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We demonstrate that the unique green algal iron assimilatory protein, FEA1, is able to
complement the Arabidopsis iron-transporter mutant, irt1, as well as enhance iron accu-
mulation in FEA1 expressing wild-type plants. Expression of the FEA1 protein reduced
iron-deficient growth phenotypes when plants were grown under iron limiting conditions
and enhanced iron accumulation up to fivefold relative to wild-type plants when grown
in iron sufficient media. Using yeast iron-uptake mutants, we demonstrate that the FEA1
protein specifically facilitates the uptake of the ferrous form of iron. Significantly, the FEA1
protein does not increase sensitivity to toxic concentrations of competing, non-ferrous
metals nor facilitate their (cadmium) accumulation. These results indicate that the FEA1
protein is iron specific consistent with the observation the FEA1 protein is overexpressed
in cadmium stressed algae presumably to facilitate iron uptake. We propose that the FEA1
iron assimilatory protein has ideal characteristics for the iron biofortification of crops and/or
for facilitated iron uptake in plants when they are grown in low iron, high pH soils, or soils
that may be contaminated with heavy metals.
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INTRODUCTION
Iron is essential for all living organisms and its deficiency is among
the most widespread human nutritional problems in the world.
Among the two billion anemic people worldwide approximately
50% of all anemia cases are attributed to Fe deficiency (Mason
et al., 2001). Globally, approximately 1.9 million disability adjusted
life years and over 100,000 deaths are attributed to iron malnutri-
tion (Caulfield et al., 2006). Often, subsistence farmers must rely
primarily on plant-based sources of iron in their diets. The iron
content of many plant-based foods may be insufficient to meet
dietary requirements, however.

Even though iron is one of the most abundant elements in the
earth’s crust, due to the low solubility of ferric iron it is consid-
ered as the third most limiting nutrient for plant growth (Grotz
and Guerinot, 2006). This poses a problem for plants since iron
is essential for a variety of metabolic processes (Hell and Stephan,
2003). Consequently, plants grown on calcareous (high pH) or
low iron soils have reduced growth (Marschner, 1995). Excess
iron can also be toxic to plants. The ferrous form of iron can
react spontaneously with hydrogen peroxide to produce damag-
ing oxygen radicals (Halliwell and Gutteridge, 1999). Since many
plants reduce ferric iron to ferrous iron to increase its solubility, the
uptake, and redox chemistry of iron must be highly regulated to
meet the metabolic demand for iron as well as limit iron-induced
damage to cells (Eide, 2000; Connolly and Guerinot, 2002; Curie
and Briat, 2003).

Plants have evolved two strategies to obtain iron from the soil
(Schmidt, 2003). The Strategy I mechanism used by all plants
except graminaceous plants includes: (1) ATP-dependent proton
extrusion to solubilize Fe(III), (2) reduction of the solubilized
Fe(III) to Fe(II) by membrane-bound ferric reductases, and (3)
transport of Fe(II) into the plant root cell by iron transporters fol-
lowing oxidation to Fe(III). It is well known that all these activities
are upregulated in roots under iron deficiency (Eide et al., 1996;
Robinson et al., 1999). Strategy II is a chelation-based approach
limited to graminaceous plants (Von Wiren et al., 1994; Mori,
1999; Curie et al., 2001). It has been found that rice plants utilize
both strategies for iron uptake in submerged growth conditions
(Ishimaru et al., 2006).

Among single celled eukaryotes, iron uptake is perhaps best
characterized in yeast (Saccharomyces cerevisiae; Askwith and
Kaplan, 1998). In yeast, iron is solubilized by reduction of ferric to
ferrous iron by ferric reductases, ferrous iron is then transported
across the plasma membrane by either high affinity transporters
(Fet3p/Ftr1p complex) or by low-affinity and low-specificity
transporters (Fet4). The high affinity iron transporter complex
includes the Fet3p protein, a multi-copper oxidase that oxidizes
Fe(II) to Fe(III). Ferric iron is then transported across the mem-
brane by the trivalent cation-specific permease, Ftr1p (De Silva
et al., 1995; Stearman et al., 1996). Similar iron transport strate-
gies are observed in fungi, bacteria, mammals, Chlamydomonas
reinhardtii, and plants (Askwith and Kaplan, 1997; Herbik et al.,
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2002; Huston et al., 2002; La Fontaine et al., 2002; Hoopes and
Dean, 2004). Yeast also utilizes low-affinity metal transporters
such as FET4 which transports ferrous iron (Dix et al., 1997).
In contrast to Ftr1p-mediated uptake, however, the low-affinity
iron transport pathway is Fet3p-independent. Thus, this pathway
can supply iron to the cell when Fet3p activity is absent (Hassett
et al., 2000).

More recently, iron uptake and homeostasis has been char-
acterized in single celled algae (Eckhardt and Buckhout, 1998;
Lynnes et al., 1998; Weger, 1999; Weger and Espie, 2000; Allen
et al., 2007; Chen et al., 2008; Long et al., 2008) and the associated
iron transporters and periplasmic ferric reductases have been cat-
aloged in Chlamydomonas (Merchant et al., 2007). The availability
of a Chlamydomonas genome sequence has led to the identification
of a number of metal transporters known from other organisms
(La Fontaine et al., 2002; Rosakis and Köster, 2004; Merchant et al.,
2007). Functional analysis based on the expression pattern of these
genes is underway (Rubinelli et al., 2002; Hanikenne et al., 2005;
Allen et al., 2007). One of the unique algal gene products involved
in iron uptake is the H43 or FEA1 protein. The H43 protein
(FEA1 is the homolog in Chlamydomonas reinhardtii) was shown
to be secreted into the periplasm of the green alga, Chlorococcum
littorale, during iron-deficient growth conditions (Sasaki et al.,
1998). Subsequently, a gene encoding a similar protein was dis-
covered in Chlamydomonas during a functional genomics analysis
of genes whose expression was upregulated by cadmium exposure
(Rubinelli et al., 2002). These studies demonstrated that FEA1
gene encodes an iron assimilation protein presumably function-
ing as an iron chaperonin that delivers iron to metal transporters
(Figure 1).

