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The embryo and endosperm are the products of double fertilization and comprise the
clonally distinct products of angiosperm seed development. Recessive mutations in the
maize gene discolored1 (dsc1) condition inviable seed that are defective in both embryo
and endosperm development. Here, detailed phenotypic analyses illustrate that discol-
ored mutant kernels are able to establish, but fail to maintain, differentiated embryo, and
endosperm structures. Development of the discolored mutant embryo and endosperm
is normal albeit delayed, prior to the abortion and subsequent degeneration of all differ-
entiated kernel structures. Using a genomic fragment that was previously isolated by
transposon tagging, the full length dsc1 transcript is identified and shown to encode
an ADP-ribosylation factor-GTPase activating protein (ARF-GAP) that co-localizes with the
trans-Golgi network/early endosomes and the plasma membrane during transient expres-
sion assays in N. benthamiana leaves. DSC1 function during endomembrane trafficking
and the maintenance of maize kernel differentiation is discussed.
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INTRODUCTION
The maize kernel is a single-seeded fruit composed of the triploid
endosperm, the diploid embryo, and the maternally derived peri-
carp, pedicel, and placenta. At maturity the maize embryo com-
prises a primary root axis and a relatively precocious shoot
axis that may develop up to six leaf primordia. During ger-
mination the endosperm nurtures the embryo as it matures
into a seedling. Development of the clonally distinct endosperm
and embryo ensues following double fertilization of the female
gametophyte. The fertilized central cell gives rise to the triploid
endosperm, which becomes cellularized 4 days after pollination
(DAP; Olsen, 2001). Four distinct structures differentiate to form
the maize endosperm, and include: the basal endosperm trans-
fer layer (BETL); the embryo surrounding region (ESR); the
starchy endosperm; and the aleurone. Developing at the base
of the kernel, the BETL facilitates the transfer of maternally
derived nutrients and photosynthates from the placenta into the
developing endosperm (Brink and Cooper, 1947; Kiesselbach and
Walker, 1952). A distinguishing feature of the BETL is cell wall
projections that increase the surface area of the plasma mem-
brane, and thus facilitate the transport function of these cells
(Thompson et al., 2001). The ESR forms around the earliest-
staged embryo (the proembryo) and has a predicted signaling
function between the embryo and the early endosperm com-
partments but is not present in the mature endosperm (Schel
et al., 1984; Opsahl-Ferstad et al., 1997). Functioning as energy
reserves, starchy endosperm cells accumulate starch and proteins
that will nurture development of the germinating seedling (Duvik,

1961). Cuboidal-shaped aleurone cells form a single-cell layer
that encompasses the starchy endosperm; during germination the
aleurone functions to digest the stored energy reserves in the
kernel (Becraft and Yi, 2011). Aleurone cells are clonally related
to the starchy endosperm and can re-differentiate into starchy
endosperm in the absence of an as yet unidentified signal that
is required to maintain aleurone-specific cell fate (Becraft and
Asuncion-Crabb, 2000).

The diploid embryo is derived from the fertilized egg cell, and
at maturity is composed of the shoot and root apical meristems,
the scutellum, five to six foliar leaves protected by the sheathing
coleoptile, and a primary root protected by the sheathing cole-
orhiza (Abbe and Stein, 1954). Landmark events during embryo
development (Kaplan and Cooke, 1997) include formation of the
pre-meristematic embryo proper, the establishment of the shoot
apical meristem (SAM), and the elaboration of three distinct vari-
eties of shoot lateral organs (the scutellum, the coleoptile, and
foliar leaves). Historically, these key events in maize embryo devel-
opment have been described in nine discrete stages (Abbe and
Stein, 1954) and include: (1) the proembryo, before the meristem
is formed; (2) the transition stage, when the SAM is established;
(3) the coleoptile stage, after the SAM has formed and initiates the
coleoptile; and (4) stages L1-L6, wherein the SAM initiates up to
six foliar leaves (Abbe and Stein, 1954; Poethig et al., 1986).

Defective kernel (dek) mutations condition defects in both
embryo and endosperm development, and thus are useful genetic
tools to study kernel development (Neuffer and Sheridan, 1980;
Scanlon et al., 1994). Several dek mutants have shared defects in
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embryonic epidermal patterning and in the maintenance of the
endosperm aleurone layer (Becraft et al., 1996, 2002; Becraft and
Asuncion-Crabb, 2000; Kessler et al., 2002; Lid et al., 2002; Shen
et al., 2003). Several genes underlying these dek mutations are
implicated to function in cell-to-cell signaling during endosperm
differentiation. Dek1 encodes a trans-membrane domain protein
with a cytoplasmic calpain-like protease (Lid et al., 2002), and cr4
encodes a tumor necrosis factor-like receptor kinase (Becraft et al.,
1996); both DEK1 and CR4 are required to maintain aleurone cell
fate. In contrast, sal1 functions to inhibit aleurone cell fate dur-
ing kernel development and encodes an E class vacuolar sorting
protein (Shen et al., 2003), which implicates an essential role for
endomembrane trafficking in endosperm differentiation.

