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Although plant metabolomics is largely carried out on Arabidopsis it is essentially genome-
independent, and thus potentially applicable to a wide range of species. However, transfer
between species, or even between different tissues of the same species, is not facile.
This is because the reliability of protocols for harvesting, handling and analysis depends
on the biological features and chemical composition of the plant tissue. In parallel with
the diversification of model species it is important to establish good handling and analytic
practice, in order to augment computational comparisons between tissues and species.
Liquid chromatography–mass spectrometry (LC–MS)-based metabolomics is one of the
powerful approaches for metabolite profiling. By using a combination of different extrac-
tion methods, separation columns, and ion detection, a very wide range of metabolites can
be analyzed. However, its application requires careful attention to exclude potential pitfalls,
including artifactual changes in metabolite levels during sample preparation under variations
of light or temperature and analytic errors due to ion suppression. Here we provide case
studies with two different LC–MS-based metabolomics platforms and four species (Ara-
bidopsis thaliana, Chlamydomonas reinhardtii, Solanum lycopersicum, and Oryza sativa)
that illustrate how such dangers can be detected and circumvented.
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INTRODUCTION
Plant metabolomics is a relatively new analytic strategy which
provides complementary information to transcriptomic and pro-
teomic studies as well as important information in its own right
concerning the regulation of metabolic networks (Hall et al., 2002;
Bino et al., 2004). Initial applications of metabolic profiling were
largely focused on the model plant Arabidopsis thaliana (von
Roepenack-Lahaye et al., 2004; Tohge et al., 2005; Gibon et al.,
2006; Trenkamp et al., 2009; Araujo et al., 2010; Kerwin et al.,
2011), however, several studies have been carried out on the green
algae Chlamydomonas reinhardtii (Giroud et al., 1988; Bolling and
Fiehn, 2005; May et al., 2008; Boyle and Morgan, 2009; Renberg
et al., 2010) with other successful applications being reported for
Catharanthus roseus (Rischer et al., 2006), Fragaria x ananassa
(Aharoni et al., 2000, 2002; Hanhineva et al., 2008), Hordeum
vulgare (Widodo Patterson et al., 2009), Medicago truncatula (Ach-
nine et al., 2005), Nicotiana tabacum (Goossens et al., 2003), Oryza
sativa (Albinsky et al., 2010), Perilla frutescens (Yamazaki et al.,
2008), Pisum sativum (Jom et al., 2010), and Solanum lycopersicum
(Schauer et al., 2005, 2006; Moco et al., 2006; Fraser et al., 2007)
as well as the unicellular prokaryotes Synechocystis sp. (Krall et al.,
2009) and the diatom Phaeodactylum tricornutum (Allen et al.,
2008).

Initially, the use of metabolic profiling in plants, as indeed in
all species, was restricted to diagnostic approaches in which the
obtained profiles were used as markers for a range of biological

conditions (Sauter et al., 1988; Meyer et al., 2007; Semel et al.,
2007; Carmo-Silva et al., 2009; Scherling et al., 2009; Widodo
Patterson et al., 2009). Although such studies remain highly impor-
tant, particularly in medical research (Nicholson and Wilson, 2003;
Griffin and Nicholls, 2006), more sophisticated uses of metabolic
profiling have recently been developed, including identifying regu-
lated enzymes and exploring the regulatory structure of pathways
(Tiessen et al., 2002; Arrivault et al., 2009), searching for unex-
pected effects of genetic manipulation (Catchpole et al., 2005),
screening wild species for beneficial chemical composition (Zhu
and Wang, 2000; El-Lithy et al., 2005), gaining a more comprehen-
sive view of metabolic regulation and as part of integrative analyses
for the systemic response of environmental genetic perturbations
(Hirai et al., 2004, 2005; Fukushima et al., 2009; Sulpice et al., 2009;
Trenkamp et al., 2009). In addition to these uses, metabolomics is
proving to be a powerful tool for gene functional annotation in
plants. There are now several examples of Arabidopsis genes that
have been identified with the help of metabolomic approaches
including MYB transcription factors (Hirai et al., 2007; Stracke
et al., 2007), O-methyltransferase (Tohge et al., 2007), glycosyl-
transferases (Tohge et al., 2005; Yonekura-Sakakibara et al., 2007,
2008), acyltransferases (Luo et al., 2007), UDP-rhamnose syn-
thase (Yonekura-Sakakibara et al., 2008), and pyrophosphorylase
(Okazaki et al., 2009) with the approach being equally effective in
other species (Aharoni et al., 2000; Goossens et al., 2003; Achnine
et al., 2005; Yamazaki et al., 2008).
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One advantage that metabolomics has over transcriptomics
[with the exception of next-generation sequencing tools, see Detlef
Weigels recent review (Schneeberger and Weigel, 2011)] and pro-
teomics is that it is essentially genome-independent (Stitt and
Fernie, 2003) and as such can be applied to a species whose genome
has not been sequenced as easily as those whose has. This “democ-
ratization” of biology allows in depth functional analyses of many
species for which a complete and fully annotated genome is not
yet available (Schneeberger and Weigel, 2011). Despite this fact
caution needs to be taken when adopting a method set up for one
tissue of one species to analyze another tissue of that species or even
another species. This is especially so for metabolite profiling. The
plant kingdom contains an incredibly rich chemical diversity (St-
Pierre and De Luca, 2000). It is obvious that this chemical diversity
poses a large challenge and stimulates research in developing new
and increasingly powerful approaches to separate,detect, and iden-
tify metabolites. However, it also raises important challenges for
experimental design, sample handling, and validation of analytic
procedures. This is because tissue composition affects the relia-
bility with which a particular metabolite can be reliably extracted
and analyzed. This problem is particularly acute when using liq-
uid chromatography–mass spectrometry (LC–MS) due to the so
called ion suppression effects wherein the composition of the
extract affects the efficiency of ionization of some of its constituent
analytes (Fernie et al., 2004). That said, a number of relatively
simple control tests, in combination with the growing number of
chemoinformatic tools for metabolomics (Tohge and Fernie, 2009;
Bais et al., 2010; Carroll et al., 2010; Cottret et al., 2010; Xia and
Wishart, 2010), should at least ameliorate this phenomenon and
hence facilitate high-quality translational metabolomics.

Driven by the increasing diversification of plant research away
from the principle model species A. thaliana we present here case
studies in which methods developed for this species are assessed
for use in determining metabolite levels either in the unicellular
algae C. reinhardtii or in the crop species rice and tomato. For
the former we assessed the analysis of primary metabolism using
an LC–MS/MS method developed to deliver validated measure-
ments of the levels of Calvin–Benson cycle intermediates, organic
acids, nucleotide-sugars, and nucleotides in Arabidopsis rosettes
(Arrivault et al., 2009). Given that information documenting the
transfer of gas chromatography–mass spectrometry (GC–MS)-
based methods of analysis of primary metabolites has already been
extensively supplied for potato and tomato (Roessner et al., 2001;
Roessner-Tunali et al., 2003), we chose crop species to focus our
studies on secondary metabolism. The two LC–MS-based methods
applied in this study complement standard and well-established
GC–MS methods by greatly increasing the range of metabolites
that can be analyzed.

Here some examples of how can be performed using two dif-
ferent LC–MS-based metabolomics platforms, on one algal and
two crop species and A. thaliana are shown. The combined results
illustrate important experimental controls which should be imple-
mented alongside computation algorithms in order to successfully
adapt protocols that have been established for another biological
system. This also applies to other LC–MS-based methods (Okazaki
et al., 2009; Kanno et al., 2010). We additionally discuss how such
studies could be used in conjuncture with novel tools for combined

sequence comparison and co-expression analysis (Mutwil et al.,
2011, and Ruprecht et al., this issue) in order to improve gene
functional predictions from Arabidopsis to crop species.

MATERIALS AND METHODS
CELL CULTURE AND EXTRACTION PROCEDURES
Chlamydomonas reinhardtii strain CC-1690 wild type mt+ was
acquired from the Chlamydomonas Genetics Center (Duke Uni-
versity, Durham, NC, USA). Single colonies were used to inoculate
the growth media containing 5 mM Hepes, 1 mM K-phosphates,
Beijerinck salts (final concentrations of 7.5 mM NH4Cl, 0.34 mM
CaCl2, 0.41 mM MgSO4) and trace salt solution (final concentra-
tions of 184 μM H3BO3, 77 μM ZnSO4, 26 μM MnCl2, 18 μM
FeSO4, 7 μM CoCl2, 6 μM CuSO4, 1 μM (NH4)6Mo7O24; Har-
ris, 1989; May et al., 2008; Kempa et al., 2009) at 25˚C under
constant illumination with 400 μmol photon m−2 s−1 and con-
tinuous shaking. The amount of NH4Cl was reduced to 4 mM
for the experiment shown in Figure 1 to reduce the impact of
ion suppression. Before harvesting, cells were grown to a density
of 3 × 106 cells ml−1 and dark-adapted for a minimum of 20 min
before transferring 1 ml of cells to a cuvette and exposed them
to 660 μmol photon m−2 s−1 under continuous stirring. Before
illumination and at different time points after illumination the
suspension was quenched by vigorously adding 2 ml of −70˚C
methanol (70%). The entire mix was then lyophilized to dryness
at −80˚C and extracted at 4˚C by a chloroform:methanol:water
(1:2:5 [v/v]) mixture. Water fractions of three subsequent washes
were collected, concentrated by lyophilization at −80˚C and fil-
tered before metabolite measurement (80 μl of extracted cul-
ture in 100 μl sample measured) by ion pair (reverse-phase)
chromatography triple quadrupole MS (IPC–MS/MS) detection.

PLANT MATERIALS AND EXTRACTION PROCEDURES
Arabidopsis thaliana ecotype Col-0 and S. lycopersicum (M82)
were grown in soil in a controlled environmental chamber (16 h
light/8 h dark photoperiod; 21˚C at 145 μmol photon m−2 s−1 and
25˚C at 500 μmol photon m−2 s−1, respectively). A. thaliana used
for recovery test was grown in general 1/2 MS agar plate in con-
trolled plant growth chamber (16 h light/8 h dark photoperiod;
21˚C). Rice (O. sativa, Nipponbare) seeds were pre-germinated in
tap water at 28˚C for 10 days. Plantlets were transferred to a con-
trolled growth chamber with 12 h day length at 700 μmol photon
m−2 s−1. Plant material was frozen in liquid nitrogen, ground into
powder and stored at −80˚C until use.