Recently, it was shown that the FEA1 protein is the major pro-
tein secreted into the periplasm by iron-deficient Chlamydomonas
and is expressed coordinately with the FRE (encoding a ferrireduc-
tase) and FOX1 (encoding a multi-copper oxidase) genes (Allen
et al., 2007). In this work, we demonstrate that the FEA1 protein
complements the Arabidopsis irt1, iron-uptake mutant indicating
that it is able to function in a variety of organisms. Additionally,
roots of transgenic Arabidopsis plants (complemented wild-type

FIGURE 1 | Hypothetical model of FEA1 iron assimilation in

Chlamydomonas reinhardtii. Available ferric iron is reduced to ferrous iron
by reductases (FRE1). FEA1 protein binds ferrous iron and facilitates uptake
by iron transporters.

plants) expressing the FEA1 protein show increased iron uptake
even when grown in iron-deficient media or at high pH, con-
ditions under which iron is very insoluble. We also show that
the FEA1 protein facilitates only ferrous iron uptake and does
not facilitate the uptake of other divalent metals even when
present in toxic concentrations indicating the FEA1 protein is iron
specific.

MATERIALS AND METHODS
CONSTRUCTION OF TI-PLASMID BINARY VECTOR AND PLANT
TRANSFORMATION
Plasmids used for transformation of wild-type Arabidopsis plants,
were made by cloning the Chlamydomonas reinhardtii FEA1 as
XhoI and Sst I fragments behind 2 × 35S (enhanced Cauliflower
mosaic virus) or patatin (potato, Solanum tuberosum L.) pro-
moter in pKYLX plasmid backbone. Agrobacterium-mediated
transformation of wild-type Arabidopsis plants (Columbia) was
accomplished using floral-dip method (Clough and Bent, 1998)
with Agrobacteria suspensions carrying the plasmid of choice.
T1 seeds obtained from self-fertilization of the primary trans-
formants were surface-sterilized and grown on Murashige and
Skoog (MS) medium supplemented with kanamycin (40 mg/L)
and vancomycin (500 mg/L). The antibiotic resistant plants were
transferred to soil and self-fertilized to obtain the T2 seeds and
was repeated to obtain T3 and T4 seeds. For transformation of the
Arabidopsis irt1 mutant (Arabidopsis Biological Resource Center,
Columbus, OH, USA), the FEA1 gene was cloned as SmaI and
Sst I fragments behind patatin promoter using vector pBI121 that
carried the kanamycin resistant gene.

PLANT GROWTH CONDITIONS
The seeds of wild-type Arabidopsis thaliana (ecotype Colum-
bia) were surface-sterilized, placed in the dark at 4˚C for 2 days,
and then sown on plates of MS medium (Sigma-Aldrich, St.
Louis, MO, USA) supplemented with 2% sucrose, 1 mM MES,
and 0.7% agar, pH 5.7. Transgenic plants were selected on
plates supplemented with kanamycin (40 μg/mL) and vancomycin
(500 μg/mL). Plates were incubated at 23˚C under constant illu-
mination for 10–14 days until they reached the four- to six-
true-leaf stage. Seedlings were then transferred to Metro-mix
or Fafard #2 potting soil (Conrad Fafard, Inc., Agawam, MA,
USA) after selection. T4 seedlings were transferred to either iron
sufficient [50 μM Fe(III)-EDTA] or iron-deficient {0 μM Fe(III)-
EDTA or 300 μM FerroZine [3-(2-pyridyl)-5,6-diphenyl-1,2,4-
triazine sulfonate]; Sigma-Aldrich, St. Louis, MO, USA} standard
MS plates.

RNA ANALYSIS OF TRANSGENIC PLANTS
Total RNA from leaves and roots of wild-type and FEA1 trans-
genic plants (both 35S and patatin promoter) was isolated using
the RNA-easy kit from Qiagen (Qiagen Inc., Valencia, CA, USA)
according to the manufacturer’s instructions. To remove conta-
minating genomic DNA, RNAs were treated with the DNAase I
(Promega, Madison, WI, USA) according to the manufacturer’s
instructions. The concentrations of RNAs were assessed using
a Nanodrop-2000C (Thermo-scientific, Wilmington, DE, USA)
according to the manufacturer’s instructions. DNase-treated RNA
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samples (0.5 μg) were reverse transcribed with an anchored oligo
(dT) primer and 200 units superscript II reverse transcriptase
(Invitrogen, Carlsbad, CA, USA) in a volume of 20 μl according to
the manufacturer’s instructions. The primers used for FEA1 detec-
tion were FEA1-F1 (5′-CAAGCCCGTCGCACAGTTAAC-3′) and
FEA1-R1, (5′-GCCTTGAAGTTGCGCAGCTTG-3′) amplifying
an 850 bp fragment. Actin was used as an internal control.

COTYLEDON EMERGENCE
Forty seeds each from wild-type and transgenic plants were
surfaced-sterilized and sown on plates that were either iron suf-
ficient [50 μM Fe(III)-EDTA] or iron-deficient [0 μM Fe(III)-
EDTA]. Cotyledon emergence at 23˚C under constant illumina-
tion was monitored for 10 days. Each value is the mean of three
experiments.

ROOT GROWTH ANALYSIS
Seeds from wild-type and transgenic plants were surfaced-
sterilized, placed in the dark at 4˚C for 2 days, and sown on MS
medium. After 9 days incubation at 23˚C under constant illumi-
nation, plants were transferred to large plates that were either iron
sufficient [50 μM Fe(III)-EDTA] or iron-deficient [0 μM Fe(III)-
EDTA]. Plates were placed in the growth chamber vertically so that
the roots grew down along the surface of the agar. Pictures were
taken at day 10.

pH DEPENDENT GROWTH ASSAY
The plants had been germinated and grown to four- to six-true-
leaf stage on MS medium, and transferred to either iron suffi-
cient [50 μM Fe(III)-EDTA] or iron-deficient {300 μM FerroZine
[3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine sulfonate]} plates for
3 days before the pH assay was performed. The localized pattern of
pH change around wild-type and transgenic roots was visualized
by placing seedlings on medium containing 0.2 mM CaSO4 and
the pH indicator Bromocresol Purple (0.006%, (w/v), solidified
with 0.7% (w/v) agar. The pH of the medium was adjusted to 6.0
with NaOH.