Endomembrane vesicle trafficking involves the intracellular
and intercellular transport of cellular cargo, including proteins,
cell wall pectins, structural sterols, receptors, lipids, and signaling
molecules, from one membrane-bound compartment to another
(Cosgrove, 1997; Takai et al., 2001; Samaj et al., 2005). Vesicle
trafficking is regulated in part by the activity of ARF-GTPases,
which cycle between active and inactive forms that correlate
with vesicle formation and dissociation, respectively (Nie and
Randazzo, 2006). Active ARF-GTPases associate with GTP and
are membrane-bound during vesicle formation; inactive ARF-
GTPases associate with GDP in the cytosol and function dur-
ing vesicle dissociation. These cyclic activities of ARF-GTPases
are regulated by ADP-ribosylation factor-guanine exchange fac-
tors (ARF-GEFs) that catalyze the exchange of GDP for GTP,
and by ADP-ribosylation factor-GTPase activating proteins (ARF-
GAPs) that catalyze the subsequent hydrolysis of GTP-bound ARFs
(Chardin et al., 1996; Scheffzek et al., 1998; Goldberg, 1999). In
Arabidopsis, endomembrane cycling of the PINFORMED (PIN)
family of auxin efflux proteins requires the activities of both the
ARF-GEF GNOM/EMB30 (GN) and the ARF-GAP vascular net-
work defective3 (VAN3)/SCARFACE (SFC; Geldner et al., 2003;
Koizumi et al., 2005; Sieburth et al., 2006; Naramoto et al., 2010).
Mutations in GN and VAN3/SFC give rise to mutants that have
defects in embryo development or vascular differentiation, respec-
tively (Geldner et al., 2003; Koizumi et al., 2005; Sieburth et al.,
2006). ARF-GAP domain1 (AGD1), a second ACAP-type ARF-
GAP characterized in Arabidopsis, functions in signaling pathways
that remodel the actin cytoskeleton and direct membrane traffick-
ing to maintain polarized root hair growth (Yoo et al., 2008, 2012).
The characterization of these ARF-GAPs in Arabidopsis indicates
that there is a wide diversity of ACAP-type ARF-GAP function and
cargo specificity.

Previously, the maize dek mutation discolored1 (dsc1) was iden-
tified in a Mutator (Mu) transposon-mutagenized population
and named for the shrunken, brown phenotype of homozygous
mutant kernels (Scanlon et al., 1994). Recessive mutations in DSC1
condition inviable kernel phenotypes, and transposon-tagging
identified a Mu1-inserted genomic DNA fragment from the 5′
UTR region of the dsc1-Reference (dsc1-R) mutation (AF006498;
Scanlon and Myers, 1998). Herein, detailed phenotypic analy-
ses reveal that dsc1 mutant kernels are developmentally delayed
but undergo differentiation of embryo and endosperm struc-
tures, prior to kernel abortion and tissue degeneration. The full
length dsc1 transcript encodes a predicted ARF-GAP protein and

accumulates in kernels harvested after 6 DAP and in seedling
roots and shoots. Transient expression assays in N. benthamiana
leaf tissue show that YFP-tagged DSC1 proteins co-localize with
the trans-Golgi network/early endosomes and with the plasma
membrane. Taken together, these data reveal that DSC1 func-
tions in endomembrane trafficking between the trans-Golgi and
the plasma membrane, and is required for the maintenance of
differentiated cell types in the maize kernel.

MATERIALS AND METHODS
PLANT MATERIALS
The dsc1-R mutation arose from a Mu transposon line (Scanlon
et al., 1994) and was introgressed into a B73 background for at least
six generations before harvesting kernels used in phenotypic and
gene expression analyses. The dsc1-C06, dsc1-H02, and dsc1-B09
alleles were identified after screening the trait utility system for
corn (TUSC), a Mu transposon-mutagenized population (Meeley
and Briggs, 1995). Primers for this screen can be found in Table A1
in Appendix.

HISTOLOGICAL ANALYSES AND IN SITU HYBRIDIZATIONS
For histological analyses, wild type and discolored mutant kernels
were harvested 6 DAP to 20 DAP and fixed overnight in FAA (37%
formaldehyde: ethanol: glacial acetic acid: water at 10:50:5:35). The
kernels were dehydrated in an ethanol/tert -butyl alcohol series,
embedded in paraplast, and 10 μm thick sections were stained
with either safranin O-fast green or safranin O-orange G as pre-
viously described (Ruzin, 1999). For in situ hybridizations, wild
type and discolored mutant kernels were harvested 6 DAP to 20
DAP, fixed in FAA, dehydrated, embedded in paraplast, sectioned,
and hybridized with gene specific probes as previously described
(Jackson, 1991). Primers used to make probes can be found in
Table A1 in Appendix. All samples were imaged using the Zeiss
Axio Imager Z1-Apotome microscope (Thornwood, New York)
and Zeiss Axiovision release 4.6 software.