For assessment of ion suppression and recovery tests, extraction
for secondary metabolite profiling was conducted as described in
Tohge and Fernie (2010). Extraction buffer was added to reach
0.2 mg FW μl−1. To evaluate secondary metabolite degradation
due to enzymatic activities, four different extraction procedures
were carried out using aliquots of frozen powders from a pool of
plant materials from at least three plants: (a) extraction was con-
ducted as described in Tohge and Fernie, 2010; extraction buffer
was added to frozen material kept at liquid nitrogen temperature);
(b) extracts obtained by method (a) were incubated at 37˚C for 1 h,
(c) extraction buffer was immediately added to frozen material on
ice; (d) plant material was incubated at 37˚C for 1 h prior addition
of extraction buffer. To assess ion suppression in different plant
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FIGURE 1 | Example of rapid metabolic response by light and darkness.

Metabolites in Chlamydomonas reinhardtii CC-1690 were measured after
quenching in an excess of cold (−70˚C) methanol, lyophilization, and
extraction in chloroform-methanol using IPC–MS/MS. (A)

Ribulose-1,5-bisphosphate (RuBP), malate, and aspartate levels in
Chlamydomonas CC-1690 cells are shown after dark-adaption for 20 min
(black bars) and exposure to 660 μmol photon m−2 s−1 for 0.25, 4.5, and
7.5 min (gray bars). Y -axis indicates amount (pmol/106 cell). (B)

Chlamydomonas cells were harvested in cuvettes after 20 min dark-adaption
and exposure to 660 μmol photon m−2 s−1 for 7.5 min without (gray bars) or

with an additional 2 s of darkness (black bars).. Levels of metabolites are
presented as absolute values (n = 3, ±SD, two asterisks: Student’s t -test
p < 0.01, one asterisk: Student’s t -test p < 0.05). 2-OG, 2-oxoglutarate;
DHAP, dihydroxyacetone-phosphate; ADP, adenosine diphosphate; G6P,
glucose-6-phosphate; UDPG, UDP-glucose; NAD, nicotinamide adenine
dinucleotide; AMP, adenosine monophosphate; F6P, fructose-6-phosphate;
SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate;
NADP, nicotinamide adenine bisnucleotide phosphate; FBP,
fructose-1,6-phosphate; X5P, xylulose-5-phosphate; Ru5P,
ribulose-5-phosphate; R5P, ribose-5-phosphate; ADPG, ADP-glucose.

species, an internal standard (IS) mixture containing three stan-
dard compounds (isovitexin, CAS: 29702-25-8; saponarin, CAS:
20310-89-3; sinigrin, CAS: 3952-98-5) was prepared at four dif-
ferent concentrations (20, 10, 5, 1 μg ml−1). Identical volume of
standard mixture and plant extracts were added, resulting in a
final sample containing 0.1 mg FW μl−1 of plant extracts and
10, 5, 2.5, or 0.5 μg ml−1 of standard compounds. Recovery test
was carried out with Arabidopsis extracts (0.2 mg FW μl−1) of
leaves and roots grown on agar plates for 3 weeks, and flowers har-
vested from the plants grown on soil for 4 weeks. Extracts from
leaves “A” and roots “B” (or flowers) were mixed at different ratios
[(A:B), 90:10, 80:20, 50:50, 20:80, 10:90], respectively. The per-
centage recovery was estimated for evaluation using theoretical
concentration of extracts mixture, [(level in leaves × A%) + (level
in roots (or flowers) × B%)]/100.

ION PAIR (REVERSE-PHASE) CHROMATOGRAPHY TRIPLE QUADRUPOLE
MS (IPC–MS/MS)
Primary metabolite analysis by IPC–MS/MS was carried out on
a Dionex HPLC system (Sunnyvale, CA, USA) coupled to a

Finnigan TSQ Quantum Discovery MS-Q3 (Thermo Fisher Sci-
entific, Waltham, USA) equipped with an electrospray ionization
(ESI) interface. It was operated as described in Arrivault et al.
(2009). Chromatographic separation was obtained at 35˚C by a
multi-step gradient with online-degassed eluent A (10 mM trib-
utylamine aqueous solution, adjusted to pH 4.95 with 15 mM
acetic acid) and eluent B (methanol) applied to a Gemini (C18)
150 mm × 2.00 mm inner diameter 5 μm, 110 Å particle column
(Phenomenex, Aschaffenburg, Germany). The MS-Q3 device was
operated in the negative ion scanning mode with selected reaction
monitoring (SRM). The MS-parameters for each compound are
documented in the Supplementary Data of Arrivault et al. (2009).
Calibration curves using authentic standards were used to calcu-
late absolute amounts of metabolites in algal samples. Data were
processed using LC-quan 2.5.6 SP1 software.

REVERSE-PHASE HPLC–MS ANALYSIS
Secondary metabolite analysis by LC–MS was performed on HPLC
system Surveyor (Thermo Finnigan, USA) coupled to Finnigan
LTQ-XP system (Thermo Finnigan, USA) as described by Tohge
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and Fernie (2010). All data were processed using Xcalibur 2.1 soft-
ware (Thermo Fisher Scientific, Waltham, USA). Metabolite iden-
tification and annotation were performed using standard com-
pounds (Nakabayashi et al., 2009) and reference metabolomics
databases (Moco et al., 2006; Shinbo et al., 2006; Iijima et al., 2008;
Tohge and Fernie, 2009).

RESULTS AND DISCUSSION
HARVESTING – OBTAINING REPRESENTATIVE MATERIAL AND
AVOIDING HANDLING-INDUCED CHANGES
Expression of genes and activity of enzymes associated with
photosynthesis, respiration, and energy metabolism are rapidly
affected by changes in environmental conditions. Transcriptional
and metabolic regulation by the circadian clock has been defined
(Harmer et al., 2000; Gibon et al., 2006; Fukushima et al., 2009;
Kerwin et al., 2011). Many metabolites showed marked diur-
nal changes. Problems related to variation in clock and diurnal
rhythms can be circumvented by harvesting plants at the same
time in the 24-h cycle. They can also be affected by shorter term
fluctuations. The exact timing of harvesting and avoidance of
perturbation of metabolism during harvesting, by for instance
shading of leaves or changes in the oxygen tension are therefore
critical (see Geigenberger et al., 2000). Additionally, rapid and
complete quenching of metabolic activity is crucial to ensure faith-
ful measurement of the intracellular metabolite content (discussed
in details below).

To highlight the rapid metabolic response following light treat-
ment, metabolite profiling was performed on the model organism
C. reinhardtii (Figure 1). Quenching was performed by rapid mix-
ing of the algal suspension in the light with an excess of very cold
(−70˚C) methanol to instantaneously freeze the cells. Metabolite
profiling by IPC–MS/MS analysis of short term light treatment
was performed in dark-adapted material and after 0.25, 4.5, and
7.5 min illumination. Ribulose-1,5-bisphosphate (RuBP), which
is a major metabolite in the Calvin–Benson cycle, was already sig-
nificantly elevated by a light treatment of 15 s (Figure 1A). The
levels of malate, the late step in TCA cycle, also displayed signif-
icant increases upon illumination, whilst the level of the amino
acid aspartate was not altered.

Figure 1B illustrates why avoiding perturbations of the con-
ditions by the mean of rapid harvesting is critical for metabo-
lite profiling. Darkening significantly and almost instantaneously
influences operation of the photosystems and the delivery of ATP
and NADPH. The levels of RuBP, sedoheptulose-1,7-bisphosphate
(SBP), fructose-1,6-bisphosphate (FBP), ADP-glucose (ADPG),
and isocitrate were significantly decreased, while adenosine
5′-diphosphate (ADP) and adenosine monophosphate (AMP)
increased within 2 s of darkening. Thus, harvesting protocols that
lead to even very brief decrease or increase in the light intensity
preceding quenching or during the quenching process will lead
to erroneous estimates for the levels of metabolites. An identical
problem arises in higher plants. This is due to the simple fact that
the fluxes in the Calvin–Benson cycle are so high that many of the
metabolites in the cycle as well as ATP and NADPH have short
turnover times of 1 s or less (Arrivault et al., 2009).

This problem is of course especially critical for processes like
photosynthesis, where fluxes are very fast and metabolite pools are

small and turn over very quickly. However, it illustrates the more
general points that (i) all available information about the turnover
times of the metabolites-of-interest should be collected, evaluated,
and used to design an appropriate harvesting and quenching pro-
tocol and (ii) that this protocol should be validated by checking if
slowing down or speeding up the harvesting process modifies the
levels of metabolites that are found in the harvested material.

QUENCHING OF ENZYMATIC ACTIVITIES AND DIFFERENCES BETWEEN
PLANT SPECIES AND CHEMICAL PROPERTIES
Quenching of metabolic activity is not only essential to stop meta-
bolic turnover in the running pathways, but also to inhibit other
enzymatic activities that can destroy the metabolite after tissue
disruption. An old but still instructive example of this is the
precautions needed to determine pyrophosphate levels in plants
(Weiner et al., 1987). Pyrophosphatase activity in leaves is so high
that it can hydrolyse all the pyrophosphate in a leaf extract in
<0.05 s. In an intact tissue, the vast majority of the pyrophos-
phatase activity is in the plastids whilst the pyrophosphate is in
the cytosol. As soon as the tissue is disrupted the pyrophosphatase
comes into contact with and destroys the pyrophosphate. To mea-
sure pyrophosphate it is therefore essential that enzymatic activity
is completely stopped by rapid quenching and remains totally inac-
tive during all subsequent stages in sample handlings as a fraction
of a percent would be enough to destroy all the pyrophosphate
within few seconds. Such problems can be routinely identified by
recovery experiments in which representative amounts of authen-
tic standards are added to the plant material before extraction, and
it is checked that the added standard can be quantitatively detected
in the final extract (Fernie et al., 2011).