CHLOROPHYLL FLUORESCENCE ANALYSIS
Wild-type, IRT1, and transgenic seeds were surfaced-sterilized and
sown on plates that were either iron sufficient [50 μM Fe(III)-
EDTA] or iron-deficient [0 μM Fe(III)-EDTA]. After 2 weeks,
seedlings were subjected to 2 s of actinic light (sensitivity 70%,
irradiance 30%, electronic shutter at 500−1 or 30000−1 s) and the
chlorophyll fluorescence intensity was measured every 0.04 s for
5 s using a kinetic fluorescence CCD camera (Handy FluorCam
FC 1000-H; Photon system Instruments, Czech Republic). Each
curve represents a general pattern shared by multiple areas on
several seedlings of the same plant.

GROWTH AND MINERAL ANALYSIS IN ARABIDOPSIS
Both wild-type and transgenic Arabidopsis (35S: FEA1 and patatin:
FEA1, three independent lines for each) were grown with 0.072
M Fe (Sprint 330) for 48 days in hydroponics (as described by
Gibeaut et al., 1997). For pH experiments, the plants were also
grown in hydroponics and the pH was adjusted to 5, 7, and/or
8.5. The pH was checked and adjusted as needed each day dur-
ing the entire course of experiment. To remove extraplasmic

Fe, roots were washed with 5 mM sodium dithionite and 1.0 M
magnesium sulfate for 7 min, followed by a 5 min wash with
deionized water. Plant tissues were collected and dried for 48 h
in a 60˚C oven. Samples were sent to The Ohio State University,
Wooster (http://oardc.osu.edu/starlab/default.asp) for Inductively
Coupled Plasma-Mass Spectrometry analysis (ICP-MS).

CLONING INTO Δftr 1 STRAIN
Yeast strain BY4743Δftr1 (MATa/MATα, his3Δ1/his3Δ1, ura3Δ0/
ura3Δ0, leu2Δ0/leu2Δ0, lys2Δ0/ + , met15Δ0/+) was obtained
from Open Biosystems (Hunsville, AL, USA). The FEA1–Flag gene
fusion (in the pYES2 yeast expression vector) was constructed as
described in Rubinelli et al., 2002. The pYES2 vector contain-
ing FEA1 was transformed into the Δftr1 Saccharomyces cerevisiae
strain (BY4743) using a standard lithium acetate/heat shock pro-
tocol (Gietz and Schiestl, 1991; Adams et al., 1998). Transformants
were selected on synthetic complete–uracil (SC–URA) medium
supplemented with 2% (w/v) glucose at pH 3.5 (Q-BIOgene, Inc.),
and 100 μM FeSO4.Colonies that appeared after 3 days were ver-
ified for the presence of the FEA1 gene. FEA1 expression was
induced by 2% (w/v) galactose.

ASSESSMENT OF GROWTH OF THE Δftr 1 STRAIN
Δftr1 was transformed with either pYES2 or pYES2–FEA1 and
grown overnight in SC–URA media supplemented with 2% (w/v)
galactose at pH 3.5. Yeast transformations were generated by the
lithium acetate-based method (Gietz and Schiestl, 1991). Twenty
microliters of cells corresponding to a final OD600/mL of 0.1, 0.01,
or 0.001 was spotted on SC–URA medium supplemented with 2%
(w/v) galactose at pH 3.5.

IMMUNOBLOT ANALYSIS
Transformed yeast cells were grown overnight in SC–URA media
supplemented with 2% (w/v) galactose at pH 3.5. Equal amounts
of culture based on OD at 600 nm were harvested by centrifuga-
tion, washed once with water and resuspended in 100 μL of sample
buffer (0.06 M Tris–HCl, pH 6.8, 10% (v/v) glycerol, 2% (w/v)
SDS, 5% (v/v) 2-mercaptoethanol, 0.0025% (w/v) bromophenol
blue). Solubilized cells were heated at 95˚C for 5 min. Samples
were centrifuged for 30 s at 15,000 g to remove debris and 50 μl of
the sample was then separated by SDS-PAGE using 10% ready cast
gels (Bio-Rad, Hercules, CA, USA) at 20 mA for 3 h. Immunoblots
were performed according to the method of Rajamani (2006).
Membrane was immuno-detected with anti-FLAG M2-alkaline
phosphatase antibody.

ASSESSMENT OF METAL SENSITIVITY/TOXICITY
The sensitivity of Δftr1 yeast, transformed with either the pYES2
empty vector or pYES2:FEA1, to transition metals was tested in
SC–URA media containing 2% (w/v) galactose at pH 3.5 supple-
mented with various concentrations of cobalt, copper, manganese,
or zinc. Yeast cultures were grown in 25 mL of medium for 18 h
at 28 C. The cultures were then diluted to a starting concentra-
tion of 10 cells/mL in 12 mL of liquid medium supplemented
with the appropriate amount of transition metal. The cultures
were grown for 24 h at 28 C, and growth rates were monitored
spectrophotometrically at A600 nm.
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IRON DEPENDENT GROWTH ASSAY IN YEAST IRON UPTAKE MUTANTS
Δfer1fer2 reductase mutant yeast strains were kindly provided
by Caroline C. Philpott, NIH, MD, USA. The ferric reductase
mutant strain was transformed with either the pESC–LEU–FEA1
or the empty vector pESC–LEU (EV). Yeast transformations were
performed by the lithium acetate-based method (Gietz and Schi-
estl, 1991). Cultures were grown overnight on SD–LEU + 50 μM
FeCl3 and induced with SG–LEU (no iron added) for 16–18 h.
The optical density of the culture was adjusted to 0.1 and diluted
10 and 100 times. A small volume (5 μL) of each dilution was
spotted on plates containing synthetic defined SG–LEU media
containing 50 μM FeCl3 and SG–LEU media containing 50 μM
FeCl3 + 1.0 mM sodium ascorbate. Plates were grown at 28˚C for
2–3 days.