IDENTIFICATION OF THE FULL LENGTH dsc1 TRANSCRIPT AND GENE
EXPRESSION ANALYSIS
The Invitrogen Superscript III One Step RT-PCR Platinum Taq
HiFi kit was used to clone dsc1. Briefly, tissue segments includ-
ing the vegetative SAM were cut from 10 day old B73 seedlings.
Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen)
and poly(A) RNA was isolated by the Oligotex mRNA mini kit
(Qiagen). Primers, which can be found in Table A1 in Appendix,
were designed in the 5′ and 3′ ends of the predicted full length
transcript and RT-PCR was performed to generate the full length
dsc1 transcript. For analysis of gene expression using RT-PCR and
quantitative RT-PCR, total RNA was isolated from harvested wild
type kernels (6 DAP, 8 DAP, 12 DAP, 14 DAP, 16 DAP, 18 DAP)
and discolored mutant kernels (16 DAP). Dissected embryo and
endosperm tissue was flash frozen in liquid nitrogen and ground
in SDS extraction buffer as previously described (Prescott and
Martin, 1986) with some modifications. Following the five minute
incubation on ice with chloroform/isoamyl alcohol (24:1), sam-
ples were centrifuged for 10 min at 4˚C. After transferring the
aqueous phase to a new tube, 1 mL of TRIzol (Invitrogen) was
used to extract RNA following the manufacturer’s protocol. Total
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RNA was extracted from whole 14 day old seedlings and from the
upper third of the emerging leaf blade from 14 day old seedlings
grown on soil, and roots from 14 day old seedlings grown on
0.02% agar using TRIzol (Invitrogen) according to the manufac-
turer’s protocol. Superscript III (Invitrogen) was used to synthesize
cDNA from 1 μg of RNA treated with DNaseI (Invitrogen). SYBR-
green (Quanta) methodology combined with gene specific primers
(Table A1 in Appendix) as described in (Zhang et al., 2007) was
used in the quantitative RT-PCR analysis. Relative gene expres-
sion normalized to 18 s rRNA was determined using the 2−ΔΔCT

method as described in Livak and Schmittgen (2001).

TRANSIENT EXPRESSION ASSAYS
The Gateway Recombination Cloning System (Invitrogen) was
used to clone the DSC1 ORF into the pEarleyGate104 des-
tination vector as described (Earley et al., 2006). Details
about the organelle marker constructs are previously described
(Kohler et al., 1997; Boevink et al., 1998; Reisen and Han-
son, 2007; Geldner et al., 2009). Electroporation was used to
transform agrobacterium strain C58C1 with the N-terminal
35S-YFP<DSC1 fusion construct, the control construct (empty
pEarleyGate104 vector), and the organelle marker constructs
(35S-ERD2<GFP, 35S35SAMV-COXIV<GFP, 35S-DsRed<CAT,
UBQ10-mCherry<VTI12, UBQ10-mCherry<Got1p; Kohler et al.,
1997; Boevink et al., 1998; Reisen and Hanson, 2007; Geldner et al.,
2009). Transformants from individual construct lines were grown
overnight at 28˚C in 2 mL of LB medium containing 50 μg/mL
kanamycin and 5 μg/mL tetracycline. After centrifugation, the
cells were resuspended in 10 mM MgCl2 to an OD of 0.5 and
incubated at room temperature for 2–4 h. For localization of YFP-
tagged DSC1 and the control construct 35S-YFP, N. benthamiana
leaves were infiltrated as described in Goodin et al. (2002) and
observed using epifluorescence microscopy between 48 and 72 h
later. Images were obtained on the Zeiss Axio Imager Z1-Apotome
microscope (Thornwood, New York) and Zeiss Axiovision release
4.6 software. For co-localization assays, equal parts of the sus-
pensions transformed with each one of the five organelle markers
were individually mixed with the suspension transformed with
YFP-tagged DSC1 prior to incubation at room temperature. N.
benthamiana leaves were infiltrated as described in Goodin et al.
(2002) and observed using confocal microscopy between 48 and
72 h later. Imaging of fluorescent proteins was performed using a
Leica TCS-SP5 confocal microscope (Leica Microsystems, Exton,
PA, USA) using either 10× or 40× objectives (NA 0.4 or 0.85,
respectively). Images were obtained sequentially to separate signal
from the two channels and were later superimposed. Time lapse
series were collected non-sequentially. All images were taken using
either a blue argon ion laser (Ar) or a diode pumped solid state
laser (DPSS). Excitation and emission parameters are presented in
Table A2 in Appendix. Leica LAS-AF software (version 1.8.2) was
used to process all images.

PIN1A TRANSPORT ASSAYS
Plants heterozygous for dsc1-R were crossed with ZmPIN1a∼YFP
transgenic individuals (Gallavotti et al., 2008). The resulting prog-
eny were planted, screened for the dsc1-R allele and YFP, grown
to maturity, and self-pollinated. Ears were harvested the same day

kernels were removed for live imaging. Embryos were dissected
and put on culture media as described in Scanlon et al. (1997).
A BFA (Sigma-Aldrich) stock solution was diluted in DMSO and
added to liquid culture media to make a final concentration of
100 μM BFA. Mock treatments were made by adding the same
amount of DMSO (minus BFA) to liquid culture media. Harvested
embryos were incubated in culture media containing BFA or the
mock treatment for at least 4 h before confocal microscopy image
analysis. Images were collected non-sequentially as described
above.

RESULTS
DSC1 IS REQUIRED TO MAINTAIN DIFFERENTIATION OF EMBRYO AND
ENDOSPERM STRUCTURES
Self-pollinated plants heterozygous for the dsc1-Rmutation seg-
regate mutant kernels with aberrations in both embryo and
endosperm development (Scanlon et al., 1994; Scanlon and Myers,
1998). Wild type kernels are yellow at 12 DAP, where upon discol-
ored mutant kernels are white and smaller than wild type siblings
(Figure 1A). Embryo structures are not discernible in mutant
kernels dissected after 18 DAP, and the reduced endosperm devel-
opment fails to fill the kernel space (Figures 1B,C; Scanlon et al.,
1994; Scanlon and Myers, 1998). At maturity, all discolored mutant
kernels are brown, misshapen, and embryo lethal (Figure 1D).

