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The study of metabolic regulation has traditionally focused on analysis of specific enzymes,
emphasizing kinetic properties, and the influence of protein interactions and post-
translational modifications. More recently, reverse genetic approaches permit researchers
to directly determine the effects of a deficiency or a surplus of a given enzyme on the bio-
chemistry and physiology of a plant. Furthermore, in many model species, gene expression
atlases that give important spatial information concerning the quantitative expression level
of metabolism-associated genes are being produced. In parallel, “top-down” approaches
to understand metabolic regulation have recently been instigated whereby broad genetic
diversity is screened for metabolic traits and the genetic basis of this diversity is defined
thereafter. In this article we will review recent examples of this latter approach both in the
model species Arabidopsis thaliana and the crop species tomato (Solanum lycopersicum).
In addition to highlighting examples in which this genetic diversity approach has proven
promising, we will discuss the challenges associated with this approach and provide a
perspective for its future utility.
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INTRODUCTION
Elucidation of metabolic regulation in plants has been an aca-
demic pursuit spanning many decades. Indeed the question
of how metabolism is regulated was first raised in the scien-
tific era in which metabolism was first truly defined (Buchner,
1907; Krebs and Henseleit, 1932; Plaxton, 1996; Kornberg, 2000).
Whilst the ability to regulate the rates of metabolic processes
in response to cellular circumstance is a common feature of all
organisms, it is particularly acute in sessile organism such as
plants (Plaxton, 1996). From a textbook perspective, metabolic
regulation is classically divided into coarse and fine levels of
control (Dennis et al., 1997; Fell, 1997). Coarse control refers
to long-term mechanisms that are energetically expensive and
lead to changes in the total cellular population of a protein.
By contrast, fine control describes generally fast (and therefore
energetically inexpensive) regulatory devices that modulate the
activity of pre-existing enzyme molecules. Whilst this arbitrary
division can be useful for descriptive purposes, recent reports
suggest that several regulatory mechanisms cannot be so easily
defined and hence such classification is commonly regarded as
outdated. However, unfortunately, despite the massive amount
of data available regarding steady-state RNA levels afforded by
microarrays (see for example the data stored in GENEVESTIGA-
TOR; http://www.genevestigator.ethz.ch) and more recently by
next generation sequence analyses (see for example Gonzalez-
Ballester et al., 2010; Bräutigam et al., 2011), protein abundance
data remains relatively scare. That said, important recent advances
have been made both regarding protein synthesis (Mustroph et al.,
2009; Piques et al., 2009) and degradation (Araújo et al., 2010,
2011; Hua and Vierstra, 2011).

Several regulatory mechanisms act on already synthesized
enzymes. Indeed our understanding of regulation of central (pri-
mary) plant metabolism has been largely defined by the discovery
of such features within the last 50–60 years, whereas understand-
ing of specialized (secondary) metabolism has made similar strides
within the last 30 years (for reviews see Pichersky and Gang, 2000;
D’Auria and Gershenzon, 2005; Gachon et al., 2005; Yonekura-
Sakakibara and Saito, 2009). In brief, such mechanisms include
(i) alteration in substrate or co-substrate concentration, (ii) varia-
tion in pH, (iii) allosteric effectors. The importance of all three of
these mechanisms is illustrated by multiple examples. The first,
of these is essentially the most simple and certainly the most
rapid to affect metabolic systems with the rate of an enzyme-
catalyzed reaction proceeding more rapidly upon an increase in
sub-saturating substrate – a case that is common in vivo (Dennis
et al., 1997). All enzyme reactions are, to a greater or lesser extent
regulated in this manner. However, the situation is complicated by
the fact that not all reactions display simple Michaelis–Menton-
like kinetics and by the fact that many co-substrates are shared
by multiple reactions. These factors alone render understanding
the systemic response to prevailing fluctuations in substrate con-
ditions unpredictable. Secondly, many enzymes are affected by
pH. For example, regulation of enzymes of the Calvin cycle is
well documented to be pH regulated; stromal pH is 8.0 in that
the light and 7.0 in the dark (see Dennis et al., 1997). Thirdly,
allosteric effectors are immensely important in the regulation of
plant metabolic networks, be they activators or inhibitors. Within
the major pathways of carbohydrate metabolism, several examples
of the importance of such metabolites exist, including the 3 phos-
phoglycerate (3PGA)/inorganic phosphate (Pi) ratio in activating
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ADP glucose pyrophosphorylase (AGPase; Preiss, 1982; Tiessen
et al., 2002), the fructose 2,6-bisphosphatase (Fru 2,6P2ase) sys-
tem (Stitt, 1990; Fernie et al., 2001) and the effect of pyruvate on
the alternative oxidase of mitochondrial respiration (Millar et al.,
1993; Oliver et al., 2008).