RNA EXTRACTION AND SEMI-QUANTITATIVE RT-PCR ANALYSIS
Total RNA was extracted from yeast cells using MasterPure™yeast
RNA Purification Kit (Epicenter Biotechnologies., Madison, WI,
USA) according to manufacturer’s instructions. cDNA was syn-
thesized from 1–2 μg total RNA using the first-strand synthe-
sis protocol with M-muLV reverse transcriptase (New England
BioLabs., MA, USA) according to manufacturer’s instructions.
Yeast actin gene Act1p (Accession number: NP_116614) was
used as internal control. RT-PCR primers for FEA1 (FEA1-F: 5′
GAGAGCGGCCGCAATGTCGGTCGGATTTC 3′ and FEA1-R: 5′
GAGAGAGCTC CGCAATGCTGCGCAGGGTCT 3′) and Act1p
(Actin-F: 5′ TCGAACAAGAAAT GCAAACCG 3′ and Actin-R:
5′ GGCAGATTCCAAACCCAAAAC 3′) were used. The reaction
mixture containing template, primers, buffer, dNTPs, and Taq

DNA polymerase was subjected to initial denaturation (94˚C) for
4 min, followed by repeated denaturation (94˚C) for 30 s, anneal-
ing (53˚C) for 30 s, and elongation (72˚C) for 1 min for a total of 35
cycles. Final elongation step was carried out at (72˚C) for 10 min.

IRON–CADMIUM COMPETITION EXPERIMENT
For iron-cadmium competition experiments,wild-type FET3FET4
(DY150; MATa/MATa ade2/+ can1his3 leu2 trp1 ura3), mutant
Δfet3fet4 (DEY1453; MATa/MATa ade2/+ can1 his3 leu2 trp1 ura3
fet3–2::HIS3 fet4–1::LEU2), and Δfet3fet4 yeast mutants trans-
formed with the pYES2:FEA1 were grown in SC–URA media
containing 2% (w/v) galactose at various concentrations of cad-
mium and iron. Yeast cultures were grown in 25 mL of medium
for 24 h at 28 C, and growth rates were monitored spectrophoto-
metrically at A600 nm. Yeast cells were washed with 5.0 mM sodium
dithionite and 1.0 mM EDTA, pH 8.0, followed by three washes of
distilled water. Samples are lyophilized and sent to The Ohio State
University, Wooster (http://oardc.osu.edu/starlab/default.asp) for
ICP-MS analysis.

RESULTS
FEA1 COMPLEMENTS THE ARABIDOPSIS irt1 MUTANT
The IRT1 protein is one of the essential metal transporters required
for iron transport into plant root hairs (Vert et al., 2002). To deter-
mine if the FEA1 protein facilitates iron assimilation in plants, the
Arabidopsis irt1 mutant (irt1-1) was transformed with the Chlamy-
domonas FEA1 gene. The FEA1 gene was expressed under control
of the patatin promoter (Figure 2A). As shown in Figures 2B,C,
the FEA1 gene was able to rescue the lethal irt1 mutant phenotype.

FIGURE 2 | FEA1 complements Arabidopsis irt1 mutant. (A) The T-DNA region pBI121 containing patatin promoter and FEA1 gene used in the
transformation of Arabidopsis mutant line irt1 (B) Growth of irt1 mutant and irt1 mutant and wild-type complemented with the FEA1 at the four- to six-true-leaf
stage (day 1), (C) day 5, (D) day 35.
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At the four- to six-true-leaf stage, FEA1 complemented irt1 plants
showed normal seedling size relative to wild-type plants while
the non-complemented irt1 mutant was stunted and chlorotic
(Figures 2B,C). At 5 weeks post germination, the FEA1 comple-
mented plants produced flowers and fully fertile siliques while the
non-complemented irt1 mutant failed to develop beyond the four-
to six-true-leaf stage (Figure 2D).

FEA1 TRANSGENIC PLANTS SHOW ENHANCED COTYLEDON
EMERGENCE
To examine further FEA1’s ability to facilitate iron uptake in planta,
we determined the phenotypic effects of expressing the FEA1
gene in wild-type Arabidopsis (ecotype Columbia) driven by the
patatin and the 2 × 35S promoter (Figure 3A). RT-PCR exper-
iments confirmed the expression of the FEA1 gene in leaf and
root tissues of transgenic plants (Figures 3B,C). Initially, germi-
nation rate and cotyledon emergence were evaluated. Seeds from
wild-type and transgenic FEA1 plants were sown on iron-deficient
[0 μM Fe(III)-EDTA] and iron sufficient [50 μM Fe(III)-EDTA]
medium. In both media, over 90% of the transgenic seeds had full
cotyledon emergence by day 5. However, cotyledon emergence
was not observed on day 5 for wild-type seeds and it was below

FIGURE 3 | RT-PCR analysis of expression in FEA1 transgenic plants.

(A) Modified pKYLX–FEA1 vector used for transformation of wild-type
Arabidopsis thaliana. Two separate plasmids were used for transforming
plants with the FEA1 gene driven by the 35S promoter (constitutive) and
patatin (storage organ) promoter. (B) RT-PCR analysis of FEA1 expression in
leaves of independent 2 × 35S–FEA1 transgenic plants. (C) RT-PCR analysis
of FEA1 expression in roots of independent patatin-FEA1 transgenic plants.

80% on day 6 when they were sown on iron-deficient media. All
plants had completed cotyledon emergence, however, by day 8
(Figures 4A–D).