FIGURE 1 | dscl-R is a defective kernel mutation. Self-pollinated ear of a
Dscl/dscl-R heterozygous plant harvested at (A) 12 DAP segregating dscl-R
mutant kernels. Frontal view of (B) non-mutant sibling and (C) dscl-R
mutant kernels harvested at 18 DAR The outer layer is removed to reveal
the embryo and endosperm inside of the pericarp. (D) Ear harvested at 25
DAP segregating dscl-R mutant kernels. Arrows denote dscl-R mutant
kernels. DAP, days after pollination. Scale bars represent 1 mm.
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FIGURE 2 | Embryogenesis is delayed in dscl-R mutant embryos

prior to degeneration. Sagittal sections of (A–F) non-mutant and
(G–L) dscl-R mutant embryos harvested at 8 DAP (A,B,G,H), 12 DAP
(C,D,I,J), and 16 DAP (E,F,K,L) stained with Safranin-0 and Fast Green.
dscl-R mutants harvested at 20 DAP are degenerate (M–P). Images of
embryos in (B,D,F,H,J,L,N,P) are magnified from the whole kernel

images in (A,C,E,G,I,K,M,O), respectively. DAP, days after pollination;
ESR, embryo surrounding region; SE, starchy endosperm; Sc,
scutellum; C, coleoptile; 3, foliar leaf 3; 2, foliar leaf 2; 1, foliar leaf 1.
Arrow points to intact ESR in dscl mutant kernel. Scale bars in
(A,C,E,G,I,K,M,O) represent 500 um and in (B,D,F,H,J,L,N,P) represent
100 um.

Detailed phenotypic analyses of discolored mutant kernels har-
vested at different time-points following pollination show that
development of both the embryo and endosperm is normal, albeit
delayed, before eventual kernel abortion and tissue disintegra-
tion. For example, whereas late proembryo-staged embryos are
harvested from wild type embryos at 8 DAP (Figures 2A,B),
mutant embryos harvested from the same ear comprise far fewer
cells than wild type siblings and are still encased within the
ESR (Figures 2G,H). Wild type embryos harvested at 12 DAP
are in stage L2, having already elaborated the scutellum, the
coleoptile, and the first foliar leaf (Figures 2C,D). In contrast,
12 DAP discolored mutant sibling embryos are stalled at the
early transition stage (Figures 2I,J). Three foliar leaf primordia
(i.e., stage L3) are initiated in wild type embryos harvested at
16 DAP (Figures 2E,F), where upon discolored mutant embryos
exhibit a variable range of phenotypes, including embryos retarded
at stage L1(Figures 2K,L) and others in which identification
of embryo developmental stage is impossible owing to tissue

degeneration (Figures 2M–P). In agreement with the mutant
embryo phenotypes described above, molecular markers for shoot
meristem maintenance [knotted1(kn1)], vasculature development
[ran binding protein2(ranbp2)], and scutellum initiation [Zea
mays yabby14(zyb14)] showed normal transcript accumulation
in transition-staged discolored mutant embryos (Figures 3A–F;
Smith et al., 1995; Juarez et al., 2004). Likewise, degenerated later-
staged discolored mutant embryos do not accumulate kn1or zyb14
transcripts after 16 DAP (Figures 3G,H).

Similar to the development discolored mutant embryos, the
differentiation of aleurone, BETL, and starchy endosperm cell
types is also delayed and eventually aborted in discolored mutant
kernels. For example, all these endosperm-specific structures are
fully differentiated in 8 DAP wild type kernels. Aleurone cells
assume their distinctive cuboidal shape within a single layer sur-
rounding the perimeter of the starchy endosperm (Figure 4A),
and three layers of highly extended BETL cells develop in the
base of the endosperm, immediately juxtaposed to the maternally
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FIGURE 3 |Transcriptional markers illustrate that dscl-R mutants

develop a shoot meristem, vasculature, and initiate lateral organs.

Severe dscl-R mutants are not able to maintain a meristem and lateral
organ initiation. Sagittal sections of (A–C) non-mutant and (D–H) dscl-R
mutant embryos probed with knotted 1 (kn1; A,D,G), ran binding protein2
(ranbp2; B,E), and Zea mays yabby14 (zyb14; C,F,H). (A–F) Non-mutant and
dscl-R mutant embryos were harvested at different time-points to show the
same stage of embryo development. DAP, days after pollination. Scale bars
represent 100 um.

derived placenta (Figure 4B). In contrast, differentiated aleurone
cells are not identified in the discolored endosperm at 8 DAP
(Figure 4E), and just a single layer of BETL cells form at the
base of the mutant endosperm (Figure 4F). By 16 DAP how-
ever, both discolored mutant and wild type sibling kernels have
fully differentiated endosperm structures, including an anatomi-
cally distinct aleurone layer surrounding the enlarged, vacuolated
cells of the starchy endosperm, and a BETL comprising three cell
layers (Figures 4C,D,G,H). Finally, discolored mutant endosperm
development is again aberrant by 20 DAP, wherein undifferen-
tiated cells are observed within the mutant aleurone and BETL
layers and other cells are degenerated and of non-descript identity
(Figures 4I–L).