Whilst secondary metabolites do not display such rapid
responses to changes in the environment as those observed for
primary metabolism (see an example in Kusano et al., 2011),
they, like primary metabolites, are highly susceptible to degra-
dation by enzymes that come in contact with them after tissue
disruption. For example glucosinolates are converted into isoth-
iocyanates by myrosinase in Arabidopsis (Tierens et al., 2001;
Barth and Jander, 2006). Given that degradative enzymes typ-
ically remain potent subsequent to freezing in liquid nitrogen
when the extract is thawed, particular care must be taken during
the extraction procedure. To illustrate this point, three extraction
procedures were conducted in addition of our original extraction
procedure (extraction a), using frozen powder of plant materials.
To test if breakdown enzymes were definitively inactivated during
this extraction procedure, extracts were incubated at 37˚C for 1 h
(extraction b). A pre-incubation of sample material at 37˚C for
1 h prior extraction was conducted to test the extent of metabolite
degradation upon thawing (extraction d). Secondary metabolite
extraction is routinely performed at liquid nitrogen temperature,
so to test if another temperature would affect metabolic compo-
sition, addition of buffer on frozen sample was performed at ice
temperature (extraction c). All extractions were performed using
pre-cooled extraction buffer (10˚C). Metabolite breakdown was
assessed in A. thaliana leaves, O. sativa leaves, and S. lycopersicum
fruits by mean of LC–MS. Total ion chromatograms and relative
peak areas of selected metabolites are presented in Figures 2 and 3,
respectively.
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FIGURE 2 | Effect of different extraction methods on secondary

metabolite breakdown in Arabidopsis leaves, tomato fruits, and rice

leaves. Total ion chromatograms (TIC) monitored by negative ion detection
mode of extracts of (A) Arabidopsis leaves, (B) tomato fruits, and (C) rice
leaves, are shown. (a–d) indicate different extraction methods. (a)

extraction method as described in Tohge and Fernie (2010), (b) extracts
obtained by (a) method were incubated at 37˚C for 1 h, (c) extraction buffer
was immediately added to frozen material on ice, (d) frozen sample was
incubated at 37˚C for 1 h before extraction. All extractions were performed
using pre-cooled extraction buffer (10˚C). Arrows show peaks which were
newly or not detected in treated samples.

For almost all plant species, an incubation of the material
after addition of extraction buffer at 37˚C for 1 h had no observ-
able consequences on the total ion chromatograms and on the
relative peak areas of selected metabolites [Figures 2 and 3, respec-
tively. Comparison between (a) and (b)]. This result indicates
that the major secondary metabolites are not broken down at
37˚C, provided the tissue has been taken up in the extraction
buffer. However, metabolite profiling of samples extracted after
1 h (pre-incubation of the disrupted tissue at 37˚C) revealed that
samples were significantly changed in some compound species

(pointed by arrows in Figure 2). A more detailed analysis revealed
that within a plant species and between various plant species the
metabolite classes were differently affected [Figure 3, compari-
son between (a) and (d)]. In general non-pigmented flavonoids
such as flavonol glycoside in Arabidopsis leaves and S. lycopersicum
fruits, and glycoflavone in O. sativa leaves were stable. By con-
trast, red-pigmented flavonoids namely anthocyanin derivatives
in Arabidopsis were significantly decreased following the 37˚C pre-
incubation. Furthermore, phenylpropanoids in Arabidopsis such
as sinapoyl-derivatives were broken down by pre-incubation. The
Brassica species specific secondary metabolites glucosinolates are
well-known compounds which can be broken down by myrosinase
(Tierens et al., 2001; Barth and Jander, 2006). The glucosinolate
levels in extracts with 37˚C incubation before extraction were not
detected [Figure 3A, comparison between (a) and (d)]. Despite the
breakdown of phenylpropanoids by enzyme activity in Arabidopsis,
phenylpropanoids in tomato fruit such as chlorogenic acid related
compounds were generally unaffected by enzymes. With the excep-
tion of esculeoside related compounds, levels of glycoalkaloids
which are the major alkaloid in tomato fruits were not signifi-
cantly changed (Figure 3B). These data show that, whatever the
plant species, a pre-incubation of the plant material at 37˚C prior
to extraction leads generally to various levels of secondary metabo-
lite breakdown due to the presence of active enzymes when plant
material is thawed out. Addition of extraction buffer to frozen
material not at liquid nitrogen temperature (extraction c) led to a
significant decrease in the levels of glucosinolates and anthocyanin
derivatives (Figure 3A). This shows that the temperature during
addition of the extraction buffer is also an important factor.

These results taken together illustrate that the tissue extraction
should be carried out in the proper way with attention being taken
to empirically optimize the extraction method for each and every
new tissue measured. The effect of 20 min sonication was also
evaluated in the same manner, but no differences were observed
(data not shown). That said it is important to note that sonica-
tion should only be performed if this can be managed without an
increase in temperature.

ION SUPPRESSION EFFECTS CAUSED BY GROWTH MEDIA
Although LC–MS analysis is a highly sensitive technique, ion sup-
pression is a general problem of LC–MS analytical platforms due
to altered ESI of a target ion by a contamination (Ikonomou et al.,
1990; Kebarle and Tang, 1993; Buhrman et al., 1996; Matuszewski
et al., 1998, 2003; King et al., 2000; Fernie et al., 2004). It is
actually not a single event but a range of response–reducing phe-
nomena which should be avoided as much as possible. While
there is, however, no universal solution to this problem, under-
standing difference between samples and assessing the effects of
ion suppression affords greater confidence in the accuracy of the
results.

An example of ion suppression caused by growth conditions of
Chlamydomonas is shown in Figure 4; Table 1. This example illus-
trates how the composition of the growth media can dramatically
affect the reliability of metabolite analyses in Chlamydomonas.
Following quenching of the algal suspension by mixing with an
excess of cold methanol (see above), we took the entire suspension
for analysis. This was necessary because some metabolites leak
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FIGURE 3 | Comparison of secondary metabolite levels between different

extraction methods. Relative peak area of the result described in Figure 2 of
(A) Arabidopsis leaves, (B) tomato fruits, and (C) rice leaves, are shown.
Y -axis indicates percentage calculated by average of peak area of treatment
(a). (a–d) indicate different extraction methods as described in Figure 2 and
Section “Materials and Methods.” Blue related colors indicate flavonoid
related compounds (flavonol and glycoflavone). Red color indicates
red-pigmented flavonoid related compounds (anthocyanin). Yellow,

phenylpropanoid related compounds (sinapoyl-derivatives and
chlorogenate-related compound); green, glucosinolate related compounds in
Arabidopsis (methionine-derived aliphatic glucosinolate and
tryptophan-related aromatic glucosinolate); purple, indicates glycoalkaloid;
gray, putative sterol derivative; black, unknown compounds. The m/z value
detected in negative ion detection is indicated between parentheses. Average
of three experimental replicates ±SD. Significant differences by t -test
(p < 0.05) are marked by asterisks.

out of the cells into the methanol–water mix and are therefore
lost when the quenched cells are harvested by centrifugation (data
not shown, see also Krall et al., 2009). This means that metabolites

from the cells must be analyzed in a matrix that contains methanol
and all the components of the suspension medium. Because the
Chlamydomonas cells are quite diluted, components of the growth
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FIGURE 4 | Example of ion suppression caused by growth media. (A–C)

A standard mix containing all measured metabolites was mixed with
individual components of the growth media to identify which component(s)
of the growth media most severely influence ionization during electrospray
ionization (ESI). (A) The standard mix was mixed with the whole growth
medium (dark gray) and independently with the medium components
Hepes, K-phosphates, trace salts, and Beijerinck salts (light gray). (B) In a
second experiment, the individual components of the Beijerinck salts were
tested for ion suppression and enhancement. Standards were mixed to all

Beijerinck salts (dark gray) and independently to its components CaCl2,
MgSO4, and NH4Cl (light gray). (C) A third experiment investigated if the
anion or the cation was responsible for ion suppression caused by
ammonium chloride. Standards were mixed to NH4Cl (dark gray), NH4HCO3,
or NaCl (light gray). The data is shown as box plots of the average values
(calculated from three technical replicates) for 24 metabolites. Significant
outliers (p < 0.05) are identified in the figure panels. For a complete list of
percentage of ion suppression and enhancement for all metabolites see
Table A1 in Appendix.

medium are present in rather large amounts compared to metabo-
lites in the cells. Unfortunately, some components of the growth
medium lead to ion suppression.

We were alerted to ion suppression by three routine checks.
First, comparison of the spectrum of metabolites with those

expected from earlier studies of metabolites during photosynthesis
in Arabidopsis showed low levels of several metabolites. Second, we
checked whether the signal for each metabolite shows a strictly lin-
ear relationship to the amount of extract applied. In the case of ion
suppression, the estimated levels of many metabolites decreased
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Table 1 | Ion suppression mainly caused by growth media.

I II III IV V

Methanol − + − + +
Growth media − − + + +
Cells − − − − +
RuBP 100 96 110 106 165

Citrate 100 107 104 104 128

FBP 100 102 96 98 115

SBP 100 102 101 98 111

AMP 100 105 94 94 110

ADPG 100 97 101 100 109

ADP 100 137 89 116 107

2OG 100 117 86 84 101

NADP 100 98 99 97 98

Malate 100 95 94 96 94

Isocitrate 100 98 96 101 93

Aspartate 100 104 134 131 92

Glutamate 100 100 88 90 90

DHAP 100 125 86 86 85

NAD 100 115 77 76 84

Aconitate 100 103 92 93 83

UDPG 100 106 65 64 83

X5P/Ru5P 100 119 77 85 83

S7P 100 108 88 90 74

G1P 91 97 70 75 nd

F6P 100 108 78 79 73

Glycerate 100 119 72 71 66

R5P 100 115 67 70 55

G6P 100 110 35 35 39

Standards were mixed to methanol and growth media independently or together

(column II–IV). In addition, standards were mixed to Chlamydomonas reinhardtii

CC1690 cells grown in growth media and quenched by methanol (column V).

Values represent recovery ratios for all standards (n = 3, SD of raw data <18%).

when more samples were applied. Third, we checked the recovery
of authentic standards added to the extract and found it was very
low.

