring, barley cv. Golden
Promise), which are genetically well characterized, amenable
to genetic transformation and have extensive genome sequence
resources needed for proteomics identifications, but often show
poor agronomic performance. The current focus upon this nar-
row range of germplasm may limit the range of physiological
coping strategies that are being documented. Arguably, this may
make the discovery of novel physiological coping strategies rare
rather than common events in laboratory settings. More events
might be found by analyzing the proteomic responses of diverse
varieties adapted to a wider range of environments (Glaszmann
et al., 2010). Fourthly, and somewhat similarly to the criticisms
leveled at the diversity of genotypes used in studies, there is an
obvious difference in timing, severity, and multiplicity of stress
responses in plants growth in controlled environments chambers

versus crops sown in the field. Most stress proteomic studies ana-
lyze the protein expression profiles of plants treated with one single
stress under tightly controlled environment growth conditions,
with only a smaller number of studies considering two or more
stresses, but this contrasts with field-grown plants that will much
more routinely experience numerous stresses of varying intensi-
ties, which often occur simultaneously (Mittler and Blumwald,
2010). The role of the field environment is particularly impor-
tant in eliciting genotype × treatment (G × T) interactions, as
it has been shown that certain genotypic differences in abiotic
stress tolerance only manifest under field conditions (Richards
et al., 2010; Tavakkoli et al., 2012). Of course, there are a num-
ber of sound reasons which have led proteomics researchers to
generate tissue under controlled conditions, such as phenotypic
reproducibility, the demand for sufficient quantities of homoge-
neous tissue, and proximity to laboratory facilities. Furthermore,
it is very challenging to conduct reproducible stress treatments in
the field to define clear protein targets against a changing back-
ground, due to spatial and temporal variations in climate and
soils.

We propose that controlled environment experiments that
attempt to mimic field conditions are best framed as a starting
point to identify proteins of interest. The results of these studies
then need to be added together and explored more widely by sub-
sequent profiling experiments conducted under field conditions
in the target environment, to determine which, if any, of the favor-
able molecular mechanisms uncovered in the laboratory hold true
in the target environment and what are the relationships between
them.

SELECTED REACTION MONITORING MASS SPECTROMETRY
AS A MEANS TO PROFILE THE MOLECULAR MECHANISMS
THAT UNDERPIN ABIOTIC STRESS TOLERANCE OF CROPS
IN THE FIELD
The ongoing advancement of MS instrumentation and approaches
such as sequential window acquisition of all theoretical fragment-
ion spectra (SWATH; Gillet et al., 2012) enable current researchers
to employ a wider range of methodological approaches. However,
these new technologies should not be applied indiscriminately, as
it is important to accurately match enhanced technical capabilities
and knowledge of their limitations against a relevant biologi-
cal question in order to generate novel and applicable scientific
insights. Here we propose that the emerging plant proteomics
application of peptide SRM is well suited to dissecting the molec-
ular mechanisms that underpin phenotypic performance of crop
plants in the field. To date this approach has been used to char-
acterize sucrose synthase isoforms and N-metabolism enzymes
in Medicago (Wienkoop et al., 2008), a basic amino acid carrier
involved in arginine metabolism in rice (Taylor et al., 2010) and
the plasma membrane transportome in Arabidopsis (Monneuse
et al., 2011). A number of technical challenges are associated with
the establishment of SRM approaches and these have been covered
in detail in recent reviews (Picotti and Aebersold, 2012; Thompson
et al., 2012). Some of these challenges are particularly pertinent in
experiments planned in crop plants. For example it is imperative to
determining the uniqueness of a peptide sequence, as valid results
are not possible when a peptide used for quantitation is present in
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more that one protein. In species with well-characterized genomes
such as Arabidopsis or rice, this can be overcome with com-
putational analysis (Rost et al., 2012). Generally the longer the
peptide the more likely it is to be unique. However, in crop plants
this remains a challenge, as without complete genome sequences
confidence in a peptide’s uniqueness would be limited. Further
issues arise when attempting to distinguish between splice vari-
ants of a gene or enzyme isoforms. In these cases, it is likely that
only very small regions of the proteins differ from one another
and thus a limited number of peptides may be available for
unique quantitation. Another level of complexity is introduced
by the presence of missed cleavages during enzymatic digestion
prior to triple-quadrupole (QqQ) MS and the presence of post-
translational modification (PTM) sites within peptides selected for
SRM. Overall much care must be taken when selecting peptides for
quantitation by SRM, particularly in crop plants with incomplete
genome sequences and limited knowledge on enzyme isoforms
and potential PTMs.