dsc1 ENCODES AN ADP-RIBOSYLATION FACTOR-GTPase ACTIVATING
PROTEIN
Previously, a 3,808 bp Mu1-inserted 5′ genomic fragment of the
dsc1 locus on chromosome 4S was identified by transposon-
tagging analysis of the dsc1-R mutation (Scanlon and Myers,1998).
Three additional Mu-insertion alleles of dsc1 (dsc1-H02, dsc1-C06,
and dsc1-B09) obtained from the TUSC (Meeley and Briggs, 1995)

failed to complement the dsc1-R mutation (Figure 5A), and thus
provided further confirmation that the dsc1 locus has been cloned.
Alignment of the ∼2.4 KB genomic DNA fragment of the dsc1
clone to the sequenced maize genome (MaizeSequence.org Release
5b.60; Schnable et al., 2009) identified the predicted full length
gene, the 2.472 KB full length transcript, the boundaries of the 17
predicted introns, and the 823 amino acid sequence of the pre-
dicted dsc1 gene product. The sequence of the dsc1 cDNA was
confirmed by RT-PCR using primers anchored within the dsc1-
R transposon-inserted genomic DNA fragment described above
(Figures 5A,B). PCR analyses utilizing dsc1gene-specific primers
(Table A1 in Appendix) and a primer targeted to the Mu trans-
poson termini (MuTIR; Table A1 in Appendix) identified the
Mu-insertion sites of the four dsc1 mutant alleles. As indicated in
Figure 5A, the dsc1-R and dsc1-H02 alleles harbor 5′ Mu transpo-
son insertions located 233 bp and 283 bp upstream of the dsc1start
codon, respectively. In contrast, the dsc1-C06 and dsc1-B09 alleles
contain Mu-insertions within the first intron, 284 bp and 250 bp
downstream from the DSC1 start codon. Notably, no exon inser-
tions were identified among our dsc1 mutant alleles. The predicted
823 amino acids of the DSC1 protein encode a putative ARF-GAP
protein comprising a BIN-amphiphysin-RVS (BAR) domain, a
pleckstrin homology motif, and two ankyrin repeats, in addition
to an ARF-GAP domain (Figure 5B). Both the BAR and pleck-
strin homology domains are implicated in membrane interactions
(Hurley, 2006), whereas ankyrin repeats are known to function in
protein-protein interactions (Inoue and Randazzo, 2007). ARF-
GAPs comprise a highly conserved group of proteins within the
eukaryotes, and function during the regulation of vesicle traf-
ficking (Vernoud et al., 2003; Jiang and Ramachandran, 2006;
Inoue and Randazzo, 2007). Taken together, the DSC1 protein is
predicted to function during endomembrane trafficking in maize.

A total of 43 predicted maize genes encode an ARF-GAP
domain, including dsc1 and a close paralog (95% nucleotide
identity/98% amino acid identity) located on chromosome 1
(GRMZM5G872204, designated here as dsc2). In adherence to
the mammalian classification system, nine predicted maize ARF-
GAP proteins (including DSC1 and DSC2) belong to the ACAP
subgroup, comprising ARF-GAPs that function during post-Golgi
transport (Jackson et al., 2000; Miura et al., 2002; Nie et al., 2003;
Randazzo and Hirsch, 2004). The ARF-GAP domain of DSC1
is homologous (66% identity) to that of the Arabidopsis pro-
tein VAN3 (Koizumi et al., 2005; Sieburth et al., 2006), which
regulates endomembrane trafficking of the auxin efflux protein
PIN1, although yet another maize ARF-GAP (GRMZM2G059225)
is more similar to VAN3 (69% identity). ClustalW alignments
of the ARF-GAP domains of DSC1, DSC2, VAN3, and a human
ACAP-type ARF-GAP (ACAP2) are shown in Figure 5C.

RT-PCR identified dsc1 transcript accumulation during multi-
ple stages of kernel development (6DAP, 8 DAP, 12 DAP, 14 DAP,
16 DAP, and 18 DAP) and in 14-day-old seedling shoots and roots,
but not in the fully differentiated distal tips of emerged seedling
leaves (Figure 6A). Notably, dsc1 transcript accumulation in 12
DAP, early transition-staged discolored mutant kernels is reduced
to less than 0.3 times the level found in wild-type transition-staged
seed harvested at 8 DAP (Figure 6B). Furthermore, transcripts of
the kernel patterning genes dek1 and cr4 both accumulate to less
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FIGURE 4 | Development of endosperm tissues is delayed in dscl-R

mutant kernels, prior to eventual tissue degeneration. Sagittal
sections of (A–D) non-mutant and (E–L) dscl-R mutant kernels
harvested at 8 DAP (A,B,E,F), 16DAP (C,D,G,H), and 20 DAP (I,L). (I)

The lack of staining due to the presence of dense cytoplasm and the
round cell morphology indicate that the aleurone layer has not fully
differentiated in this 20 DAP kernel. (J) The aleurone and the starchy
endosperm cells in this 20 DAP kernel have already degenerated. (K)

The arrow points to undifferentiated cells in the aleurone cell layer in
this kernel harvested 20 DAP. (L) The arrows point to misshapen basal
endosperm transfer layer cells that lack cell wall ingrowths at the base
of this 20 DAP kernel. All sections were stained with Safranin-0 and
Fast Green for the exception of (K), which is stained with Safranin-O
and Orange G. AL, aleurone; BETL, basal endosperm transfer layer;
DAP, days after pollination; PE, pericarp; PL, placenta; SE, starchy
endosperm. Scale bars represent 100 μm.

than 0.4 fold the level of wild type in transition-staged discolored
mutants, although accumulation of sal1 is not significantly altered
by the dsc1-R mutation (Figure 6B).