Attempts to analyze high concentrations of sample resulted
in an almost complete suppression of all metabolite signals,
including those of spiked standards (Figure A1 in Appendix).
A five-time dilution allowed an average of 87–93% recovery of
the spiked standards (Table 1; Figure 4). However, there was
still a residual ion suppression, and this varied from metabo-
lite to metabolite (Table 1). This obviously still prevents reli-
able and comparable analysis of metabolite levels. We there-
fore carried out a further series of experiments to identify the
major sources of ion suppression, in order to modify the growth
medium and circumvent this problem. To show that ion sup-
pression was caused by components of the growth medium and
not the biological sample itself or the methanol, we first mixed
known amounts of standards with either methanol and/or the
growth media compared to the same known amounts of stan-
dards mixed with a sample containing Chlamydomonas cells
(Table 1). For more than half of the metabolites, <15% of the

signal was suppressed by the media, but for many other metabo-
lites including dihydroxyacetone-phosphate (DHAP), fructose-6-
phosphate (F6P), glycerate, NAD+, ribose-5-phosphate (R5P),
sedoheptulose-7-phosphate (S7P), UDP-glucose (UDPG), and
xylulose-5-phosphate/ribulose-5-phosphate (X5P/Ru5P) the sig-
nals were reduced by 15–50%. For G6P ion suppression caused a
decrease of intensities by >50%. Therefore, for all these metabo-
lites the absolute values have to be treated with extreme caution.
Further, small changes in the extent of ion suppression can lead to
changes in the relative signals for the various metabolites. It almost
goes without saying that mixing ISs of these metabolites to each
sample would allow a much more precise determination of their
absolute amounts.

To minimize such errors, we systematically investigated which
of the salts in the medium could contribute to the loss of sig-
nal due to ion suppression or ion enhancement during ioniza-
tion by ESI. The growth media used in this study consisted of
Hepes, K-phosphates, Beijerinck salts, and trace salts (for details
see Materials and Methods). A sequence of experiments was per-
formed to unravel the effects of the individual salts from this
growth media (Figure 4, for details see Table A1 in Appen-
dix). Hepes, K-phosphate, and the trace salt solution had only
minor ion suppression effects (Figure 4A, for details see Table A1
in Appendix). Hepes caused significant ion suppression of G6P
but less than the Beijerinck salts. K-phosphates caused weak but
significant ion induction of ADP, and FBP, RuBP, SBP, aconi-
tate, and isocitrate. The trace salt solution caused overestima-
tion of aspartate due to ion enhancement. However, most of
the ion suppression observed due to the growth media in the
sample could be attributed to the Beijerinck salts present in the
media (Figure 4A). In a second experiment, ammonium chlo-
ride, one component of the Beijerinck salts, was shown to be
responsible for the major part of the residual ion suppression
whereas MgSO4 and CaCl2 had minor effects (Figure 4B). In
a third experiment, the chloride anion was found to be the
main reason why ammonium chloride causes ion suppression
(Figure 4C). From the 24 metabolites routinely measured with
this method, the signal of 10 was significantly suppressed in the
presence of the Beijerinck salt (Figure A1 in Appendix). With
the exception of UDPG which was found to be suppressed by
MgSO4, the chloride anion in the growth media was found to
be responsible for ion suppression. Thus, simply replacing the
chloride anion with bicarbonate greatly decreased ion suppression
(Figure 4C).

For subsequent measurements a growth medium with lower
ammonium chloride concentration was used (Figure 1). Alterna-
tively, a medium in which ammonium chloride is replaced with
ammonium bicarbonate could be used or, as mentioned earlier
ISs for each metabolite could be added to the sample to assure
accurate metabolite measurements. This example shows that dif-
ferent degrees of ion suppression, both with respect of individual
metabolites and with respect to different samples, can be gener-
ated by differences in growth conditions and culture components.
These results imply that erroneous results will also be obtained if
such changes occur as a result of growing algae in different con-
ditions, or are generated in time as a result of the algae using
nutrients.

Frontiers in Plant Science | Plant Physiology October 2011 | Volume 2 | Article 61 | 8

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Tohge et al. Translational metabolomics: from models to crop species

The specific issue with growth medium components does not
arise with higher plants. Nevertheless, this example serves as a
warning that differential ion accumulation in plant tissues might
affect ion suppression. In attempt to circumvent this problem
the total ion chromatogram should be carefully checked in areas
which appear to be strongly affected. If strong ion suppression is
observed, both dilution and recovery tests in which standard com-
pounds are added to the extracts should be performed (see Fernie
and Keurentjes, 2011). More generally, such problems can be iden-
tified by routine checks that the signal is linear with the amount of
applied extract and (where available) that authentic samples can
be quantitatively recovered after addition to the extract.

ION SUPPRESSION EFFECTS CAUSED BY DIFFERENT TISSUE TYPES
Metabolite composition varies between plant species and also
between different tissues of the same plant. It is therefore expected
to observe different levels of ion suppression within these samples.
To evaluate this, an IS mixture (sinigrin, isovitexin, and saponarin)
was added to the same volume (ratio 1/1) of extracts from Ara-
bidopsis leaves, tomato fruits, and rice leaves, respectively. This
was performed with four different known concentrations of the IS
mixture with three experimental replicates of the step of mixing
solutions. As control, the 50% diluted original standard mixture
was also analyzed without being mixed with plant extract. Peak
areas for each IS were determined and are presented in Figure 5.
For all IS compounds, the strongest ion suppression was observed
when they were added to rice leaves, followed by Arabidopsis leaves,
and the lowest was seen for tomato fruit extracts. As expected, the
ion suppression in a mixture of Arabidopsis leaf and tomato fruit
extracts (ratio 1/1) was intermediate to what was observed in the
corresponding independent extracts.

Plant material used for metabolic determination is often a
mixture of tissues. For example, plant seedling is a mixture of
hypocotyl and root, or fruit samples are a mixture of pericarp,
seed, and peel. Ion suppression caused by differences between tis-
sue types, in comparative analysis between mutants, transgenic,
time course, and stress treatment is relatively minor. But in case of
comparison between different plant species (as shown above with
Arabidopsis and rice leaves), wild accessions which have important
phenotypical differences, or mutants with strong phenotypic dif-
ferences, such problems due to differential ion suppression could
easily arise. For example, seedling samples that differ in the rela-
tive amount of shoot/root or hypocotyl/root might be particularly
susceptible to differential ion suppression. The same problem is
raised in the case of harvesting flower samples with a varying ratio
of flower/sepal and/or (flower/pedicel).

To evaluate this problem, recombination analyses (Fernie and
Keurentjes, 2011) were evaluated using Arabidopsis samples con-
taining various ratio of leaves and roots or flower extracts, focusing
on the general secondary metabolites which were detected in both
tissues. The percentage recovery was simply estimated for evalua-
tion using theoretical concentration of extracts mixture, [(level in
leaves × A%) + (level in roots (or flowers) × B%)]/100] (Table 2).
Mixture of different tissue types results in >100% recovery (i.e.,
less ion suppression) for some peaks (e.g., IS), presumably because
the area which is strongly suppressed differs between leaf and
root extracts. Increase of recovery was observed in some peaks

FIGURE 5 | Example of ion suppression caused by plant extracts.

Standard solutions (20, 10, 5, 1 μg ml−1) of three standard compounds, (A)

sinigrin, (B) saponarin, and (C) isovitexin, were mixed to the same volume
of plant extracts (0.2 mg FW μl−1) of Arabidopsis leaves, tomato fruits, rice
leaves and mixture of Arabidopsis leaves and tomato fruits (ratio 1/1).
Average and ±SD were calculated from three experimental replicates.

(<117%) at an equivalent mixture of leaf and root extracts. On
the other hand, recovery ratio in mixture of leaves and flowers
showed more significant variance (43 ∼ 122%). This experiment
highlights the value of preliminary analyses in order to check for
ion suppression. It is furthermore useful to understand the range
of variance in instances in which the value of IS is unstable between
samples.

CHEMICAL DIVERSITY AND PEAK ANNOTATION USING CROSS SPECIES
COMPARISON
Many metabolite databases for LC–MS are available, such as
MASSBANK (Horai et al., 2010), METLIN (Smith et al., 2005),
MS2T (Matsuda et al., 2009), KNApSAcK (Shinbo et al., 2006),
and Flavonoid Viewer (Arita and Suwa, 2008). These greatly aid in
the prediction and annotation of detected peaks (Tohge and Fer-
nie, 2010). That said, technical improvement of peak identification
and annotation still represents a major hurdle for LC–MS-based
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Table 2 | Recovery test with mixture of extract of leaves, roots, and flowers.

Tissue type

Leaves (%) 100 90 80 50 20 10 100

Roots (%) 0 10 20 50 80 90 0

Compound m/z Recovery (%)

Saponarin (IS) 593 100 103 101 100 100 104 100

Isovitexin (IS) 431 100 104 107 113 113 111 100

Kaempferol-3Glc2′′Rha-7Rha 741 100 104 102 105 106 108 100

Kaempferol-3Glc-7Rha 595 100 103 100 99 100 103 100

Kaempferol-3Rha-7Rha 577 100 104 104 111 111 106 100

Quercetin-3Glc-7Rha 609 100 103 101 96 94 94 100

Sinapoyl glucoside 385 100 114 111 116 115 111 100

7-methylsulfinylheptyl glucosinolate 478 100 106 109 115 117 111 100

8-methylsulfinyloctyl GLS 492 100 101 97 100 102 100 100

Leaves (%) 100 90 80 50 20 10 100

Flowers (%) 0 10 20 50 80 90 0

Compound m/z Recovery (%)

Saponarin (IS) 593 100 93 87 68 52 55 100

Isovitexin (IS) 431 100 109 111 122 116 116 100

Kaempferol-3Glc2′′Rha-7Rha 741 100 98 92 77 64 70 100

Kaempferol-3Glc-7Rha 595 100 93 87 68 52 55 100

Kaempferol-3Rha-7Rha 577 100 100 99 95 100 108 100

Quercetin-3Glc-7Rha 609 100 98 88 66 46 43 100

Sinapoyl glucoside 385 100 105 108 109 111 113 100

7-methylsulfinylheptyl glucosinolate 478 100 100 95 90 91 102 100

8-methylsulfinyloctyl GLS 492 100 99 94 81 70 80 100

The peaks which were detected in leaves, roots, and flowers, were used for recovery test. The percentage recovery was estimated for evaluation using theoretical

concentration of extracts mixture, [(level in leaves ×A%) + (level in roots (or flowers) × B%)]/100], respectively. Three internal standard compounds, saponarin and

isovitexin were used. Analysis was evaluated by three experimental replicates. (n = 3, SD of raw data <25.7%).

metabolite profiling platforms. The identification of secondary
metabolites is obstructed by the insufficient availability of stan-
dard compounds. It is impossible to comprehensively purchase
standard substances since the diversity of their chemical struc-
ture is far too large. Moreover, complex compounds are largely
unavailable commercially and those that are available are often
prohibitively expensive. Furthermore, LC–MS studies are compli-
cated by the fact that the levels of secondary metabolites are highly
divergent between different organs, growth conditions, and species
(Petersen, 2007; Hanhineva et al., 2008; Matsuda et al., 2010). For
these reasons, peak identification is generally performed by the
use of combinatorial strategies whereby the literature information
is taken alongside available compounds in an attempt to identify
specific peaks (see for example Tohge et al., 2005; Giavalisco et al.,
2009).