Understanding the function of a given enzyme within a bio-
logical process has until recently largely followed a set protocol
by which novel genes associated with a specific process are iden-
tified by means of similar patterns of expression across a wide
range of experiments and subsequently their function tested. This
is initially carried out by analyzing the metabolite profiles of
genotypes deficient in the expression of the gene. Confirmation
of kinetic properties of the enzyme either in planta (in the case
that the gene encodes the only isoform of an enzyme) or follow-
ing expression of the gene in a heterologous system lacking the
activity is subsequently required (see for details Tohge and Fer-
nie, 2010). Whilst this approach has been tremendously successful
(Hirai et al., 2005, 2007; Tohge et al., 2005; Okazaki et al., 2009) in
terms of annotating the precise biochemical function of individ-
ual genes, it does not enable elucidation of the exact physiological
function in vivo. In the last 25 years the roles of specific meta-
bolic enzymes have been addressed via the use of transgenic plants
(Stitt and Sonnewald, 1995; Lytovchenko et al., 2007). Such studies
have greatly advanced our understanding of metabolic regula-
tion. However, such directed approaches sometimes fail to uncover
complex inter-pathway interactions and pathway regulators. Given
that the chemical constituents of any life form determine the devel-
opment and functioning of the organism (Sumner et al., 2003;
Fernie et al., 2004a; D’Auria and Gershenzon, 2005), strategies to
characterize the chemical complement of the cell are becoming
increasingly important. The diversity of metabolites is controlled
by a complex interaction involving many structural and regula-
tory genes as well as environmental influences (Harrigan et al.,
2007a). Although chemical profiles differ between and even within
species, thousands of diverse metabolites are usually found in a
single plant (De Luca and St Pierre, 2000; Sumner et al., 2003;
D’Auria and Gershenzon, 2005; Fernie, 2007). These range from
small and simple structures such as vitamins and amino acids to
more complex compounds such as polycyclic antioxidants and
protease inhibitors. Other compounds function as energy carriers
that can store or release energy upon formation or degradation
respectively (Fernie et al., 2004b). For example, glucose synthe-
sized during gluconeogenesis can be polymerized to form starch
or be broken down during glycolysis. This regulated interconver-
sion of compounds is perhaps the most important hallmark of
plant metabolism, enabling the organism to respond to specific
demands over the course of its life and on a minute-by-minute
basis (Keuentjes and Fernie, 2011).

Metabolites are often classified as being either primary or sec-
ondary, although no strict discrimination can be made and inter-
actions between the two classes are manifold. Primary metabolism
includes essential metabolites such as those in central carbohydrate
metabolism (Koch, 1996; Rontein et al., 2002) whereas secondary
metabolism is often connected to interactions with environmen-
tal cues, including cell signaling, interspecies communication, and
responses to biotic and abiotic stress (see for example Wink,
1988; Mitchell-Olds and Pedersen, 1998; Lehmann et al., 2009;

Rubin et al., 2009). Although primary metabolic pathways are
strongly conserved between species, quantitative variation is often
observed, possibly related to the different growth characteristics
of various species (Mitchell-Olds and Pedersen, 1998). Qualitative
and quantitative variation in secondary metabolism is, however,
much more extensive and it is widely accepted that secondary
metabolism determines to a great extent the success of plant adap-
tation (Herms and Mattson, 1992; Pichersky and Gang, 2000). As
stated above, thousands of different metabolites can be found in
a single plant species (De Luca and St Pierre, 2000; Sumner et al.,
2003; D’Auria and Gershenzon, 2005; Fernie, 2007). That said, we
are only starting to explore the composition of the metabolome,
let alone unravel all of the biosynthetic pathways leading to this
diversity of chemical structures.

In the current article we concentrate on results from broad
screening of the natural genetic diversity of metabolism in Ara-
bidopsis rosettes and tomato fruit. Following intensive statistical
analysis, clear patterns of metabolic regulation can be demarcated
via these approaches and a sub-set of these patterns can be resolved
at the genetic level. We conclude that the screening of diverse
genetic populations by metabolic profiling significantly adds to
our understand metabolic regulation.