DSC1 CO-LOCALIZES WITH THE TRANS-GOLGI NETWORK/EARLY
ENDOSOMES AND THE PLASMA MEMBRANE
Yellow fluorescent protein (YFP)-tagged DSC1 constructs were
generated to determine the subcellular localization of DSC1
in the N. benthamiana leaf (Earley et al., 2006). Epifluores-
cence and confocal microscopic imaging of infiltrated transgenic
leaf sectors reveals35S-YFP<DSC1 accumulation within distinct
intracellular compartments, and as foci at the plasma mem-
brane (Figures 7A,D,G,J,M; Figures A1A,C and A2A,D,G in
Appendix). 35S-YFP<DSC1 labeled bodies also actively move
around the cell, as evidenced by time series taken of cells to
illustrate the intracellular movement of 35S-YFP-tagged DSC1

(Movie S1 in Supplementary Material). In contrast, N. benthami-
ana leaves expressing control 35S-YFP construct that lacked the
DSC1 open reading frame show fluorescent signal within the
nucleus, or dispersed within the cytoplasm (Figures A1E,G in
Appendix).

The lipophilic, styryl dye FM4-64 (Invitrogen) fluoresces in
hydrophobic environments, and is commonly utilized to trace
endocytotic activities in cells (Bolte et al., 2004). Once inter-
nalized FM4-64 labeled membranes successively co-localize with
the trans-Golgi network/early endosomes, prevacuolar compart-
ments, and ultimately with the tonoplast (vacuolar membrane;
Bolte et al., 2004; Geldner et al., 2009). Co-localization assays
with several organelle-specific markers and the endocytic tracer
FM4-64 were performed to identify more precisely the intra-
cellular localization of YFP-tagged DSC1 protein. These stud-
ies confirmed that 35S-YFP<DSC1does not co-localize with the
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FIGURE 5 | dscl encodes an ARF-GAP. (A) The full length dscl transcript
is 3.194 kb. Positions of Mu transposon insertions in individual dscl
mutant alleles with images of their kernel phenotypes from failed
complementation crosses are indicated. Hash marks denote unknown
lengths of genomic fragments. (B) The DSC1 protein comprises 823 amino
acids and is composed of a BAR, a PH, an ARF-GAP, and two ANKYRIN

domains. (C) ClustalW mediated amino acid alignment of the ARF-GAP of
DSC 1 with that of the two maize paralogs on chromosomes 1 (DSC2,
GRMZM5G872204) and 7 (GRMZM2G059225), the Arabidopsis protein
VAN3/SFC/AGD3 (NP196834), and ACAP2 (AAH60767) from Homo
sapiens. Amino acid percent identity to DSC1 ARF-GAP domain is in
parentheses.
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FIGURE 6 |Transcript accumulation of dscl . (A) RT-PCR of dscl
transcript accumulation in developing maize kernels (6–18 DAP), 14-day-old
seedlings, 14-day-old roots, and leaf blade tips. (B) qRT-PCR analysis of
dscl, dekl, cr4, and sall in 8 DAP non-mutant and dscl-R mutant

transition-staged kernels. Accumulation was normalized to 18S rRNA. Each
experiment utilized three biological replicates. Error bars denote SE.
Primers were designed to the 3′ end of the dscl transcript and can be
found inTable A1 in Appendix.

mitochondrial marker 35S35SAMV-COXIV<GFP, the peroxi-
some marker 35S-DsRed<catalase, auto-fluorescent chloroplasts,
the cis-Golgi marker 35S-ERD2<GFP; or with the Golgi stacks
marker UBQ10-mCherry<Got1p (Figures A2A–I in Appen-
dix; Figures 7A–F; Kohler et al., 1997; Boevink et al., 1998;
Reisen and Hanson, 2007; Geldner et al., 2009). However, in
some instances35S-YFP<DSC1 labeled bodies localize next to
the cis-Golgi and Golgi stacks markers (Figures 7A–F). Recur-
rently, 35S-YFP<DSC1 labeled bodies co-localize with the trans-
Golgi network/early endosome marker UBQ10-mCherry<VTI12
(Figures 7G–I), in addition toFM4-64 labeled intracellular com-
partments and the plasma membrane (Figures 7J–O; Geldner
et al., 2009). Taken together, the cellular mobility of YFP-tagged
DSC1 labeled compartments and their co-localization with both
FM4-64 and a marker for the trans-Golgi network/early endosome
illustrate that DSC1 functions in endomembrane trafficking.