Given the recent explosion of genome information afforded
firstly by microarray analyses and more recently by next-
generation sequencing (review of (Schneeberger and Weigel,
2011), further tools for translational biology are becoming avail-
able. One such example, PlaNet, was described recently by Mutwil
et al. (2011). Following this approach gene sequences can be con-
nected between plant species on the basis of BLAST homology
searches and then the positions in co-expression networks can
be ascertained and finally it is possible to link unknown genes

to annotated metabolic genes. As such this approach holds great
promise both for gene functional annotation and via use of mutant
plants in the annotation of unknown metabolites (Tohge and
Fernie, 2010; Mutwil et al., 2011). It demonstrated the utility
of this approach by identifying candidate genes of the general
and species specific flavonoid pathways. It is likely that integrat-
ing metabolomics data on all the species currently in PlaNet will
greatly aid this process and is certainly a research avenue that
should be pursued in the near future.

CONCLUSION
Whilst applying a method established for another species is likely
not to be overly problematic for screening purposes and for a first
insight into the metabolome of an organism, the examples pre-
sented here demonstrate that when more precise information is
required considerable effort should be put into establishing both
the qualitative and quantitative reliability of any LC–MS-based
metabolic profiling method. As evidenced by the ion suppres-
sion (and ion enhancement) examples particular care must be
taken with this issue as well as in ensuring that the extraction
procedure is appropriate for the tissue under study. Once these
important controls have been adhered to a wide array of compu-
tational resources are available (Tohge and Fernie, 2009), which
will greatly aid in translational research. Given that the trend
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in plant science research is to move away from the single model
species of A. thaliana, such tools will become increasingly impor-
tant. However, it is prudent to note that uncritical use of such
tools without adequate controls of the type demonstrated here
may well result in inaccurate representations of the metabolome.
The best way to approach a new tissue, species, or even a dramatic
mutant/transgenic line is to adopt both experimental and compu-
tational approaches to ensure the highest possible data quality.

ACKNOWLEDGMENTS
We thank Dr. Yozo Okazaki in RIKEN PSC for useful discus-
sion, and Dr. Mark-Aurel Schöttler at the Max-Planck-Institute of

Molecular Plant Physiology (MPIMP) for kindly providing instru-
mentation for Chlamydomonas illumination and harvesting. We
thank Prof. Dr. Martin Steup in University of Potsdam and Dr.
Wagner L. Araújo at MPIMP for expert comments. This work is
partially funded by the German Federal Ministry of Education
and Research by the FORSYS BMBF grant (GoFORSYS) and the
Max-Planck Society (MPG). Research activity of Takayuki Tohge
was supported by the Alexander von Humboldt Foundation. Tabea
Mettler was supported by the International Max-Planck Research
School (IMPRS). Adam James Carroll was supported through a
grant to the Australian Research Council Centre of Excellence in
Plant Energy Biology.

REFERENCES
Achnine, L., Huhman, D. V., Farag, M.

A., Sumner, L. W., Blount, J. W.,
and Dixon, R. A. (2005). Genomics-
based selection and functional char-
acterization of triterpene glycosyl-
transferases from the model legume
Medicago truncatula. Plant J. 41,
875–887.

Aharoni, A., Keizer, L. C. P.,
Bouwmeester, H. J., Sun, Z. K.,
Alvarez-Huerta, M., Verhoeven, H.
A., Blaas, J., van Houwelingen, A.,
De Vos, R. C. H., van der Voet,
H., Jansen, R. C., Guis, M., Mol,
J., Davis, R. W., Schena, M., van
Tunen, A. J., and O’Connell, A.
P. (2000). Identification of the
SAAT gene involved in strawberry
flavor biogenesis by use of DNA
microarrays. Plant Cell 12, 647–661.

Aharoni, A., Ric de Vos, C. H., Ver-
hoeven, H. A., Maliepaard, C. A.,
Kruppa, G., Bino, R. J., and Good-
enowe, D. B. (2002). Nontargeted
metabolome analysis by use of
Fourier transform ion cyclotron
mass spectrometry. OMICS 6,
217–234.

Albinsky, D., Kusano, M., Higuchi,
M., Hayashi, N., Kobayashi, M.,
Fukushima, A., Mori, M., Ichikawa,
T., Matsui, K., Kuroda, H., Horii,
Y., Tsumoto, Y., Sakakibara, H.,
Hirochika, H., Matsui, M., and Saito,
K. (2010). Metabolomic screening
applied to rice FOX Arabidopsis lines
leads to the identification of a gene-
changing nitrogen metabolism. Mol.
Plant 3, 125–142.

Allen, A. E., LaRoche, J., Maheswari, U.,
Lommer, M., Schauer, N., Lopez, P. J.,
Finazzi, G., Fernie, A. R., and Bowler,
C. (2008). Whole-cell response of
the pennate diatom Phaeodacty-
lum tricornutum to iron starvation.
Proc. Natl. Acad. Sci. U.S.A. 105,
10438–10443.

Araujo, W. L., Ishizaki, K., Nunes-Nesi,
A., Larson, T. R., Tohge, T., Krahn-
ert, I., Witt, S., Obata, T., Schauer,
N., Graham, I. A., Leaver, C. J.,
and Fernie, A. R. (2010). Identi-

fication of the 2-hydroxyglutarate
and isovaleryl-CoA dehydrogenases
as alternative electron donors link-
ing lysine catabolism to the electron
transport chain of Arabidopsis mito-
chondria. Plant Cell 22, 1549–1563.

Arita, M., and Suwa, K. (2008).
Search extension transforms Wiki
into a relational system: a case for
flavonoid metabolite database. Bio-
Data Min. 7, 8.

Arrivault, S., Guenther, M., Ivakov, A.,
Feil, R., Vosloh, D., van Dongen, J. T.,
Sulpice, R., and Stitt, M. (2009). Use
of reverse-phase liquid chromatog-
raphy, linked to tandem mass spec-
trometry, to profile the Calvin cycle
and other metabolic intermediates
in Arabidopsis rosettes at differ-
ent carbon dioxide concentrations.
Plant J. 59, 824–839.

Bais, P., Moon, S. M., He, K., Leitao,
R., Dreher, K., Walk, T., Sucaet, Y.,
Barkan, L., Wohlgemuth, G., Roth,
M. R.,Wurtele, E. S., Dixon, P., Fiehn,
O., Lange, B. M., Shulaev, V., Sum-
ner, L. W., Welti, R., Nikolau, B.
J., Rhee, S. Y., and Dickerson, J. A.
(2010). Plant metabolomics. org: a
web portal for plant metabolomics
experiments. Plant Physiol. 152,
1807–1816.

Barth, C., and Jander, G. (2006). Ara-
bidopsis myrosinases TGG1 and
TGG2 have redundant function in
glucosinolate breakdown and insect
defence. Plant J. 46, 549–562.

Bino, R. J., Hall, R. D., Fiehn, O.,
Kopka, J., Saito, K., Draper, J., Niko-
lau, B. J., Mendes, P., Roessner-
Tunali, U., Beale, M. H., Trethewey,
R. N., Lange, B. M., Wurtele, E. S.,
and Sumner, L. W. (2004). Poten-
tial of metabolomics as a functional
genomics tool. Trends Plant Sci. 9,
418–425.

Bolling, C., and Fiehn, O. (2005).
Metabolite profiling of Chlamy-
domonas reinhardtii under nutri-
ent deprivation. Plant Physiol. 139,
1995–2005.

Boyle, N. R., and Morgan, J. A.
(2009). Flux balance analysis of

primary metabolism in Chlamy-
domonas reinhardtii. BMC Syst. Biol.
3, 4. doi:10.1186/1752-0509-3-4

Buhrman, D. L., Price, P. I., and
Rudewicz, P. J. (1996). Quantitation
of SR 27417 in human plasma using
electrospray liquid chromatography
tandem mass spectrometry: a study
of ion suppression. J. Am. Soc. Mass
Spectrom. 7, 1099–1105.

Carmo-Silva, A. E., Keys, A. J., Beale,
M. H., Ward, J. L., Baker, J.
M., Hawkins, N. D., Arrabaca, M.
C., and Parry, M. A. J. (2009).
Drought stress increases the pro-
duction of 5-hydroxynorvaline in
two C-4 grasses. Phytochemistry 70,
664–671.

Carroll, A. J., Badger, M. R., and
Harvey Millar, A. (2010). The
MetabolomeExpress Project:
enabling web-based processing,
analysis and transparent dissem-
ination of GC/MS metabolomics
datasets. BMC Bioinformatics 11,
376. doi:10.1186/1471-2105-11-376

Catchpole, G. S., Beckmann, M., Enot,
D. P., Mondhe, M., Zywicki, B.,
Taylor, J., Hardy, N., Smith, A.,
King, R. D., Kell, D. B., Fiehn,
O., and Draper, J. (2005). Hierar-
chical metabolomics demonstrates
substantial compositional similar-
ity between genetically modified
and conventional potato crops.
Proc. Natl. Acad. Sci. U.S.A. 102,
14458–14462.