FEA1 TRANSGENIC PLANTS EXPRESSES STRATEGY I RESPONSES
UNDER IRON-DEFICIENT GROWTH CONDITIONS
One indicator of iron deficiency is a proliferation of root hair
growth (Vert et al., 2002). Root hairs are the primary struc-
tures through which iron uptake takes place. To determine if
FEA1 transgenic wild-type plants were more efficient at iron
uptake, root hair growth of wild-type and FEA1 transgenic wild-
type plants was compared on iron sufficient or deficient media.
Wild-type plants grown under Fe-deficient conditions developed
more lateral root branches and root hairs than transgenic plants
(Figure 5A). At the root tip, extensive root hair formation was
observed for wild-type plants while transgenic plants had few
root hairs (Figure 5A). These results suggest that FEA1 transgenic
plants are more iron sufficient than wild-type plants grown under
limiting iron concentrations.

One of the major responses of Strategy I plants to iron defi-
ciency is acidification of the rhizosphere to solubilize iron (Yi
et al., 1994). To determine whether FEA1 transgenic wild-type
plants exhibited rhizosphere acidification plants were transferred
to iron-deficient media followed by transfer to iron-free media
containing the pH indicator Bromocresol purple. Roots of iron-
deficient wild-type plants reduced the pH of the medium to below
5.2, as indicated by the pH indicator color change from red to yel-
low. In contrast, iron sufficient plants and transgenic plants grown
on iron-deficient media did not acidify the medium (Figure 5B)
indicating that transgenic plants were iron sufficient. These results
suggest that expression of the FEA1 protein in wild-type plants
enhances their ability to take up iron.

Since iron is an essential cofactor of the photosynthetic electron
transfer chain, we hypothesized that FEA1 expression could com-
plement impairments in photosynthetic electron transfer when
wild-type plants were grown under iron-deficient growth con-
ditions. Seeds from FEA1 complemented irt1 plants and the
non-complemented irt1 mutants were grown on iron sufficient
medium for 2 weeks prior to measuring chlorophyll fluorescence
induction kinetics. These studies allow us to monitor potential
impairment in whole chain electron transfer processes including
non-photochemical quenching (NPQ) of chlorophyll fluorescence
associated with the generation of a sufficient proton gradient
(Müller et al., 2001). As shown in Figure 5C, the irt1 mutant
exhibited normal variable fluorescence (Fv = Fmax − Fo), how-
ever, after reaching Fmax the subsequent decrease in fluorescence
associated with NPQ was diminished in the irt1 mutant relative to
the FEA1 complemented mutant. These results indicate impair-
ment in the ability to generate a proton gradient sufficient to
induce NPQ in the irt1 mutant. We also measured chlorophyll flu-
orescence kinetics in wild-type, FEA1 complemented irt1mutants,
and patatin-FEA1 transgenic plants after 2 weeks growth on iron-
deficient [0 μM Fe(III)-EDTA] medium. Iron-deficient wild-type
plants exhibited a dramatic rise in chlorophyll fluorescence inten-
sity with no subsequent decrease (Figure 5D). In contrast, the
FEA1 transgenic wild-type and FEA1 complimented irt1 mutant
had near normal chlorophyll fluorescence kinetics demonstrating
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FIGURE 4 | FEA1 enhances cotyledon emergence from seeds. Time of
cotyledon emergence was scored on wild-type and transgenic seeds sown
on plates that were (A) iron-deficient [0 μM Fe(III)-EDTA] or (B) iron sufficient
[50 μM Fe(III)-EDTA]. (C) Visual representation of a plate showing cotyledon
emergence grown under iron-deficient [0 μM Fe(III)-EDTA] media at day 5. (D)

ImageJ based measurement of Arabidopsis cotyledon emergence grown
under iron sufficient [50 μM Fe(III)-EDTA] media at day 14. Surface area was
measured for 20 plants for each transgenic and wild-type line. Values for
wild-type were normalized to 1 and the fold increase for the transgenic plants
is shown.

the typical Kautsky curve (Figure 5D). These results demonstrate
that wild-type and irt1 mutants expressing the FEA1 protein had
enhanced photosynthetic ability when grown under iron-deficient
conditions unlike wild-type plants. The reduced ability to quench
maximum chlorophyll fluorescence may result from impairment
of electron transfer in the cytochrome b6f complex which has
multiple iron-containing redox-active cofactors.

FEA1 TRANSGENIC PLANTS SHOW INCREASED IRON
CONCENTRATIONS
To compare iron accumulation in wild-type and transgenic FEA1
lines, plants were grown hydroponically for 48 days. Roots, stem,
leaves, and floral buds were then harvested and used for ICP-
MS elemental analysis. Three independent transgenic lines for
each construct (35S:FEA1 and patatin: FEA1) were included in
the study. Results revealed a three to fivefold increase of Fe levels
in transgenic roots compared to wild-type roots (Figure 6A). No
significant differences were observed in the iron levels of leaves
between the transgenic and wild-type plants except for the C5
(patatin: FEA1) line which had a two-threefold increase in leaf
iron levels (Figure 6B). Similarly, no significant differences were
observed in the iron levels of stems and floral buds between the
FEA1 transgenics and wild-type plants (Figure 6B). Interestingly,
Zn concentrations in the roots were reduced in both 35S and
patatin-FEA1 transgenics relative to wild-type (Figure 6C). Zinc
concentrations in the leaves, stems, and floral buds were slightly

reduced in the transgenic plants when compared with the wild-
type, however, the differences were not significant (Figure 6D).
Manganese concentrations in transgenic roots were slightly ele-
vated when compared with the wild-type (Figure 6E), however,
manganese concentrations in the leaves, stems and floral buds were
reduced in the FEA1 transgenic plants when compared with the
wild-type (Figure 6F). Again, however, manganese levels were not
significantly different between transgenic and wild-type plants.
These results indicate that the impact of FEA1 expression is most
pronounced in roots actively involved in iron uptake.