We will highlight the features of SRM that are well matched to
the types of biological questions currently being asked by pro-
teomics researchers who seek to define links between protein
abundance and abiotic stress tolerance. Firstly the use of a QqQ
MS and the implementation of the first quadrupole as a mass filter
provides a very high degree of specificity that enables the selec-
tive fragmentation and accurate quantitation of peptides with a
wide dynamic range, thus enabling low abundance peptides to
be detected against complex backgrounds. This feature is advan-
tageous for proteomic analyses of field-grown leaf tissue, where
the high abundance of photosynthetic proteins relative to other
cellular components means that any analytical technique must be
applicable across a large dynamic range. Secondly, SRM method-
ologies involve the QqQ MS cycling through a pre-defined list
of SRM transitions, which ensures that the abundance of each
specified peptide will be measured provided it is present in the
sample. This contrasts against the “patchy” nature of shotgun pro-
teomics methodologies, where stochastic elements dictate which
proteins are documented in any give run, meaning that proteins
of biological interest may escape detection across different runs
due to random processes. This particular strength of SRM is well
matched to the purpose of biomarker validation studies in crops,
where the aim is to assess whether the abundance of a specific
protein or proteins is correlated to stress tolerance across a given
set of genetic material in real field stress scenarios. The data gen-
erated by a controlled environment experiment would thus link
the abundance of a particular protein to stress tolerance, and the
follow-up experiment would involve profiling the abundance of
that protein across a large number of field-grown leaf samples to
determine the strength and relevance of the correlation. Thirdly,
SRM MS coupled to high-performance liquid chromatography
(HPLC) is highly suited to high sample throughput of a wider
group or groups of proteins in a single analytical run, thus enabling
a larger number of data points on different proteins to be gath-
ered per unit of machine time. This is particularly useful for the
assessment of protein changes in field-grown crop plants where
the variation in the samples may be larger than those collected in
the controlled laboratory environment. This also allows the rela-
tionships between changes in the abundance of different proteins

to be explored in G × T datasets. Usually within the lab, power
analysis will reveal that three to five samples are sufficient for the
experiment to be informative and this number is amenable to
quantitative shotgun proteomic approaches. However, field analy-
sis may require >20 samples for the experiment to be informative
and this would led to prohibitively expensive and time-consuming
analysis by shotgun proteomic approaches. In these circumstances
SRM MS approaches provide an opportunity to quantitate a select
group or groups of proteins from a larger number of samples
relativity cheaply and quickly. For instance, research suggest that
the proteins involved in reactive oxygen species (ROS) detoxi-
fication are strongly linked to abiotic stress tolerance (Gill and
Tuteja, 2010), but a full understanding of this link is compli-
cated by the fact that the ROS detoxification network in plants
involves many proteins spread across numerous cellular compart-
ments (Mittler et al., 2004). Therefore, it can be argued that a
SRM MS approach may aid the investigation of which specific
ROS detoxification enzymes are causative in abiotic stress toler-
ance, as this approach would enable not only a large set of ROS
detoxification proteins to be profiled in parallel, but it could also
be assessed in a wide range of varieties with differing stress toler-
ance. This is more likely to reveal which specific components of
the large ROS detoxification network exhibit consistently higher
abundance values in tolerant genotypes than a shotgun proteomic
approach.

DESIRABLE RESOURCES FOR FUTURE SRM MASS
SPECTROMETRY STUDIES IN CROP PLANTS
The central difference between SRM MS approaches compared to
other proteomics methodologies is the necessity for prior knowl-
edge of proteotypic peptides derived from a protein of interest.
Therefore, the most pressing constraint upon SRM approaches in
crops is the lack of proteotypic peptides which can be used to quan-
tify proteins of interest in relevant species, meaning that the first
step in any SRM investigation involves a long period of library
generation, where discovery proteomics and database searching
are conducted to define high-quality peptides which are suitable
for subsequent SRM experiments. This contrasts with the cur-
rent state of the SRM field in other species, where for example the
SRMAtlas project is collating representative mass spectra for signa-
ture peptides derived from tens of thousands of proteins expressed
in human, yeast, and mouse (Picotti et al., 2008). This database
provides pre-written transition lists for profiling relevant proteins
and proteomes (i.e., disease biomarkers in human plasma, cen-
tral metabolic enzymes in yeast), which can be downloaded and
uploaded into the mass spectrometer’s control software without
the need for in-house optimization. The rate at which SRM MS
approaches are applied to crop plants would likely rapidly increase
if a publicly available database that provided high-quality proteo-
typic peptides and optimized multiplexed SRM transition lists to
the community was available.