Cottret, L., Wildridge, D., Vinson,
F., Barrett, M. P., Charles, H.,
Sagot, M. F., and Jourdan, F.
(2010). MetExplore: a web server to
link metabolomic experiments and
genome-scale metabolic networks.
Nucleic Acids Res. 38, W132–W137.

El-Lithy, M. E., Rodrigues, G. C., van
Rensen, J. J. S., Snel, J. F. H., Dassen,
H., Koornneef, M., Jansen, M. A.
K., Aarts, M. G. M., and Vreug-
denhil, D. (2005). Altered photosyn-
thetic performance of a natural Ara-
bidopsis accession is associated with
atrazine resistance. J. Exp. Bot. 56,
1625–1634.

Fernie, A. R., Aharoni, A., Willmitzer, L.,
Stitt, M., Tohge, T., Kopka, J., Car-
roll, A. J., Saito, K., Fraser, P. D., and
DeLuca, V. (2011). Recommenda-
tions for reporting metabolite data.
Plant Cell 23, 2477–2482.

Fernie, A. R., and Keurentjes, J. J.
B. (2011). Genetics, genomics and
metabolomics. Annu. Plant Rev. 43,
219–246.

Fernie, A. R., Trethewey, R. N., Krotzky,
A. J., and Willmitzer, L. (2004). Inno-
vation – metabolite profiling: from
diagnostics to systems biology. Nat.
Rev. Mol. Cell Biol. 5, 763–769.

Fraser, P. D., Enfissi, E. M. A.,
Goodfellow, M., Eguchi, T., and
Bramley, P. M. (2007). Metabo-
lite profiling of plant carotenoids
using the matrix-assisted laser des-
orption ionization time-of-flight
mass spectrometry. Plant J. 49,
552–564.

Fukushima, A., Kusano, M., Nakamichi,
N., Kobayashi, M., Hayashi,
N., Sakakibara, H., Mizuno, T.,
and Saito, K. (2009). Impact
of clock-associated Arabidopsis
pseudo-response regulators in
metabolic coordination. Proc. Natl.
Acad. Sci. U.S.A. 106, 7251–7256.

Geigenberger, P., Fernie, A. R., Gibon,
Y., Christ, M., and Stitt, M. (2000).
Metabolic activity decreases as an
adaptive response to low internal
oxygen in growing potato tubers.
Biol. Chem. 381, 723–740.

Giavalisco, P., Kohl, K., Hummel, J., Sei-
wert, B., and Willmitzer, L. (2009).
C-13 isotope-labeled metabolomes
allowing for improved compound
annotation and relative quantifica-
tion in liquid chromatography-mass
spectrometry-based metabolomic
research. Anal. Chem. 81,
6546–6551.

Gibon, Y., Usadel, B., Blaesing, O. E.,
Kamlage, B., Hoehne, M., Trethewey,
R., and Stitt, M. (2006). Integra-
tion of metabolite with transcript
and enzyme activity profiling dur-
ing diurnal cycles in Arabidopsis
rosettes. Genome Biol. 7, R76.

www.frontiersin.org October 2011 | Volume 2 | Article 61 | 11

http://dx.doi.org/10.1186/1752-0509-3-4
http://dx.doi.org/10.1186/1471-2105-11-376
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Tohge et al. Translational metabolomics: from models to crop species

Giroud, C., Gerber, A., and Eichen-
berger, W. (1988). Lipids of Chlamy-
domonas reinhardtii – analysis of
molecular-species and intracellular
site(s) of biosynthesis. Plant Cell
Physiol. 29, 587–595.

Goossens, A., Hakkinen, S. T., Laakso,
I., Seppanen-Laakso, T., Biondi, S.,
De Sutter, V., Lammertyn, F., Nuu-
tila, A. M., Soderlund, H., Zabeau,
M., Inze, D., and Oksman-Caldentey,
K. M. (2003). A functional genomics
approach toward the understanding
of secondary metabolism in plant
cells. Proc. Natl. Acad. Sci. U.S.A. 100,
8595–8600.

Griffin, J. L., and Nicholls, A. W.
(2006). Metabolomics as a func-
tional genomic tool for understand-
ing lipid dysfunction in diabetes,
obesity and related disorders. Phar-
macogenomics 7, 1095–1107.

Hall, R., Beale, M., Fiehn, O., Hardy,
N., Sumner, L., and Bino, R. (2002).
Plant metabolomics: the missing
link in functional genomics strate-
gies. Plant Cell 14, 1437–1440.

Hanhineva, K., Rogachev, I., Kokko, H.,
Mintz-Oron, S., Venger, I., Karen-
lampi, S., and Aharoni, A. (2008).
Non-targeted analysis of spatial
metabolite composition in straw-
berry (Fragaria x ananassa) flowers.
Phytochemistry 69, 2463–2481.

Harmer, S. L., Hogenesch, L. B.,
Straume, M., Chang, H. S., Han, B.,
Zhu, T., Wang, X., Kreps, J. A., and
Kay, S. A. (2000). Orchestrated tran-
scription of key pathways in Ara-
bidopsis by the circadian clock. Sci-
ence 290, 2110–2113.

Harris, E. H. (1989). The Chlamy-
domonas Sourcebook. New York, NY:
Academic Press.

Hirai, M. Y., Klein, M., Fujikawa,
Y., Yano, M., Goodenowe, D. B.,
Yamazaki, Y., Kanaya, S., Nakamura,
Y., Kitayama, M., Suzuki, H., Sakurai,
N., Shibata, D., Tokuhisa, J., Reichelt,
M., Gershenzon, J., Papenbrock, J.,
and Saito, K. (2005). Elucidation
of gene-to-gene and metabolite-to-
gene networks in Arabidopsis by
integration of metabolomics and
transcriptomics. J. Biol. Chem. 280,
25590–25595.

Hirai, M. Y., Sugiyama, K., Sawada,
Y., Tohge, T., Obayashi, T., Suzuki,
A., Araki, R., Sakurai, N., Suzuki,
H., Aoki, K., Goda, H., Nishizawa,
O. I., Shibata, D., and Saito, K.
(2007). Omics-based identification
of Arabidopsis Myb transcription
factors regulating aliphatic glucosi-
nolate biosynthesis. Proc. Natl. Acad.
Sci. U.S.A. 104, 6478–6483.

Hirai, M. Y., Yano, M., Goodenowe,
D. B., Kanaya, S., Kimura, T.,

Awazuhara, M., Arita, M., Fuji-
wara, T., and Saito, K. (2004).
Integration of transcriptomics and
metabolomics for understanding
of global responses to nutritional
stresses in Arabidopsis thaliana.
Proc. Natl. Acad. Sci. U.S.A. 101,
10205–10210.

Horai, H.,Arita, M., Kanaya, S., Nihei,Y.,
Ikeda, T., Suwa, K., Ojima,Y., Tanaka,
K., Tanaka, S., Aoshima, K., Oda, Y.,
Kakazu, Y., Kusano, M., Tohge, T.,
Matsuda, F., Sawada, Y., Hirai, M. Y.,
Nakanishi, H., Ikeda, K., Akimoto,
N., Maoka, T., Takahashi, H., Ara,
T., Sakurai, N., Suzuki, H., Shibata,
D., Neumann, S., Iida, T., Tanaka, K.,
Funatsu, K., Matsuura, F., Soga, T.,
Taguchi, R., Saito, K., and Nishioka,
T. (2010). MassBank: a public repos-
itory for sharing mass spectral data
for life sciences. J. Mass Spectrom. 45,
703–714.

Iijima, Y., Nakamura, Y., Ogata, Y.,
Tanaka, K., Sakurai, N., Suda, K.,
Suzuki, T., Suzuki, H., Okazaki, K.,
Kitayama, M., Kanaya, S., Aoki, K.,
and Shibata, D. (2008). Metabolite
annotations based on the integration
of mass spectral information. Plant
J. 54, 949–962.

Ikonomou, M. G., Blades, A. T., and
Kebarle, P. (1990). Investigations
of the electrospray interface for
liquid-chromatography mass-
spectrometry. Anal. Chem. 62,
957–967.

Jom, K. N., Frank, T., and Engel, K.
H. (2010). A metabolite profiling
approach to follow the sprouting
process of mung beans (Vigna radi-
ata). Metabolomics 7, 102–117.

Kanno, Y., Jikumaru, Y., Hanada, A.,
Nambara, E., Abrams, S. R., Kamiya,
Y., and Seo, M. (2010). Compre-
hensive hormone profiling in devel-
oping Arabidopsis seeds: examina-
tion of the site of ABA biosynthe-
sis, ABA transport and hormone
interactions. Plant Cell Physiol. 51,
1988–2001.

Kebarle, P., and Tang, L. (1993). From
ions in solution to ions in the gas-
phase – the mechanism of elec-
trospray mass-spectrometry. Anal.
Chem. 65, A972–A986.

Kempa, S., Hummel, J., Schwemmer, T.,
Pietzke, M., Strehmel, N.,Wienkoop,
S., Kopka, J., and Weckwerth, W.
(2009). An automated GCxGC-
TOF-MS protocol for batch-wise
extraction and alignment of mass
isotopomer matrixes from differ-
ential C-13-labelling experiments:
a case study for photoautotrophic-
mixotrophic grown Chlamydomonas
reinhardtii cells. J. Basic Microbiol.
49, 82–91.

Kerwin, R. E., Jimenez-Gomez, J. M.,
Fulop, D., Harmer, S. L., Maloof, J.
N., and Kliebenstein, D. J. (2011).
Network quantitative trait loci map-
ping of circadian clock outputs iden-
tifies metabolic pathway-to-clock
linkages in Arabidopsis. Plant Cell 23,
471–485.

King, R., Bonfiglio, R., Fernandez-
Metzler, C., Miller-Stein, C., and
Olah, T. (2000). Mechanistic inves-
tigation of ionization suppression in
electrospray ionization. J. Am. Soc.
Mass Spectrom. 11, 942–950.

Krall, L., Huege, J., Catchpole, G.,
Steinhauser, D., and Willmitzer, L.
(2009). Assessment of sampling
strategies for gas chromatography-
mass spectrometry (GC-MS) based
metabolomics of cyanobacteria. J.
Chromatogr. 877, 2952–2960.