METABOLIC VARIANCE IN ARABIDOPSIS
In recent years much research has exploited natural variance in
the pre-eminent model species Arabidopsis thaliana (Kliebenstein
et al., 2001; Koornneef et al., 2004; Weigel and Nordborg, 2005;
Borevitz et al., 2007; Alonso-Blanco et al., 2009). Study of meta-
bolic traits in Arabidopsis largely focuses on understanding the
principles underlying metabolic regulation and the influence of
metabolism on growth and development (Kliebenstein et al., 2001;
Keurentjes et al., 2006; Meyer et al., 2007; Lisec et al., 2008, 2009;
Rowe et al., 2008; Sulpice et al., 2009, 2010). As for all quantita-
tive traits, those associated with metabolism are characterized by
continuous variation. Establishment of the genetic basis of quanti-
tative traits commonly referred to as quantitative trait loci (QTL),
has often been hampered due to their complex multigenic inheri-
tance and strong interactions with the environment. The principle
of QTL mapping in segregating populations is based on genotyp-
ing of progeny derived from a cross between distinct genotypes
for the trait under study. Phenotypic values for the trait are then
compared with molecular markers in the progeny to search for
particular genomic regions showing statistically significant asso-
ciations with the trait variation (Broman, 2001; Slate, 2005). Over
the past few decades, the field has benefited enormously from
the progress made in molecular marker technology. The ease with
which such markers can be developed has facilitated QTL mapping
studies of even the most complex traits (Borevitz and Nordborg,
2003).

Quantitative trait loci analysis makes use of the natural varia-
tion present within species (Alonso-Blanco and Koornneef, 2000;
Maloof, 2003; Fernie et al., 2006) and has been successfully applied
to various types of segregating populations. In plants, the use of
“immortal” mapping populations consisting of homozygous indi-
viduals that, at least theoretically, can be propagated indefinitely is
preferred because it permits replication and multiple analyses of
the same population. Homozygous populations can be obtained
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by repeated selfing, as is the case for recombinant inbred lines
(RILs), but also by induced chromosomal doubling of haploids,
such as for doubled haploids (DHs; Han et al., 1997; Rae et al.,
1999; von Korff et al., 2004). RILs are likely advantageous over
DHs since they are characterized by a higher frequency of recom-
bination within the population, resulting from multiple meiotic
events occurred during repeated selfing (Jansen, 2003; Keurentjes
and Fernie, 2011).

Another type of immortal population consists of introgres-
sion lines (ILs; Eshed and Zamir, 1994), which are obtained
through repeated backcrossing and extensive genotyping. These
are also referred to as near isogenic lines (NILs; Monforte and
Tanksley, 2000), or backcross inbred lines (BILs; Jeuken and Lind-
hout, 2004; Blanco et al., 2006). These lines contain a single
or a small number of genomic introgression fragments from
a donor parent into an otherwise homogeneous genetic back-
ground. In plants, RILs and NILs are the most common types
of experimental populations used for the analysis of quantita-
tive traits (for an illustration of these populations see Figure 1).
In both cases the accuracy of QTL localization, referred to as
mapping resolution, depends on population size. For RILs, the
position of the recombination event is fixed and can therefore
only be increased within the population by adding more lines (i.e.,
more independent recombination events). Alternatively, recom-
bination frequency can be increased by intercrossing lines before
fixation as homozygous lines by inbreeding (Zou et al., 2005; Bal-
asubramanian et al., 2009). In NIL populations resolution can
be improved by minimizing the introgression size of each NIL.
Consequently, to maintain genome-wide coverage either a larger
number of lines or a high proportion of overlapping regions,
or both, are needed. Despite the similarities between these two
types of mapping populations, large differences exist in the genetic
makeup of the respective individuals and the resulting mapping
approach. In general, recombination frequency in RIL populations
is higher than in equally sized NIL populations, allowing analy-
sis of fewer individuals. Each RIL contains several introgressed
fragments and, on average, each genomic region is represented by
an equal number of both parental genotypes in the population.
Therefore, replication of individual lines is often not necessary
because the effect of each genomic region on phenotypic traits
is independently tested multiple times by comparing the two
genotypic RIL classes. In addition, the multiple introgressions
per RIL can potentially reveal epistasis between loci. However,
this may negatively bias the power to detect QTL. Furthermore,
the wide variation of morphological and developmental traits
among individuals within most RIL populations may hamper
analysis of traits requiring the same growth and developmental
stage of the individual lines. When many traits segregate simul-
taneously, this often affects the expression of other traits due to
genetic interactions. By contrast, NILs preferably contain only a
single introgressed segment per line, increasing the power to detect
small-effect QTL. However, the presence of a single introgressed
segment limits testing for genetic interactions and thereby the
detection of epistatic QTL. Since most of the genetic background
is identical for all lines, NILs show more limited developmental
and growth variation, increasing the homogeneity of growth stage
within experiments.