ZmPIN1A ENDOMEMBRANE TRANSPORT IS NOT DISRUPTED IN
DISCOLORED MUTANT EMBRYOS
In Arabidopsis, the ARF-GAP VAN3 functions during the transport
of PIN1 from the plasma membrane to the recycling endosome
(Sieburth et al., 2006). YFP-tagged ZmPIN1a localization was
observed in wild type and discolored mutant embryos to deter-
mine if the endomembrane transport of ZmPIN1a is disrupted
by the dsc1-R mutation. ZmPIN1a<YFP localizes to the plasma
membrane in both mutant and non-mutant 14 DAP embryos
(Figures 8A–D). After treatment with Brefeldin A, which blocks
vesicle cycling from the endosome to the plasma membrane
(Steinmann et al., 1999; Geldner et al., 2001), ZmPIN1a<YFP
accumulates in endosomal compartments in both wild type and
discolored mutant embryos and no differences in size or number
of ZmPIN1a<YFP-tagged endosomal compartments are observed
(Figures 8E,F).
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FIGURE 7 |YFP-tagged DSC 1 in transient expression assays in

N. benthamiana leaves. (A,D) 35S-YFP<DSC1 bodies do not co-localize with
(B) cis-Golgi marker 35S-ERD2<GFP [(C), merged], or (E) the Golgi marker
UBQ10-mCherry<Gotlp [(F), merged]. (G,J,M) 35S-YFP<DSC1 bodies do
co-localize with some of the intracellular compartments labeled with (H) the

trans-Golgi/early endosomal marker UBQ10-mCherry<VTI12 [(I), merged] and
(K,N) the endocytic tracer FM4-64 in mesophyll and epidermal cells [(L,O),
merged]. Arrows point to compartments that co-localize with YFP-tagged
DSC1. Arrowheads point to YFP-tagged DSC1 compartments at the plasma
membrane. Scale bars represent 50 urn.

DISCUSSION
Defective kernel mutants are phenotypically variable (Sheridan
and Neuffer, 1980; Scanlon et al., 1994), such that the wide range
in developmental progression observed in the dsc1-R homozy-
gous mutant endosperm and embryo is not unusual, even after
more than six introgressions into the B73 inbred background.

Analyses of dsc1 transcript accumulation in equivalently staged
discolored mutant and wild type kernels reveal that dsc1 tran-
scripts are reduced in dsc1-Rmutants. Another previously reported
phenotype observed in maize dek mutants is the relatively nor-
mal, albeit retarded, embryo, and endosperm development of the
early-staged kernel, followed by kernel abortion and reabsorption
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FIGURE 8 | PINFORMEDla (PINla) endomembrane transport is not

disrupted in dscl-R mutant embryos. (A) YFP-tagged PPSTla
preferentially localizes at the plasma membrane in mock-treated (A,C)

non-mutant and (B,D) dscl-R mutant embryos. The coleoptiles imaged in
(C,D) are magnified from (A,B), respectively. YFP-tagged PIN la
accumulates internally after Brefeldin A (BFA) treatment of embryos in both
(E) non-mutant and (F) dscl-R mutant embryos. No difference in the shape
or number of BFA bodies in non-mutant and dscl mutant embryos is
observed. DAP, days after pollination; C, coleoptile; Sc, scutellum; BFA,
Brefeldin A. Scale bars represent 100 urn.

of most or all kernel tissues (Clark and Sheridan, 1988; Scan-
lon et al., 1997; Fu et al., 2002). In this way, discolored mutant
embryos initiate a SAM, vascular tissue, and a scutellum, whereas
some mutant embryos progress to the coleoptilar stage or stage L1
before embryo structures completely degenerate (Figures 2G–P).
Likewise, the discolored mutant endosperm forms at least some
fully differentiated BETL and aleurone cell types prior to kernel
abortion. The delay in discolored mutant endosperm development
is evidenced by the delay in forming the aleurone cell layer and the
presence of only one file of BETL cells (Figures 4E,F). dsc1and
dsc2display similar transcript accumulation patterns in previous
transcriptomic analyses performed on mixed maize tissues (Sen
et al., 2009; Sekhon et al., 2011); partial genetic redundancy of
these paralogous ACAP/ARF-GAP proteins early in kernel devel-
opment may explain why discolored mutant kernels can progress,

albeit at a retarded rate, through at least the first stages of kernel
development. Perhaps the most interesting and informative aspect
of the discolored mutant phenotype is the appearance of undif-
ferentiated cells in the aleurone cell layer, prior to kernel abortion,
and tissue degeneration (Figure 4K). This represents a mosaic
phenotype and a failure to complete differentiation of the aleu-
rone layer. This striking phenotype reaffirms the conclusions
drawn from previous mosaic analyses of maize kernel develop-
ment (Becraft and Asuncion-Crabb, 2000), in that determination
of endosperm cell fate requires a differentiation signal that must
be maintained until late stages in kernel development. Our data
also implicate a role for DSC1 in the maintenance of endosperm
cell fate.