Crops grown in high soil pH often have substantially impaired
growth due to iron deficiency (Marschner, 1995). We compared
the growth of wild-type and transgenic FEA1 plants grown at pHs
5, 7, and 8.5. As expected, all the plants grown at pH 5 and 7
were normal and healthy. Significantly, patatin-FEA1 transgenic
plants grew much better than the wild-type plants at high pH 8.5
(Figure 7A). There was also three to fourfold increase in iron lev-
els in the roots of 35S- and patatin-FEA1 transgenic plants relative
to wild-type plants at pH 8.5 (Figure 7B). Similar results were
observed for roots at other pH levels tested (Figure 7C). There
were no significant differences in leaf, stem and floral bud iron
concentrations between the transgenics and wild-type at different
pH levels (Figure 7C). These results indicate that the FEA1 iron
assimilatory protein functions well at high pH conditions and its
expression does not alter iron steady-state levels between different
plant organs.
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FIGURE 5 | FEA1 transgenic plants expresses strategy I responses

under iron-deficient growth conditions. (A) Lateral root branches of
wild-type and FEA1 transgenic plants grown in iron-deficient media.
Pictures were taken at day 10. (B) Iron deficiency induced acidification of
the rhizosphere in wild-type and FEA1 transgenic roots. (C) Chlorophyll

fluorescence induction kinetics of irt1 mutant and irt1 complemented
FEA1 seedlings sown on iron sufficient media for 2 weeks. (D)

Chlorophyll fluorescence induction kinetics of wild-type, irt1
complemented FEA1, and FEA1 transgenic seeds grown on
iron-deficient media for 2 weeks.

FEA1 PROTEIN FACILITATES UPTAKE OF FERROUS NOT FERRIC IRON IN
YEAST
To increase iron solubility strategy I plants and yeast reduce fer-
ric iron to more soluble ferrous iron. To determine which iron
valence state is utilized by FEA1, ferric, and ferrous iron depen-
dent growth in yeast ferric reductase mutants (Δfer1fer2) com-
plemented with the FEA1 gene was assessed. RT-PCR analysis
for the FEA1 transcript in yeast iron uptake mutants (Δfer1fer2)
transformed with pESC–LEU–FEA1 confirmed expression of the
transgene (Figure 8A). As shown in Figure 8B, the FEA1 transfor-
mants did not grow on media lacking sodium ascorbate [reduces
Fe(III) to Fe(II)] indicating the FEA1 protein does not facilitate fer-
ric iron uptake. On the contrary, yeast transformed with the FEA1
gene grew well with sodium ascorbate and ferric iron (Figure 8B).

FEA1 DOES NOT TRANSPORT NON-FERROUS METALS
Iron-deficient yeast strains (ftr1 and fet3 mutants) are particu-
larly sensitive to high concentrations of non-ferrous transitions

metals due to their facilitated uptake by the facultative over-
expression of the low-specificity iron transporter, Fet4p (Li and
Kaplan, 1998). When the ftr1mutant strain is grown under limiting
iron conditions the expression of the low-affinity, low-specificity
iron transporter, FET4, is induced. Under these conditions, ftr1
mutants become more sensitive to high concentrations of com-
peting metals including zinc, manganese, cobalt, or copper ions
due to their non-specific transport and accumulation in cells
mediated by the FET4 transporter. As shown in Figures 9A,B,
expression of the FEA1 gene in the yeast ftr1 iron permease mutant
(BY4743–Δftr1) complemented growth. To determine if expres-
sion of FEA1 protein ftr1 mutants altered sensitivity to competing
non-ferrous metals, iron-deficient cells were grown in the presence
of elevated concentrations of non-ferrous metals. We observed no
increased sensitivity to cadmium, cobalt, copper, zinc, or man-
ganese in transgenic cells expressing the FEA1 protein relative to
cells transformed with the empty vector. These results indicated
that the FEA1 protein did not facilitate transport of non-ferrous
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FIGURE 6 | FEA1 specifically increases root iron levels in transgenic

plants. (A) Iron levels in roots; (B) Iron levels in leaves, stems, and floral
buds; (C) Zinc levels in roots; (D) Zinc levels in leaves, stems, and floral
buds; (E) Manganese levels in roots; (F) Manganese levels in leaves,

stems, and floral buds. Values are the average of triplicates. Error bars
represent SE. The asterisk (*) indicates a statistically significant differences
between wild-type and transgenics, determined by Student’s t -test, with
P < 0.05.

metals under iron-deficient growth conditions (Figures 9C–F).
In fact, in some cases, growth inhibition by competing non-
ferrous metals was relieved FEA1 transgenics (see Figure 9D, for
example) presumably due to increased iron uptake. Overall, these
results indicate that the FEA1 protein facilitates uptake of only
ferrous iron.

THE FEA1 PROTEIN DOES NOT FACILITATE THE UPTAKE OF CADMIUM
To further test this hypothesis, we measured intracellular metal
concentrations in cells grown in the presence of toxic concentra-
tions of cadmium. Previously, we observed that the expression
of the FEA1 gene was induced in Chlamydomonas cells exposed
to high concentrations of cadmium (Rubinelli et al., 2002). We
hypothesized that FEA1 expression under these conditions facil-
itated iron uptake to repair proteins and enzymes poisoned by
cadmium. This hypothesis also implies that the FEA1 protein

does not facilitate transport of metals other than iron. To deter-
mine whether the FEA1 protein facilitated cadmium uptake,
we compared growth rates and metal content of the following
yeast strains grown at various ratios of iron and cadmium; (1)
yeast iron uptake mutants (Δfet3fet4), (2) FEA1 complemented
Δfet3fet4 mutants, and (3) the wild-type yeast. RT-PCR analy-
sis of Δfet3fet4 mutants transformed with pYES:FEA1 or with
empty vector indicated that the FEA1 transgene was actively
transcribed (Figure 10A). Significantly, the growth rate of the
FEA1 complemented Δfet3fet4 mutants was enhanced at all iron
concentrations tested relative to the empty vector transformed
mutant and wild-type (Figure 10B). Analyses of the iron con-
tent of FEA1 complemented mutants indicated that there was
greater iron accumulation in FEA1 expressing cell lines relative
to wild-type and Δfet3fet4 mutants (Figure 10C). Importantly,
there was no significant difference in cadmium content between
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FIGURE 7 | FEA1 facilitates iron uptake in Arabidopsis at high pH.