FIGURE 1 | Comparison of introgression (A) and recombinant inbred

lines (B). Introgression lines are created by backcrossing an F1 of a cross
between two parental lines to a recurrent parent for several times.
Homozygous individuals containing single introgressions are then selected
from the progeny. Recombinant inbred lines are generated by selfing an F1
for at least eight generations when full homozygosity is reached. Each
individual of the population contains multiple introgressions. Recombinant
inbred lines allow for the testing of epistasis. Also because of the higher
recombination frequency they often offer higher resolution than
introgression lines. Introgression lines, however, often display greater
statistical power in the detection of small-effect QTL.

In Arabidopsis, the ease of generating fertile RIL populations
with complete genome coverage has led to their extensive use in
QTL mapping (O’Neill et al., 2008). NILs have also been devel-
oped to confirm and fine map QTL previously identified in RILs
(Alonso-Blanco et al., 1998, 2003; Swarup et al., 1999; Bentsink
et al., 2003; Edwards et al., 2005; Juenger et al., 2005; Teng et al.,
2005). Genome-wide sets of NILs and RILs, descending from iden-
tical intercrosses, that allow mapping to chromosomal sections
have been described in Arabidopsis and empirical comparative
studies have been performed between the two population types
(Keurentjes et al., 2007a; Lisec et al., 2008, 2009). These studies
illustrate the complementary benefits of both resources, facilitat-
ing the genetic dissection of various quantitative traits in Arabidop-
sis. RIL populations allow mapping at higher resolution, whilst
NILs have the advantage of detecting small-effect QTL (Keurent-
jes and Fernie, 2011). Having extensively described the approaches,
we now detail the biological significance of results obtained to date
in Arabidopsis.

Although many simple metabolic traits affecting protein, oil,
and starch content have been studied using targeted approaches
(see Moose and Mumm, 2008; Fernie and Schauer, 2009), the
adoption of methods able to detect the levels of multiple metabo-
lites at once greatly expanded our ability to pose questions about
regulation at the pathway and network level (Sweetlove et al., 2008;
Stitt et al., 2010). Studies, largely reliant on gas chromatography–
mass spectrometry (GC–MS) or liquid chromatography–mass
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spectrometry (LC–MS) have been carried out in Arabidopsis by
three different research groups.

The first publication of note focused on a RIL population
derived from a cross between the Landsberg erecta (Ler) and
Cape Verde Islands (Cvi) accessions and evaluated the variance of
some 2000 mass peaks across this population (Keurentjes et al.,
2006). Interestingly, almost one-third of these peaks were not
detected in either parent, implying a vast potential for manipu-
lation of chemotypes via classical breeding. Another intriguing
finding of this study was the fact that colocation of QTL coin-
cided with clusters of highly correlated mass peaks. For example,
several glucosinolate QTL co-clustered with one another. Com-
parison of these data with those of previous targeted work showed
that these co-locations were at positions of known regulators of
glucosinolate metabolism to which Peptide methionine sulfoxide
reductase (MAM) and QTL for production of alkenyl or hydrox-
yalkyl glucosinolates (AOP) mapped (Kliebenstein et al., 2001;
Kroymann et al., 2001). Further work from this group focused
on parallel analysis of 15 enzyme activities in tandem with their
corresponding transcript levels and a set of relevant metabolites.
The results revealed that traits affecting primary metabolism are
often correlated and many activity QTL co-localize with expres-
sion QTL (although a fair number do not, suggesting that such
multilevel approaches will be highly useful for distinguishing
between transcriptional and metabolic control (Keurentjes et al.,
2008). As an extension of this work they next performed a multi-
plexed transcriptome, proteome, and metabolome study on the
same material, combining these data with publically available
data (Fu et al., 2009). The surprising finding of this study was
that following mapping of over 40000 molecular and 100 phe-
notypic traits, there were only six QTL hotspots. The authors
concluded that there are thus only six breakpoints in a sys-
tem otherwise buffered against many of the half-million single
nucleotide polymorphisms (SNPs) between the parental lines (Fu
et al., 2009).