Kusano, M., Tohge, T., Fukushima,
A., Kobayashi, M., Hayashi, N.,
Otsuki, H., Kondou, Y., Goto, H.,
Kawashima, M., Matsuda, F., Niida,
R., Matsui, M., Saito, K., and Fer-
nie, A. R. (2011). Metabolomics
reveals comprehensive reprogram-
ming involving two independent
metabolic responses of Arabidopsis
to ultraviolet-B light. Plant J. 67,
354–369.

Luo, J., Nishiyama, Y., Fuell, C., Taguchi,
G., Elliott, K., Hill, L., Tanaka, Y.,
Kitayama, M., Yamazaki, M., Bai-
ley, P., Parr, A., Michael, A. J., Saito,
K., and Martin, C. (2007). Conver-
gent evolution in the BAHD fam-
ily of acyltransferases: identification
and characterization of anthocyanin
acyltransferases from Arabidopsis
thaliana. Plant J. 50, 678–695.

Matsuda, F., Hirai, M. Y., Sasaki, E.,
Akiyama, K., Yonekura-Sakakibara,
K., Provart, N. J., Sakurai, T., Shi-
mada, Y., and Saito, K. (2010).
AtMetExpress development: a phy-
tochemical atlas of Arabidopsis
development. Plant Physiol. 152,
566–578.

Matsuda, F., Yonekura-Sakakibara, K.,
Niida, R., Kuromori, T., Shinozaki,
K., and Saito, K. (2009). MS/MS
spectral tag-based annotation of
non-targeted profile of plant sec-
ondary metabolites. Plant J. 57,
555–577.

Matuszewski, B. K., Constanzer,
M. L., and Chavez-Eng, C. M.
(1998). Matrix effect in quantitative
LC/MS/MS analyses of biological
fluids: a method for determi-
nation of finasteride in human
plasma at picogram per milliliter
concentrations. Anal. Chem. 70,
882–889.

Matuszewski, B. K., Constanzer, M.
L., and Chavez-Eng, C. M. (2003).

Strategies for the assessment
of matrix effect in quantitative
bioanalytical methods based on
HPLC-MS/MS. Anal. Chem. 75,
3019–3030.

May, P., Wienkoop, S., Kempa, S.,
Usadel, B., Christian, N., Rupprecht,
J., Weiss, J., Recuenco-Munoz, L.,
Ebenhoh, O., Weckwerth, W., and
Walther, D. (2008). Metabolomics-
and proteomics-assisted genome
annotation and analysis of the
draft metabolic network of Chlamy-
domonas reinhardtii. Genetics 179,
157–166.

Meyer, R. C., Steinfath, M., Lisec,
J., Becher, M., Witucka-Wall, H.,
Torjek, O., Fiehn, O., Eckardt, A.,
Willmitzer, L., Selbig, J., and Alt-
mann, T. (2007). The metabolic
signature related to high plant
growth rate in Arabidopsis thaliana.
Proc. Natl. Acad. Sci. U.S.A. 104,
4759–4764.

Moco, S., Bino, R. J., Vorst, O.,
Verhoeven, H. A., de Groot, J.,
van Beek, T. A., Vervoort, J.,
and de Vos, C. H. R. (2006).
A liquid chromatography-mass
spectrometry-based metabolome
database for tomato. Plant Physiol.
141, 1205–1218.

Mutwil, M., Klie, S., Tohge, T., Giorgi,
F. M., Wilkins, O., Campbell, M. M.,
Fernie, A. R., Usadel, B., Nikoloski,
Z., and Persson, S. (2011). PlaNet:
combined sequence and expression
comparisons across plant networks
derived from seven species. Plant
Cell 23, 895–910.

Nakabayashi, R., Kusano, M., Kobayashi,
M., Tohge, T., Yonekura-Sakakibara,
K., Kogure, N., Yamazaki, M., Kita-
jima, M., Saito, K., and Takayama,
H. (2009). Metabolomics-oriented
isolation and structure elucida-
tion of 37 compounds includ-
ing two anthocyanins from Ara-
bidopsis thaliana. Phytochemistry 70,
1017–1029.

Nicholson, J. K., and Wilson, I. D.
(2003). Understanding “global” sys-
tems biology: metabonomics and
the continuum of metabolism. Nat.
Rev. Drug Discov. 2, 668–676.

Okazaki, Y., Shimojima, M., Sawada, Y.,
Toyooka, K., Narisawa, T., Mochida,
K., Tanaka, H., Matsuda, F., Hirai,
A., Hirai, M. Y., Ohta, H., and
Saito, K. (2009). A chloroplas-
tic UDP-glucose pyrophosphorylase
from Arabidopsis is the committed
enzyme for the first step of sul-
folipid biosynthesis. Plant Cell 21,
892–909.

Petersen, M. (2007). Current status
of metabolic phytochemistry. Phyto-
chemistry 68, 2847–2860.

Frontiers in Plant Science | Plant Physiology October 2011 | Volume 2 | Article 61 | 12

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Tohge et al. Translational metabolomics: from models to crop species

Renberg, L., Johansson, A. I., Shutova,
T., Stenlund, H., Aksmann, A.,
Raven, J. A., Gardestrom, P., Moritz,
T., and Samuelsson, G. (2010).
A metabolomic approach to study
major metabolite changes during
acclimation to limiting CO2 in
Chlamydomonas reinhardtii. Plant
Physiol. 154, 187–196.

Rischer, H., Oresic, M., Seppanen-
Laakso, T., Katajamaa, M., Lammer-
tyn, F., Ardiles-Diaz, W., Van Mon-
tagu, M. C. E., Inze, D., Oksman-
Caldentey, K. M., and Goossens,
A. (2006). Gene-to-metabolite net-
works for terpenoid indole alkaloid
biosynthesis in Catharanthus roseus
cells. Proc. Natl. Acad. Sci. U.S.A. 103,
5614–5619.

Roessner, U., Willmitzer, L., and Fer-
nie, A. R. (2001). High-resolution
metabolic phenotyping of geneti-
cally and environmentally diverse
potato tuber systems. Identification
of phenocopies. Plant Physiol. 127,
749–764.

Roessner-Tunali, U., Hegemann,
B., Lytovchenko, A., Carrari, F.,
Bruedigam, C., Granot, D., and
Fernie, A. R. (2003). Metabolic
profiling of transgenic tomato
plants overexpressing hexokinase
reveals that the influence of hexose
phosphorylation diminishes during
fruit development. Plant Physiol.
133, 84–99.

Sauter, H., Lauer, M., and Fritsch,
H. (1988). Metabolite profiling of
plants – a new diagnostic technique.
Abstr. Pap. Am. Chem. Soc. 195, 129.

Schauer, N., Semel, Y., Roessner, U.,
Gur, A., Balbo, I., Carrari, F., Pleban,
T., Perez-Melis, A., Bruedigam, C.,
Kopka, J., Willmitzer, L., Zamir, D.,
and Fernie, A. R. (2006). Compre-
hensive metabolic profiling and phe-
notyping of interspecific introgres-
sion lines for tomato improvement.
Nat. Biotechnol. 24, 447–454.

Schauer, N., Zamir, D., and Fernie, A. R.
(2005). Metabolic profiling of leaves
and fruit of wild species tomato: a
survey of the Solanum lycopersicum
complex. J. Exp. Bot. 56, 297–307.

Scherling, C., Ulrich, K., Ewald, D., and
Weckwerth, W. (2009). A metabolic
signature of the beneficial interac-
tion of the endophyte paenibacillus
sp isolate and in vitro-grown poplar
plants revealed by metabolomics.
Mol. Plant Microbe Interact. 22,
1032–1037.

Schneeberger, K., and Weigel, D. (2011).
Fast-forward genetics enabled by
new sequencing technologies. Trends
Plant Sci. 16, 282–288.

Semel, Y., Schauer, N., Roessner, U.,
Zamir, D., and Fernie, A. (2007).
Metabolite analysis for the compar-
ison of irrigated and non-irrigated
field grown tomato of varying geno-
type. Metabolomics 3, 289–295.

Shinbo, Y., Nakamura, Y., Altaf-Ul-
Amin, M., Asahi, H., Kurokawa, K.,
Arita, M., Saito, K., Ohta, D., Shibata,
D., and Kanaya, S. (2006). KNAp-
SAcK: a comprehensive species-
metabolite relationship database.
Plant Metabolomics 165–181.

Smith, C. A., O’Maille, G., Want, E.
J., Qin, C., Trauger, S. A., Brandon,
T. R., Custodio, D. E., Abagyan, R.,
and Siuzdak, G. (2005). METLIN –
a metabolite mass spectral database.
Ther. Drug Monit. 27, 747–751.

Stitt, M., and Fernie, A. R. (2003).
From measurements of metabo-
lites to metabolomics: an “on the
fly” perspective illustrated by recent
studies of carbon-nitrogen interac-
tions. Curr. Opin. Biotechnol. 14,
136–144.

St-Pierre, B., and De Luca, V. (2000).
“Evolution of acyltransferase genes:
origin and diversification of the
BAHD superfamily of acyltrans-
ferases involved in secondary
metabolism,” in Evolution of Meta-
bolic Pathways, ed J. T. Romeo
(Amsterdam: Elsevier Science),
285–315.

Stracke, R., Ishihara, H., Barsch, G. H.
A., Mehrtens, F., Niehaus, K., and
Weisshaar, B. (2007). Differential
regulation of closely related R2R3-
MYB transcription factors controls
flavonol accumulation in different
parts of the Arabidopsis thaliana
seedling. Plant J. 50, 660–677.

Sulpice, R., Pyl, E. T., Ishihara,
H., Trenkamp, S., Steinfath, M.,
Witucka-Wall, H., Gibon, Y., Usadel,
B., Poree, F., Piques, M. C.,Von Korff,
M., Steinhauser, M. C., Keurentjes, J.
J. B., Guenther, M., Hoehne, M., Sel-
big, J., Fernie, A. R., Altmann, T., and
Stitt, M. (2009). Starch as a major
integrator in the regulation of plant
growth. Proc. Natl. Acad. Sci. U.S.A.
106, 10348–10353.