Wild-type and transgenic Arabidopsis plants were grown hydroponically on
0.072 M Fe (Sprint 330) until day 48. (A) Image of wild-type (WT) and
transgenic Arabidopsis plants grown at different pH levels (pH 5, 7, and 8.5).

(B) Iron concentration of roots. (C) Iron concentrations of stems, leaves, and
floral buds. Values are average of triplicates. Error bars represent SE. The
asterisk (*) indicates statistically significant differences between wild-type
and transgenics, determined by Student’s t -test, with P < 0.05.

FIGURE 8 | FEA1 protein facilitates uptake of ferrous iron in yeast. The
yeast ferric reductase (Δfer1fer2) mutant was transformed with the
pESC–LEU–FEA1 vector. (A) RT-PCR expression of FEA1 transgenic yeast.
Actin was used as an internal expression control. (B) Growth of yeast on
synthetic defined SG-LEU media containing 50 μM FeCl3 or SG-LEU media
containing 50 μM FeCl3 + 1 mM sodium ascorbate. Plates were grown at
28˚C for 2–3 days.

the FEA1 complemented lines and the wild-type (Figure 10D).
These results provide further evidence that the FEA1 protein is iron
specific.

DISCUSSION
FEA1 IS A NOVEL IRON SPECIFIC ASSIMILATORY PROTEIN
One of the unique features of the FEA1 protein is its high speci-
ficity for iron. We observed that the growth of yeast ftr1 mutants
complemented with FEA1 was not altered relative to empty vec-
tor transformants by potentially toxic concentrations of copper,
cobalt, zinc, or manganese (Figures 9C–F). These results suggest
that FEA1 protein does not facilitate transport of other transi-
tion metals. In addition, analyses of the cadmium content of
wild-type and FEA1 expressing transgenic yeast grown at vari-
ous iron and cadmium ratios revealed no difference in cadmium
content between strains expressing or not expressing the FEA1 pro-
tein (Figure 10D). These results are consistent with the previous
observations that cadmium induces FEA1 expression in Chlamy-
domonas presumably to facilitate iron uptake in the presence of
potentially competing toxic metals (Rubinelli et al., 2002).

In oxygenated aqueous solutions, iron exists primarily in the
ferric form and significant proportion is chelated by organic acids
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FIGURE 9 | FEA1 complements yeast Δftr1 mutant and is iron specific.

(A) Cells transformed with either the pYES2: vector, or with pYES2:FEA1
were grown in liquid SC-URA galactose (pH 3.5) medium overnight. Cells
equivalent to the indicated absorbance values at 600 nm were spotted on
SC-URA galactose (pH 3.5) plates. OD for the grown cultures was adjusted to
0.1 and diluted 10 and 100 times. The picture was taken after 72 h incubation
at 28 C. (B) Western blot of Flag-tagged FEA1 immuno-detected with
anti-FLAG M2-alkaline phosphatase antibody. The Coomassie-blue stained gel
is shown below the western blot to show equal loading of the protein.

Sensitivity to toxic metal concentrations: Yeast transformed with the pYES2
empty vector (unfilled columns) or the pYES2:FEA1 (filled columns) vector
were grown in SC-URA galactose (pH 3.5) for 18 h at 28 C and diluted to
10 cells/mL in fresh SC-URA galactose media (pH 3.5) supplemented with
various concentrations of (C) ZnCl2, (D) CoCl2, (E) MnSO4, and (F) CuSO4.
Growth was monitored after 24 h by measuring the absorbance of the culture
at 600 nm. Data are means + SE of three replicate experiments. The asterisk
(*) indicates statistically significant differences between pYES2 empty vector
and pYES2:FEA1 yeast as determined by Student’s t -test, with P < 0.05.

in different organisms (Morel et al., 2008). The redox state of
iron transported through the plasma membrane is still a major
dispute (Koropatkin et al., 2007; Badarau et al., 2008). Our results
demonstrate that FEA1 transports ferrous iron in yeast (Figure 8B)
These results are consistent with the observed co-expression of
ferric reductase (FRE) and FEA1 during iron-deficient growth in
Chlamydomonas (Allen et al., 2007).

FEA1 FUNCTIONS IN DICOTYLEDONOUS PLANTS
Significantly, the FEA1 iron assimilatory protein complements
Arabidopsis mutants impaired in iron uptake. The Arabidopsis irt1
mutant was fully rescued by complementation with the FEA1 gene

(Figure 2). In addition, full fertility was recovered in FEA1 com-
plemented irt1 mutants. FEA1 expressing plants produced normal
flowers, siliques, and seeds when production of these structures
has shown to be arrested in wild-type plants grown in low iron
(Waters et al., 2006). Earlier studies have shown that iron is essen-
tial in germination of nramp3 nramp4 double mutant plants. The
germination arrest of this mutant under low-Fe supply was res-
cued either by expression of the AtNRAMP3 or AtNRAMP4 genes,
or by supplying high Fe levels to the seedlings (Lanquar et al.,
2005). Both 35S and patatin-FEA1 transgenic plants also exhibited
rapid cotyledon emergence under both iron sufficient and defi-
cient growth conditions compared to wild-type plants suggesting

Frontiers in Plant Science | Plant Biotechnology October 2011 | Volume 2 | Article 67 | 10

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Biotechnology
http://www.frontiersin.org/Plant_Biotechnology/archive


Narayanan et al. FEA1 mediated iron uptake in plants

FIGURE 10 | FEA1 does not transport cadmium in transgenic yeast. (A)

RT-PCR analysis of FEA1 expression in Δfet3fet4 mutant yeast cells
transformed with pYES2:FEA1. Actin expression was used as an internal
control. (B) Growth rates of wild-type, iron uptake mutants (Δfet3fet4), and
mutants complemented with pYES2:FEA1. Cell were grown in SC-URA
medium containing 2% (w/v) galactose with various amounts (μM) of
cadmium and iron (C) ICP-MS analysis of iron concentrations normalized for
cell number. (D) ICP analysis of cadmium concentrations normalized for cell
number. Data are means + SE of three replicate experiments.

greater iron storage reserves or iron uptake efficiency in FEA1
transgenics (Figures 4A,B). During the first 2 days of seed ger-
mination, iron is mobilized from vacuoles. By the third day IRT1
expression increases rapidly (Lanquar et al., 2005). In the Ara-
bidopsis transgenics, FEA1 expression may have increased both
the initial iron supply as well as enhanced iron uptake by IRT1
(Figure 4C).