Following a similar approach to that mentioned above, groups
at the Max-Planck-Institute in Golm focused on primary metab-
olism. Two different strategies were employed; the study of RILs
and NILs resulting from a cross between Col-0 and C24 (Meyer
et al., 2007; Lisec et al., 2008; Brotman et al., 2011) and analy-
sis of the natural variance of metabolite accumulation inherent
in ecotypes (Cross et al., 2006; Sulpice et al., 2007, 2009, 2010;
Keurentjes et al., 2008). In the first approach, metabolites were not
treated in isolation but rather evaluated with respect to the influ-
ence they exerted toward plant growth – with a metabolic signature
for high growth being defined from results obtained in the Col-
0/C24 RILs (Meyer et al., 2007). A more detailed study examined
both RILs and NILs derived from the same parents (Lisec et al.,
2008), revealing a couple of hotspots in which yield QTL over-
lapped with a large number of metabolite accumulation QTL. In
this study, metabolic pathway-derived candidate genes were found
for 24–67% of all tested metabolite QTL in the database AraCyc
3.5, demonstrating the power of this approach to identify possible
sites of metabolic regulation. It is, however, important to note that
this is only the first step and considerable further experimentation
is required to confirm the existence and physiological relevance of
such regulations.

A recent paper describes the identification of a cytosolic iso-
form of fumarase as the causal gene underlying traits of decreased
fumarate and increased malate (Brotman et al., 2011). This result
represents an elegant proof-of-concept study and beautifully fits
the cross-over theorem, which states that if an equilibrium reac-
tion of a linear pathway is inhibited, a build-up of substrate and
a depletion of product of that reaction will occur (Rolleston,
1972). An illustration of the power of this theorem is shown in
its application to starch synthesis in potato, which prompted a
successful search for a novel post-translational modifier of the
AGPase enzyme (Stitt et al., 2010). Bearing this example in mind,
analyses of metabolite ratios in advanced genetic populations
will likely prove to be an important route to identify previously
uncharacterized mechanisms of metabolic regulation in the future.
The rapidly increasing availability of genome information for
multiple Arabidopsis ecotypes (Weigel and Mott, 2009; Schnee-
berger and Weigel, 2011), alongside the increase in the number of
groups performing metabolomic analyses should accelerate gene
discovery.

A second approach to identification of metabolic regulators
is comparative analysis of various Arabidopsis ecotypes. This
approach was initiated to assess the natural variance in enzyme
activities; the first study examined the activities of seven enzymes
across 24 Arabidopsis ecotypes (Cross et al., 2006) whilst the second
evaluated the activity of the most abundant protein in photosyn-
thetic tissues, Ribulose-1,5-bisphosphate-carboxylase/-oxygenase
(Rubisco), across the abovementioned Col-0/C24 RIL population
(Sulpice et al., 2007). In the former study it was observed that
enzyme activities largely vary on mass, but are not well corre-
lated to the levels of the metabolites measured in the same sample
(Cross et al., 2006). This observation is consistent with the concept
that metabolism is highly regulated at multiple levels. The latter
study described application of a novel Rubisco assay to describe
the characteristics of this enzyme in 118 Arabidopsis accessions,
defining two loci for Rubisco activity and two for Rubisco activa-
tion state (Sulpice et al., 2007). These analyses were subsequently
massively expanded to encompass either 94 or 112 accessions as
well as quantification of select metabolites in an attempt to estab-
lish the major integrator of growth within the species (Sulpice
et al., 2009, 2010). The results of these analyses spotlighted starch
and protein biosynthesis as the major controlling factors with
respect to total biomass (Sulpice et al., 2009, 2010). Transcript
profiling in 21 accessions further revealed coordinated changes
in expression of more than 70 carbon-regulated genes, identify-
ing two (myo-inositol-1-phosphate synthase and a Kelch-domain
protein) whose transcripts correlate with biomass. The impact
of allelic variation at these two loci was shown by association
mapping, identifying them as candidate genes to increase biomass
production.