In a heterologous transient expression system, the fluores-
cently tagged DSC1 protein exhibited intracellular motility and
localized to the plasma membrane as well as the trans-Golgi net-
work/early endosomes of N. benthamiana leaves (Figures 7G–O;
Movie 1). These data suggest that the DSC1 ARF-GAP protein reg-
ulates endomembrane transport of an unknown cargo between
the plasma membrane and the trans-Golgi network/early endo-
somes. Additional co-localization assays could be performed to
determine if DSC1 co-localizes with late endosomes or prevac-
uolar compartments. In addition, localization of ZmPINa<YFP
in maize embryos before and after Brefeldin A treatment reveals
that DSC1 is not required for trafficking of this auxin efflux trans-
porter from the plasma membrane to endosomal compartments.
Taken together, these data suggest that the DSC1 ARF-GAP regu-
lates transport of an unidentified cargo that is required to maintain
differentiation of maize kernel tissues. Interestingly, genetic data
suggest that SAL1, a class E vacuolar sorting protein, is antagonistic
to DEK and CR4, two maize proteins that were initially identified
in an intercellular signaling pathway required for the maintenance
of endosperm cell fate (Becraft and Asuncion-Crabb, 2000; Becraft
et al., 2002; Lid et al., 2002; Shen et al., 2003). However, no direct
interaction has yet been demonstrated. We show that DSC1 func-
tion is required for normal accumulation of dek1and cr4 mRNA,
although transcript accumulation of sal1 is not significantly dis-
rupted in discolored kernels (Figure 6B). These data suggest that
DSC1 either functions downstream of SAL1, or in an unrelated
signaling pathway. Likewise, these data are consistent with DSC1
function upstream of the CR4/DEK1 signal transduction pathway,
however no genetic or biochemical evidence of this interaction is
currently available. Our analyses of DSC1 further implicate a role
for endomembrane trafficking during maize kernel development,
and future studies will investigate the identity of the specific cargo
implicated during DSC1 function and its specific role in maize
kernel development.
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APPENDIX

Table A1 | Primers utilized in this study.

Gene name Accession Forward primer Reverse primer

IN SITU HYBRIDIZATION PROBES

knotted1 GRMZM2G017087 ACAAGGTGGGGGCACCA TCGGTCTCTCCTCCGCTA

Zea mays yabby14 GRMZM2G005353 CGACCTCACCGCACGGTCT GAGCTCCCTCCTGAGTTTGC

ran binding protein2 GRMZM2G094353 GAACAGGAAGCCAGGAGACT CAGTGCAAGTAGTTTTCGTAGGT

Gene name Forward primer Reverse primer

FULL LENGTHTRANSCRIPT

dsc1 CATGCATTTCGCCAAGCTCGATGACTCG GACCTCAATTTACTGAAGGTGCGGTTGC

Primer name Primer sequence

TUSC SCREEN

MuTIR AGAGAAGCCAACGCCAWCGCCTCY

DO146621 TCAACGCCTCAACCATACTCCCAGTTAC

DO146618 CTTCTTCTTCCCTCCCCGAACGAAG

Gene name Forward primer Reverse primer

RT-PCR/qRT-PCR

dsc1-RT-PCR CTTCACCACCTGTTGGAAGTCCTAGA TGCCATCTCTGCATGAACTCGTGCTA

actin TGTCAGGGACATCAAGGAA TGGCTGGAATAGAACCTCA

dsc1-qRT-PCR CAATCAATGGCGGAACAAG CCAAGAGTGCCTCGATTTA

18s rRNA CTGTCGGCCAAGGCTATAGACT TCTGTGATGCCCTTAGATGTTCTG

defective kernel1 TGGTTTTCGGAACTACCAAT TGTACCCTTTGGGATAAGGA

crinkly4 TCCTCTAACCACTCCTGCTC AGGTTCTCTTGTGGTGAAGC

supernumery aleurone1 ACCGAGCACATGAACTACCT GTCTCGGACATCTTCTGGAG

Gene name Forward primer Reverse primer

DSC1 SUBCELLULAR LOCALIZATION

dsc1 CACCATGCATTTCGCCAAGATCGAT TCTACTATGATCCTGTAATAACGCAAG

Table A2 | Confocal microscopy parameters.

Fluorescent protein Laser Excitation (nm) Emission range (nm) Additional fluorescent proteins used in assay Assay

GFP Ar 488 496 to 513 YFP/chlorophyll Transient expression

Chlorophyll Ar 488 672 to 690 GFP/YFP/DsRed Transient expression

Chlorophyll Ar 488 664 to 718 mCherry/FM4-64/YFP Transient expression

YFP Ar 488 526 to 609 GFP/chlorophyll Transient expression

YFP Ar 488 525 to 536 DsRed/chlorophyll Transient expression

YFP Ar 488 522 to 555 mCherry/FM4-64/chlorophyll Transient expression

YFP Ar 488 524 to 583 N/A PINI a transport

DsRed Ar 514 589 to 620 YFP/chlorophyll Transient expression

mCherry DPSS 561 582 to 632 YFP/chlorophyll Transient expression

FM4-64 DPSS 561 582 to 632 YFP/chlorophyll Transient expression
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FIGURE A1 | Subcellular localization ofYFP-tagged DSC1 and 35S-YFP

control construct. DSC1 localizes to punctate structures in (A) mesophyll
and (C) epidermal cells. The control construct has nucleo-cytoplasmic
localization in (E) mesophyll and (G) epidermal cells. (B,D,F,H) Bright field
images were taken of the cells located directly to the left. Images were
obtained using epifluorescence microscopy.
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FIGURE A2 |YFP-tagged DSC1 transient expression assays in

N. benthamiana. (A,D,G) 35S-YFP<DSC1 bodies do not
co-localize with (B) chlorophyll auto-fluorescence [(C), merged],
(E) the mitochondria marker 35S35SAMV-COXIV<GFP [(F),

merged], or (H) the peroxisome marker 35S-DsRed<catalase [(I),
merged]. Chlorophyll auto fluorescence is shown in each of the
merged images (C,F,I). Scale bars represent 50 μm. CHL,
chlorophyll.
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