FEA1 TRANSGENIC PLANTS SHOWS IRON SUFFICIENT RESPONSE
One typical response to iron deficiency in plants is increased root
hair growth (Schmidt et al., 2000). Previous studies have clearly
indicated that lack of nutrients may increase in lateral root branch-
ing in plants (Linkohr et al., 2002). Moreover, IRT1 expression is
shown to be localized in the root hairs and epidermis of iron-
deficient plants (Vert et al., 2002). Lateral root branching and root
hair formation thus facilitates iron uptake, a default iron stress
response. The dense and extensive root hair formation in wild-type
roots grown under iron-deficient [0 μM Fe(III)-EDTA] medium
clearly demonstrated this iron stress response (Figure 5A). The fact
that FEA1 transgenic plants showed normal lateral root growth
and reduced root hair formation compared to wild-type plants
(Figure 5A) suggests that FEA1 protein facilitates iron uptake
and supplies adequate amounts of iron even under iron-deficient
conditions.

In addition to increasing lateral root branching and root hair
formation under low iron conditions, Strategy I plants also acidify
the rhizosphere through activation of aspecific plasma membrane
H+-ATPase in root epidermal cells (Vert et al., 2002; Curie and
Briat, 2003). Iron-deficient wild-type plants reduced the pH in
the medium whereas iron-deficient FEA1 transgenic plants did
not, a phenotype consistent with growth under iron sufficient

conditions (Figure 5B). The lack of a rhizosphere acidification
response under iron limited growth in FEA1 transgenic plants
indicated that the transgenic plants were able to take up iron
more efficiently than wild-type plants. When wild-type plants were
exhibiting iron stress responses, both 35S and patatin-FEA1 trans-
genic plants were still able to utilize trace amounts of iron from
the medium presumably due to facilitated iron assimilation by the
FEA1 protein (Figure 5B).

One of the physiological processes most sensitive to iron defi-
ciency is photosynthesis. The high abundance of redox-active iron
cofactors in the cytochrome b6f complex relative to other elec-
tron transfer complexes may impart a greater susceptibility to
iron depletion (Okegawa et al., 2005). Regulation of NPQ under
high light conditions requires a functional cytochrome b6f com-
plex to regulate chlorophyll fluorescence quenching by carotenoids
including zeaxanthin whose abundance increases at low-luminal
pH. The low luminal pH is generated in part by proton pump-
ing across the thylakoid membrane associated with an active
cytb6f complex. We have shown that the FEA1 complemented
irt1 plants grown on iron sufficient medium exhibited normal
variable chlorophyll fluorescence and a typical decline in fluores-
cence after reaching Fmax indicative of functional NPQ-mediated
energy quenching processes (Figure 5C). Significantly, when FEA1
complemented irt1 (irt1–FEA1) and FEA1 transgenic wild-type
plants (WT-FEA1) were grown on iron-deficient medium only
the FEA1 expressing wild-type plants exhibited normal chloro-
phyll fluorescence kinetics indicating that the FEA1 transgenic
wild-type plants had greater Cytb6f activity consistent with an
elevated iron status relative to wild-type plants when grown under
low iron conditions (Figure 5D).

FEA1 TRANSGENIC PLANTS HAVE INCREASED IRON CONCENTRATIONS
IN ROOTS
Mineral analysis of wild-type and transgenic FEA1 plants revealed
a three to fivefold increase in iron concentrations in both 35S:FEA1
and patatin: FEA1 roots relative to wild-type (Figure 6A) indi-
cating that the FEA1 facilitates iron uptake in plants Interest-
ingly, there was a slight reduction of zinc concentrations in
roots of the transgenic plants expressing the FEA1 protein dri-
ven by the 35S promoter relative to wild-type. In contrast, when
FEA1 was expressed in cassava roots using the patatin pro-
moter, there were no significant differences in zinc concentra-
tions in the roots between the wild-type and transgenic plants
(unpublished data).

Importantly, FEA1 expressing Arabidopsis plants exhibited
increased iron levels even when grown at high pHs, conditions
where iron is very insoluble (Figure 7B). It is well known that
most dicot plants reduce ferric iron to ferrous iron (Schmidt,
2003). Rice plants usually utilize strategy II mechanisms, but
recent reports indicate that transgenic rice plants expressing the
refre1/372 gene (yeast Fe3+ chelate-reductase gene) display toler-
ance to low-Fe availability in calcareous soils by enhancing Fe3+
chelate-reductase activity (Ishimaru et al., 2006). These transgenic
rice plants took up more ferrous iron than control plants under
Fe-deficient conditions, indicating that the transformants success-
fully reduced chelated Fe3+ to Fe2+ and took up Fe2+ by a Fe2+
transporter. We demonstrate that FEA1 transgenic plants exhibit
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enhanced tolerance to high pH environments presumably by an
analogous mechanism of facilitated ferrous iron uptake.

In summary, we have shown that the FEA1 assimilatory pro-
tein is functional in a diverse group of organisms including yeast
and Arabidopsis. FEA1 transgenic plants had three to fivefold
higher iron levels than wild-type plants and grew well under
iron-deficient conditions that impair the growth of wild-type Ara-
bidopsis. The high metal specificity and the ability to facilitate iron
uptake at high pH suggest that expression of the FEA1 protein
in plants may be an ideal strategy to increase iron uptake even

in soils with reduced iron levels or soils contaminated with toxic
heavy metals.
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