Kliebenstein and co-workers have also taken both association
mapping and QTL-based approaches in their studies, profiling
both primary and secondary metabolites alongside studies of gene
expression (Kliebenstein et al., 2006; Rowe et al., 2008; Klieben-
stein, 2009; Chan et al., 2010). They have expended considerable
effort to understand whole genome expression QTL, revealing a
high incidence of both cis- and trans-acting QTL, including non-
additive variation such as epistasis and transgressive segregation as
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well as genetic variation affecting entire transcriptional networks
(Kliebenstein et al., 2006; Kliebenstein, 2009). They addition-
ally linked this variation to phenotypic alterations in secondary
metabolite content (Wentzell et al., 2007; Hansen et al., 2008) and
more recently profiled primary metabolites (Rowe et al., 2008) in
a 210 member RIL population. Statistical analysis of the resultant
dataset suggested that epistatic interactions control a majority of
the variation in the network of plant primary metabolism. They
also identified 11 metabolite QTL hotspots, two of which over-
lapped the AOP and MAM loci previously characterized as QTL
for glucosinolate accumulation.

Taking this analysis one step further, the authors constructed
two biochemical networks de novo; however, it is too early to judge
the accuracy of such an approach. The group subsequently pro-
filed some 327 metabolites against greater than 200 000 SNPs
(Chan et al., 2010). However, comparison of the resultant data
from this study and that described above on the RIL popula-
tion revealed that the higher level of genetic variation in the
accession population was not reflected by a higher variation in
the metabolome. They suggest that evolutionary constraints limit
metabolic variation. Another important finding of this study is
the large environmental influence on metabolite levels. Clearly
such studies must be conducted in a range of environmental
conditions since not only do individual metabolites change with
the environment but the entire network behavior changes as
well.

METABOLIC VARIANCE IN CROP SPECIES
While Arabidopsis is the best characterized plant species with
respect to natural variation in the metabolome, an increasing
number of studies are being carried out in crop species. Unfor-
tunately, a limited number of these studies have addressed envi-
ronmental influences across independent harvests and/or loca-
tions. Nonetheless, considerable information has been gleaned
from single-harvest studies (see for example Fraser et al., 2007;
Kusano et al., 2007). Despite these limitations, studies on rice, the
staple food crop of almost half of the world’s population (Hall
et al., 2008), are particularly pertinent from an applied perspec-
tive. Kusano et al. (2007) recently profiled a total of 70 rice cultivars
using a combination of two-dimensional GC–MS yielding a highly
accurate inventory of the nutritional value of these cultivars. Sim-
ilar smaller scale studies have also been carried out in sesame,
broccoli, and mustard (Magrath et al., 1993; Laurentin et al., 2008;
Rochfort et al., 2008). Adoption of MALDI/TOF-MS to individ-
ual mutagenized plants and Solanum pennellii ILs has been used
for screening of fruit containing high levels of nutraceutical com-
pounds such as carotenoids (Fraser et al., 2007). These studies all
reveal large diversity within populations at the genetic and meta-
bolic levels and hint that such information is likely of high value for
breeding programs (Fernie and Schauer, 2009). As we will discuss
in the following paragraphs it is also highly interesting material in
which to study metabolic regulation.

There are examples of multi-harvest replication of metabolomic
studies in crop species. To date the majority of these have been
focused on tomato and these studies are the focus of this section.
However, interesting examples in maize (Harrigan et al., 2007a,b;
Zhang et al., 2010; Lisec et al., 2011), Lolium perenne (Koulman

et al., 2009), and wheat (Hazehzarghani et al., 2008) will also be dis-
cussed. In maize a range of compositional traits including protein,
oil, fatty acid, amino acid, and organic acid content was carried out
in two independent maize hybrids grown at three separate loca-
tions (Harrigan et al., 2007a,b). This important proof-of-concept
study demonstrated the high non-genetic variability in crop com-
position, illustrating the need for replicated trials. More recently a
comparative analysis of the root metabolome of six parental maize
inbred lines and their corresponding 14 hybrids was performed
(Lisec et al., 2011). The metabolic profile of each hybrid when com-
pared to its parents is distinct and even reciprocal hybrids are easily
distinguished. Reconstructed metabolic networks display a higher
network density in most hybrids as compared to the corresponding
inbred lines, suggesting that metabolite levels are subject to tighter
control. On a broader scope, a maize diversity panel was screened
for 10 key enzyme activities and heritable variation was found in
each one (Zhang et al., 2010). Association mapping subsequently
identified a novel amino acid substitution associated with a vari-
ation in isocitrate dehydrogenase activity, demonstrating that this
approach can identify putative functional sites. A later study of the
same 10 enzymes across a maize intermated B73 × Mo17 map-
ping population provided almost a four-fold increase in genetic
map distance compared with conventional mapping populations
(Zhang et al., 2011). In total, 73 significant QTL that influence the
activity of these 10 enzymes as well as 8 QTL that influence bio-
mass were identified. While some QTL were shared by different
enzymes or biomass, the authors critically evaluated the proba-
bility that this may be fortuitous. All enzyme activity QTL were
in trans to the known genomic locations of structural genes (i.e.,
genes that encode enzymes operating within the pathways), except
for single cis-QTL for nitrate reductase, glutamate dehydrogenase,
and shikimate dehydrogenase; the low frequency and low addi-
tive magnitude compared with trans-QTL indicates that, at least
in this population, cis-regulation is relatively unimportant versus
trans-regulation.