Despite widespread interest in applying molecular techniques
to phenotyping crop plants, difficulties in sequencing the large
and complex genomes of many crop species have constrained the
power of proteomics applied to crops. DNA sequencing technolo-
gies are increasing the speed and decreasing the cost of sequencing,
with recent highlights being the generation of reference genomes
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for barley (Mayer et al., 2012) and tomato (Sato et al., 2012),
while rapid progress is being made on the complex wheat genome
(Berkman et al., 2012). There is wide variability in abiotic stress
tolerance between cultivars (Stone and Nicolas, 1994; James et al.,
2008), and different varieties of the same species often exhibit
considerable genetic divergence (Gepts, 2006; van de Wouw et al.,
2010), so it can be argued that one single “reference” genome per
species will not capture the inter-cultivar diversity at the molec-
ular level that manifests in varietal stress tolerance. Studies in
wheat cultivars have shown that searching MS results against
cultivar-specific sequence databases increases sequence coverage
and allows for identification of novel protein isoforms (Altenbach
et al., 2010). Therefore, it seems logical that SRM MS studies
focusing on varietal differences could derive novel information
by profiling the abundance of cultivar-specific protein isoforms,
particularly for isoforms of proteins which have been linked to abi-
otic stress tolerance in different varieties (Sule et al., 2004; Jacoby
et al., 2010). A number of initiatives are currently profiling genetic
diversity across different varieties of crops (McNally et al., 2009;
Lam et al., 2010), and it would be worthwhile for researchers
involved in SRM MS studies to develop transitions for the cultivar-
specific isoform variants that are documented by these sequencing
efforts.

Proteomics research is typically conducted by scientists trained
in the disciplines of biochemistry and molecular biology. Their
emphasis upon molecular mechanisms is indispensable for under-
standing the biological meaning of proteomics data. However,
due to the specialist knowledge and logistical difficulties inherent
in designing and conducting meaningful field experiments, pro-
teomics researchers will likely depend upon collaborations with
agriculturally focused researchers in order to access tissue grown
in the relevant field environment with appropriate spatial designs
and checks. Therefore, building effective collaborations across dis-
cipline boundaries is crucial for proteomics researchers who wish
to access field-grown material and contribute to crop breeding
programs. It can be argued that a mutual appreciation of clas-
sical plant physiology is the key bridge between molecular and
field researchers, as its emphasis upon dissecting a specific trait at
the single plant level is a logical convergence point for ideas and
hypotheses stemming from the two different scales (Passioura,

2010). For instance, breeders and agronomists might identify
that a given trait (i.e., transpiration efficiency, stem carbohydrate
remobilization) leads to a yield improvement under drought con-
ditions, while proteomics researchers can use SRM techniques to
investigate the protein abundance profiles of lines which carry this
trait, in order to define or validate the proteins that could then
serve as candidate genes for breeders. In this way the physiological
isolation of a trait which breeders deem to be worthwhile in the tar-
get environment can be positioned as a unifying framework which
can synthesize the results from molecular studies with agricultural
analyses of yield or quality.

CONCLUSION
As claimed by the introductory sections of many papers, as well
as preambles to many grant applications, the strategic endpoint of
much plant biology research at the molecular scale is to improve
the abiotic stress resistance of crop species. However, much of the
data produced by plant proteomics research is yet to be actually
evaluated for its use in directing breeding programs. Although the
initial identification of candidate proteins linked to stress toler-
ance will still utilize discovery proteomics workflows applied to
plants grown under controlled environment conditions in the lab,
the technical capabilities of SRM are a better match for validation
studies which aim to quantify the abundance of selected target pro-
teins. The ability of the SRM approach to accurately quantify the
abundance of a range of target proteins against complex cellular
backgrounds in a large number of field-grown samples is a key to
its applicability and value. Therefore, we argue that the judicious
development of this SRM approach will further our understand-
ing of the causative links between cellular composition and whole
plant stress tolerance, and bring the knowledge and skills of pro-
teomics researchers closer to the stated goal of crop improvement
for higher yields in harsh environments.
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