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Skin aging is a complex process influenced by intrinsic and extrinsic factors.
Although dermatology offers advanced interventions, molecular mechanisms in
skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of
coding or non-coding RNAs, regulate gene expression through miRNA
competition. Several ceRNA networks investigated up to now offer insights
into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-
CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-
epiregulin contributes to UVB-induced inflammatory skin damage. Predicted
ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C
sequesters miRNAs in epidermal aging-associated alteration of calcium
gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-
miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses
identify critical genes and compounds for skin aging interventions. In skin
wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-
catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by
inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates
adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA
networks provide valuable insights into the molecular underpinnings of skin
aging and wound healing, offering potential therapeutic strategies for further
investigation. This comprehensive review serves as a foundational platform for
future research endeavors in these crucial areas of dermatology.
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1 Introduction

Skin aging, scientifically referred to as cutaneous aging, is a process characterized by the
intricate interplay of intrinsic (internal) and extrinsic (external) factors (Gilchrest, 1989;
Fisher et al., 2002; Helfrich et al., 2008). It results in a spectrum of discernible signs, including
wrinkles, diminished elasticity, age spots, hyperpigmentation, dryness, and more.
Importantly, skin aging’s progression varies based on genetics, lifestyle, and
environmental influences, making it a highly individualized journey (McCullough and
Kelly, 2006; Baumann, 2007). Intrinsic factors encompass genetic predispositions and the
natural aging process, while extrinsic factors include cumulative sun exposure, lifestyle
choices, and environmental stressors. While skin aging is an inevitable part of life, a proactive
approach can significantly mitigate its effects and promote healthier, more youthful-looking
skin (Farage et al., 2008). Key preventive measures include rigorous sun protection to shield
against harmful ultraviolet radiation (Green et al., 2011), maintaining a well-balanced diet to
provide essential nutrients and hydration (Boelsma et al., 2003), and adhering to tailored
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skincare routines that cater to individual skin types and concerns.
Furthermore, abstaining from harmful habits like smoking and
excessive alcohol consumption is pivotal in preserving skin health
(Poljsak and Dahmane, 2012; Pierard-Franchimont et al., 2019).
Beyond preventive measures, dermatology offers a range of
advanced interventions to address specific signs of skin aging.
These encompass treatments such as botulinum toxin, dermal
fillers, chemical peels, laser therapy and molecular regulation of
skin aging-related gene expression networks, each tailored to cater to
unique skin aging concerns (Carruthers, 2002; Nikalji et al., 2012;
Shahrokh et al., 2019; Huth et al., 2020). Although various
dermatological aging prevention strategies have been developed
in last years, our understanding of molecular mechanisms in skin
cell aging has been still limited.

Competing endogenous RNAs (ceRNAs) are a subset of coding
or non-coding RNAs (ncRNAs) that encompass various RNA
species, including messenger RNAs (mRNAs), transcribed

pseudogenes, expressed 3′-untranslated regions (3′-UTRs), long
non-coding RNAs (lncRNAs), viral noncoding RNAs, genomic
viral RNAs and circular RNAs (circRNAs) (Salmena et al., 2011;
Tay et al., 2014; Deniz and Erman, 2017). These RNA molecules
compete for a common pool of microRNAs (miRNAs) within the
cell. MiRNAs are short RNA molecules that play a crucial role in
post-transcriptional gene regulation by binding to complementary
sequences in target mRNAs, thereby inhibiting their translation or
promoting their degradation (Bartel, 2009; Krol et al., 2010; Ha and
Kim, 2014).Whenmultiple RNAmolecules contain binding sites for
the samemiRNA, they can compete for the available miRNAs (Ebert
et al., 2007). CeRNAs contain miRNA response elements (MREs),
which are sequences that can bind to specific miRNAs. When a
ceRNA and a target mRNA share MREs for the same miRNA, they
can compete for binding to that miRNA (Bosson et al., 2014;
Thomson and Dinger, 2016). When a ceRNA sponges or
sequesters a miRNA, it prevents the miRNA from binding to and

TABLE 1 LncRNA-miRNA-mRNA networks related to skin aging and wound healing.

lncRNA miRNA mRNA Context References

1. Studies in skin aging

RP11-670E13.6 miR-663a CDK4/CD6 UVB-induced skin photoaging in vitro Li et al. (2019)

Meg3 miR-93-5p Epiregulin UVB-induced inflammatory skin damage in vitro and in vivo Zhang et al. (2019)

BICD1-1:1 miR-146a-5p Not specified UVA-induced skin photoaging, bioinformatics prediction Lin et al. (2021)