Returning to metabolite content QTL, large datasets have been
obtained for L. perenne populations (Rasmussen et al., 2008), as
well as wheat infected with Fusarium head blight (Hazehzarghani
et al., 2008). By far the best characterized crop system, however, is
tomato (Klee, 2010; Keurentjes and Fernie, 2011). In this species,
a broad profiling of fruit volatiles, which are extremely important
flavor components, in a population consisting of 74 Solanum lycop-
ersicum × S. pennellii ILs yielded 100 QTL that were conserved
across harvests (Tieman et al., 2006b). Metabolic and flux profil-
ing of one of these QTL was instrumental in defining the pathway
for synthesis of important phenylalanine-derived aromatic com-
pounds in the fruit (Tieman et al., 2006a). Thirty additional QTL
that affect the volatile emissions of red-ripe fruit were identi-
fied in a second population ofILs derived from a cross between
S. lycopersicum and S. habrochaites grown in multiple seasons and
locations (Mathieu et al., 2010). The same population has also
recently been characterized for QTL for ripening-associated ethyl-
ene release (Dal Cin et al., 2009) and used to define a novel pathway
for sesquiterpene biosynthesis from Z,Z -farnesyl pyrophosphate
(Sallaud et al., 2009). In other studies of note, the volatile metabo-
lite composition of some 300 compounds was determined across
a population of 94 elite cultivars of tomato (Tikunov et al., 2005),
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whilst the primary metabolite composition of five wild species
of tomato was assessed in comparison to the cultivated tomato
(Schauer et al., 2005). These studies provide important invento-
ries of the metabolic differences between genotypes. That said, it
will be some time before our knowledge is sufficiently advanced
that we can facilely use such information for predictive breeding
(Keurentjes and Fernie, 2011). Similar, albeit not quite so extensive,
studies were performed on intraspecific crosses of S. lycopersicum
cultivars (Causse et al., 2002), and have subsequently been vali-
dated in replicated experiments (Zanor et al., 2009). The same S.
pennellii ILs described above were profiled using an established
GC–MS method in replicated harvests resulting in identification
of 889 QTL covering 74 metabolites including important primary
metabolites such as sugars and organic acids as well as essen-
tial amino acids, intermediate metabolites and vitamins (Schauer
et al., 2006). It is important to note that despite the fact that in
many cases metabolite content was elevated, the vast majority of
these QTL were associated with a yield penalty. In a subsequent
study the heritability of these traits were established (Schauer et al.,
2008). For this purpose, the S. penellii ILs were grown alongside
lines heterozygous for the introgression (ILHs) allowing evalua-
tion of both heritability and the mode of inheritance. These studies
revealed that mean heritability of the metabolite QTL was gener-
ally relatively low (as in Arabidopsis; Rowe et al., 2008). However,
a handful of the traits were nevertheless highly conserved and dis-
played reasonable heritability. Comparative study of the ILs and
ILHs revealed that most of the metabolic QTL were dominant
with a considerable number displaying additive or recessive mode
of action and only a negligible number displaying overdominant
phenotypes. Interestingly, the mode of inheritance was quanti-
tatively different between diverse compound classes and several
metabolite pairs displayed a similar mode of inheritance at the
same chromosomal loci, suggesting that the variation is likely to
be mediated by enzymes involved in their interconversion (Schauer
et al., 2008).

The S. pennellii ILs have also been characterized for trichome
specialized metabolites including terpenes, flavonoids, and acyl
sugars (Schilmiller et al., 2010). Metabolite profiling led to the dis-
covery of ILs producing different acyl chain substitutions on acyl
sugar metabolites as well as two regions quantitatively influencing
acyl sugar content. A QTL that influenced the types of glycoal-
kaloids was also identified. These results illustrate the power of
QTL mapping for identification of novel enzymatic functions and
pathways. Following a similar approach Tieman et al. (2006b) used
ILs and reverse genetics in combination with volatile and isotope
tracer analysis to establish the route of 2-phenylethanol and pheny-
lacetaldehyde biosynthesis in tomato. A second flavor volatile QTL
responsible for synthesis of methylsalicylate was shown to be
the consequence of altered expression QTL (eQTL) of the gene
encoding the biosynthetic enzyme, salicylic acid methyltransferase
(Tieman et al., 2010).