Tierens, K., Thomma, B. P. H., Brouwer,
M., Schmidt, J., Kistner, K., Porzel,
A., Mauch-Mani, B., Cammue, B.
P. A., and Broekaert, W. F. (2001).
Study of the role of antimicro-
bial glucosinolate-derived isothio-
cyanates in resistance of Arabidop-
sis to microbial pathogens. Plant
Physiol. 125, 1688–1699.

Tiessen, A., Hendriks, J. H. M., Stitt,
M., Branscheid, A., Gibon, Y., Farre,
E. M., and Geigenberger, P. (2002).

Starch synthesis in potato tubers
is regulated by post-translational
redox modification of ADP-glucose
pyrophosphorylase: a novel regula-
tory mechanism linking starch syn-
thesis to the sucrose supply. Plant
Cell 14, 2191–2213.

Tohge, T., and Fernie, A. R. (2009).
Web-based resources for mass-
spectrometry-based metabolomics:
a user’s guide. Phytochemistry 70,
450–456.

Tohge, T., and Fernie, A. R. (2010).
Combining genetic diversity, infor-
matics and metabolomics to facili-
tate annotation of plant gene func-
tion. Nat. Protoc. 5, 1210–1227.

Tohge, T., Nishiyama, Y., Hirai, M. Y.,
Yano, M., Nakajima, J., Awazuhara,
M., Inoue, E., Takahashi, H., Good-
enowe, D. B., Kitayama, M., Noji,
M., Yamazaki, M., and Saito, K.
(2005). Functional genomics by
integrated analysis of metabolome
and transcriptome of Arabidop-
sis plants over-expressing an MYB
transcription factor. Plant J. 42,
218–235.

Tohge, T., Yonekura-Sakakibara, K.,
Niida, R., Watanabe-Takahashi, A.,
and Saito, K. (2007). Phytochemical
genomics in Arabidopsis thaliana: a
case study for functional identifica-
tion of flavonoid biosynthesis genes.
Pure Appl. Chem. 79, 811–823.

Trenkamp, S., Eckes, P., Busch, M.,
and Fernie, A. R. (2009). Tempo-
rally resolved GC-MS-based meta-
bolic profiling of herbicide treated
plants treated reveals that changes
in polar primary metabolites alone
can distinguish herbicides of differ-
ing mode of action. Metabolomics 5,
277–291.

von Roepenack-Lahaye, E., Degenkolb,
T., Zerjeski, M., Franz, M., Roth, U.,
Wessjohann, L., Schmidt, J., Scheel,
D., and Clemens, S. (2004). Profiling
of Arabidopsis secondary metabo-
lites by capillary liquid chromatog-
raphy coupled to electrospray ion-
ization quadrupole time-of-flight
mass spectrometry. Plant Physiol.
134, 548–559.

Weiner, H., Stitt, M., and Heldt, H. W.
(1987). Subcellular compartmenta-
tion of pyrophosphate and alkaline
pyrophosphatase in leaves. Biochim.
Biophys. Acta 893, 13–21.

Widodo Patterson, J. H., Newbigin, E.,
Tester, M., Bacic,A., and Roessner, U.
(2009). Metabolic responses to salt
stress of barley (Hordeum vulgare L.)
cultivars, Sahara and Clipper, which
differ in salinity tolerance. J. Exp.
Bot. 60, 4089–4103.

Xia, J., and Wishart, D. S. (2010). MSEA:
a web-based tool to identify biologi-
cally meaningful patterns in quan-
titative metabolomic data. Nucleic
Acids Res. 38, W71–W77.

Yamazaki, M., Shibata, M., Nishiyama,
Y., Springob, K., Kitayama, M.,
Shimada, N., Aoki, T., Ayabe, S.
I., and Saito, K. (2008). Differ-
ential gene expression profiles of
red and green forms of Perilla
frutescens leading to comprehen-
sive identification of anthocyanin
biosynthetic genes. FEBS J. 275,
3494–3502.

Yonekura-Sakakibara, K., Tohge, T.,
Matsuda, F., Nakabayashi, R.,
Takayama, H., Niida, R., Watanabe-
Takahashi, A., Inoue, E., and
Saito, K. (2008). Comprehensive
flavonol profiling and transcriptome
coexpression analysis leading to
decoding gene-metabolite correla-
tions in Arabidopsis. Plant Cell 20,
2160–2176.

Yonekura-Sakakibara, K., Tohge, T.,
Niida, R., and Saito, K. (2007).
Identification of a flavonol 7-O-
rhamnosyltransferase gene deter-
mining flavonoid pattern in Ara-
bidopsis by transcriptome coexpres-
sion analysis and reverse genetics. J.
Biol. Chem. 282, 14932–14941.

Zhu, T., and Wang, X. (2000). Large-
scale profiling of the Arabidopsis
transcriptome. Plant Physiol. 124,
1472–1476.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 04 May 2011; accepted: 13 Sep-
tember 2011; published online: 03 Octo-
ber 2011.
Citation: Tohge T, Mettler T, Arrivault
S, Carroll AJ, Stitt M and Fernie AR
(2011) From models to crop species:
caveats and solutions for translational
metabolomics. Front. Plant Sci. 2:61. doi:
10.3389/fpls.2011.00061
This article was submitted to Frontiers in
Plant Physiology, a specialty of Frontiers
in Plant Science.
Copyright © 2011 Tohge, Mettler ,
Arrivault , Carroll, Stitt and Fernie. This
is an open-access article subject to a non-
exclusive license between the authors and
Frontiers Media SA, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and other Frontiers
conditions are complied with.

www.frontiersin.org October 2011 | Volume 2 | Article 61 | 13

http://dx.doi.org/10.3389/fpls.2011.00061
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Tohge et al. Translational metabolomics: from models to crop species

APPENDIX

Table A1 | Ion suppression of growth media mainly caused by ammonium chloride.

Components of growth media Beijerinck salts Kation and anion

of NH4Cl

Growth media HEPES K-phosphates Trace

salts

Beijerinck

salts

CaCl2 MgSO4 NH4Cl NH4HCO3 NaCl

2-OG −19.2** −4.4 −12.6* −3.8 −19.0* −2.8 −10.3 −9.6* −6.8 −10.9*

Aconitate −2.7 5.4 13.2* 0.9 2.4 2.9 1.3 1.2 11.4 5.4

ADP 9.1 5.7 24.2* 3.0 9.5 7.3 9.7 8.2 19.6 12.4

ADPG 3.7 −0.7 3.8 0.0 6.1 1.3 3.0 1.2 2.5 1.3

AMP −6.6 −3.2 −7.1 −3.6 −5.6 −0.6 4.5 2.5 2.6 0.0

Aspartate 69.5** −3.5 −1.8 88.5** 7.5 −2.0 −0.7 2.6 −8.9 6.1

Citrate −8.0 −2.5 −2.7 1.9 −5.2 0.5 −1.8 −6.9 −9.7 −6.9

DHAP −37.8* −5.1 −5.9 12.1 −36.5** −11.2* 0.2 −23.5** −3.3 −24.9**

F6P −35.1* −4.9 −4.1 −4.4 −23.9** −6.4 5.4 −24.0** −8.4* −25.4**

FBP 0.5 6.8 21.8* 8.9 6.0 6.2 7.3 5.4 12.5 6.5

G1P −30.8* −3.4 −3.4 12.4 −15.1 −8.8 0.8 −4.8 −4.0 0.2

G6P −59.7** −17.0* −5.6 10.0 −59.6** −10.4* 1.3 −60.7** −4.9 −61.0**

Glutamate 6.4 −2.5 −1.8 6.5* 11.6** −1.9 1.7 7.8 −6.9 8.3

Glycerate −20.6 −1.6 −10.0 4.2 −21.2* −5.8 −7.8 −22.9** −16.2 −20.1**

Isocitrate 6.8** 1.0 6.8** 3.5 −6.0 −0.7 −4.0 −2.1 3.9 −4.6

Malate −3.3 −2.0 0.9 1.7 −7.5 −6.8 −5.2 −3.6 −1.8 −3.1

NAD −27.9** −2.3 −3.6 −7.1 −24.5** −4.5 2.7 −10.8** 2.2 −12.9**

NADP 9.5 3.9 16.7 8.3 6.0 3.6 3.5 6.7 14.6* 7.2

R5P −44.2** −6.8 −5.7 9.6 −41.9** −17.7* 0.9 −36.1** −5.1 −35.7**

RuBP 9.9* 6.8 18.8* 7.8 10.7 3.1 9.1 6.1 13.3 8.5

S7P −27.5* −3.4 −4.6 7.9 −17.8** −11.4** 1.1 −14.8* −1.0 −14.9*

SBP −5.8 4.6 16.2* 3.1 5.6 4.5 8.2 6.7 14.3 10.4

UDPG −12.7** −5.1 −3.1 −1.9 −18.5* 1.5 −18.2** −2.8 1.8 −1.2

X5P/Ru5P −26.1 6.9 13.8 27.2 −23.5** 0.6 9.6 −24.7** −3.3 −18.5**

Raw data of Figure 4. Values are expressed as % ion suppression (x < 0) or % ion enhancement (x > 0) respectively, according to the formula by Buhrman et al.

(1996): x = 100 *(observed concentration-expected concentration)/ expected concentration Blue, significant ion suppression; red, significant ion enhancement; two

asterisks: Student’s t-test: p < 0.01; one asterisk, Student’s t-test p < 0.05 (n = 3). Abbreviations of metabolites according to Figure 1.
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FIGURE A1 | Sample dilution led to decreased ion suppression.

Illuminated Chlamydomonas reinhardtii CC-1690 suspension was

quenched, harvested, and extracted as in Figure 1. Four different
dilutions of the extract (diluted with water) were then spiked with a
reference standard mix and compared to the standard mix on its own to
assess the extent of ion suppression. The fivefold dilution was selected for
experiments shown in Figures 1 and 4;Table 1 as for several metabolites
the 10-fold dilution was below detection limit. Note that the average of ion
suppression was 77% for the fivefold dilution in this experiment. For
experiment shown in Figures 1 and 4;Table 1, the average ion suppression
for the fivefold dilution was <13%. This improvement was vey likely
achieved by using a quadrupole (Finning TSQ Quantum Ultra) with a larger
ion transfer tube diameter. The plot shows the mean ion suppression for 24
metabolites, each measured with two technical replicates, ±SD.
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