Another important agronomic property in tomato, total solu-
ble solids content, has been defined at the genetic level. An early
study utilizing the S. pennellii ILs mapped the moderate QTL Brix
9-2-5 to a 484-bp region of the cell wall invertase gene LIN5 (Frid-
man et al., 2000), although there was no difference in expression
or protein content of LIN5 in the IL harboring this QTL (Fridman

et al., 2004). QTL analysis of five different tomato species delim-
ited the functional polymorphism of Brix 9-2-5 to an amino acid
at the fructosyl binding site near the catalytic site of the inver-
tase crystal with enzyme kinetic analysis of recombinant protein
demonstrating that the S. pennellii allele was more efficient in
degrading sucrose (Fridman et al., 2004). Subsequent experiments
involving RNA interference of this isoform resulted in reduced Brix
and sink strength, thus confirming the results obtained in the het-
erologous system (Zanor et al., 2009). Currently, optimized assays
(Steinhauser et al., 2010) for a set of key enzymes of central metab-
olism are being used to profile the S. pennellii ILs. Once finished
it will be highly informative to integrate these analyses with those
of the metabolites.

Further proof of the value of metabolic QTL analysis is illus-
trated by studies on branched chain amino acid metabolism for
which four co-ordinate QTL were identified (Schauer et al., 2006).
As a first approach we focused on branched chain aminotrans-
ferases (BCATs), mapping all six members of the family. BCAT1
is an eQTL whereas BCAT4 is a protein quality QTL (i.e., a QTL
that does not affect protein abundance but rather its relative effi-
ciency within a given biological process; Maloney et al., 2010).
We next mapped a further 22 putative gene functions associated
with branched chain amino acid metabolism. Mapping the chro-
mosomal locations of these enzymes, it was possible to define
the map positions of 24 genes (with two of the putative gene
functions being encoded by two independent genes). Eight co-
localized with BCAA QTL including those encoding ketol-acid
reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD),
and isopropylmalate dehydratase (IPMD; Kochevenko and Fernie,
2011). Quantitative evaluation of the expression of these genes
revealed that the S. pennellii allele exhibited altered expression
of IPMD, whereas expression of KARI and DHAD were invari-
ant across the genotypes. Whilst the antisense inhibition of IPMD
resulted in increased BCAA, the antisense inhibition of KARI or
DHAD had no effect on fruit BCAA contents (Kochevenko and
Fernie, 2011).

CONCLUDING REMARKS
The above examples in both Arabidopsis and crop species illus-
trate how forward genetic approaches based on natural variation
can produce high resolution information concerning metabolic
regulation. This is the case at the levels of the individual enzyme,
whole pathways, and even metabolic networks. They furthermore,
demonstrate how natural variance is an undermined resource of
biochemical diversity and one that will certainly be an important
resource for breeding approaches toward metabolic engineering
(Fernie et al., 2006). Given the ever increasing number of crop
species for which full-genome sequences are becoming available
it is highly likely that such studies will be greatly aided by the
development of translational approaches both at the molecular
(Mutwil et al., 2011) and phenotyping levels (Tohge and Fernie,
2010). As yet one drawback of this approach is that it is consid-
erably slower than jumping straight into using reverse genetics.
That said, the development of a wide array of genetic materials
including those resulting from TILLING (Till et al., 2006) and the
adoption of every more sophisticated rapid screening technologies
such as those afforded by viral induced gene silencing (Ruiz et al.,
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1998; Quadrana et al., 2011) will likely considerably accelerate this
process. Regardless, the forward genetic approach has at least two
advantages (i) by taking a top-down approach it may uncover dif-
ferent levels of metabolic regulation within an experiment and
(ii) given that the whole genome is considered, this approach is
not restricted to evaluation of previously known enzymes or reg-
ulators thereof. This approach is entirely complementary to the

currently more commonly used reverse genetic approach. While
the forward genetic approach is in its infancy we are convinced
that it will prove a highly powerful tool for the identification of
novel mechanisms of metabolic regulation.
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