LPHN3-8:1

SLC9A11-6:1

CENPK-2:1

PRKAR1A-5:2

SPRR2C miR-542-5p Not specified Epidermal aging-associated alteration of calcium gradient in vitro and in vivo Breunig et al. (2021)

miR-125a

miR-135a-5p

miR-196a-5p

miR-491-5p

miR-552-5p

H19 miR-296-5p IGF2 Dermal fibroblast senescence in vitro Tang et al. (2022)

PVT1 miR-551b-3p AQP3 Skin photoaging in vitro Tang et al. (2023)

Not specified Not specified Not specified Skin aging, bioinformatics screening analysis Xiao et al. (2023)

Comprehensive study for potential ceRNA-PPI networks

2. Studies in skin wound healing

MALAT1 miR-124 Not specified H2O2-induced wound healing in vitro He et al. (2020)

H19 Not specified Not specified Diabetic skin wound healing in vitro and in vivo Yang et al. (2023)

Related to NLRP3 inflammasome
pathway

SAN miR-143-3p ADD3 Aged adipose tissue stem cells and wound healing in vitro and in vivo Xiong et al. (2023)

Abbreviations: CDK4, cyclin-dependent kinase 4; CD6, cluster of differentiation 6; BICD1, BICD, cargo adaptor 1; LPHN3, Latrophilin 3; SLC9A11, sodium/hydrogen exchanger 11; CENPK,

centromere protein K; PRKAR1A protein kinase cAMP-dependent type I regulatory subunit alpha; UV, ultraviolet; SPRR2C, small proline rich protein 2C; IGF2, insulin like growth factor 2;

PVT1, plasmacytoma variant translocation 1; AQP3, aquaporin-3; PPI., protein-protein interaction; NLRP3, NLR, family pyrin domain containing 3; SAN, senescence-associated noncoding

RNA; ADD3, adducin 3.
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regulating its target mRNA. As a result, the target mRNA’s
expression may increase. Such a ceRNA-miRNA-mRNA
interaction creates a complex network of post-transcriptional
regulation, where changes in the expression levels of one RNA
molecule can influence the expression of others in the network.

In this review, we highlight recently characterized ceRNA
networks related to skin aging and wound healing (Table 1).
These networks shed light on the molecular mechanisms
underlying these processes and offer potential therapeutic
strategies to regulate skin cell senescence in the future.

1.1 CeRNA networks in skin aging

1.1.1 LncRNA RP11-670E13.6-miR-663a-CDK4/
CD6 network in UVB-induced skin photoaging

In 2019, Li et al. (2019) conducted an inaugural investigation
into ceRNA networks in the context of skin aging. This pioneering
study aimed to elucidate the intricate interactions involving lncRNA
RP11-670E13.6 within cellular frameworks, particularly its
engagement with miRNAs and other cellular constituents. The
primary objective was to discern how RP11-670E13.6 functions
to safeguard dermal fibroblasts from entering a state of cellular
senescence, a process expedited by exposure to ultraviolet B (UVB)
radiation, a known accelerator of skin aging (Cav et al., 2017; Lee
et al., 2021).

Notably, the study’s findings highlighted a critical interaction
between RP11-670E13.6 and a protein known as heterogeneous
nuclear ribonucleoprotein (hnRNP) H. This interaction emerged
as a pivotal component of the regulatory mechanism responsible
for delaying cellular senescence. Specifically, RP11-670E13.6 was
observed to act as a sponge for miRNA-663a, thereby modulating
the derepression of key factors such as Cdk4 and Cdk6. This
modulation, in turn, contributed to the postponement of cellular
senescence in dermal fibroblasts subjected to UV irradiation-
induced skin photoaging. Furthermore, RP11-
670E13.6 exhibited an additional role in facilitating the repair
of DNA damage, a crucial process for maintaining cellular
integrity. This function was achieved through the upregulation
of ATM and γH2A.X levels. Additionally, the study provided
evidence that hnRNP H physically interacted with RP11-
670E13.6 and exerted a regulatory influence by blocking its
expression. This observation suggests that hnRNP H holds
promise as a potential therapeutic target in the context of
interventions aimed at mitigating skin photoaging.

1.1.2 LncRNA Meg3-miR-93-5p-epiregulin
network in UVB-induced inflammatory skin
damage

Zhang et al. (2019) delved into the intricate mechanisms
underpinning inflammatory skin damage resulting from exposure
to UVB radiation, since UVB-irradiation on murine dorsal skin
tissues and fibroblasts actually induce inflammation and tissue
damage (Afaq et al., 2003; Cav et al., 2017; Her et al., 2019; Lee
et al., 2021). Employing a comprehensive ceRNA network analysis,
the research team unveiled a pivotal interaction involving lncRNA
Meg3, a specific miRNA termed miR-93-5p, and epiregulin. The
miR-93-5p was identified as a target susceptible to sequestration by

Meg3. Epiregulin, a 46-amino acid protein belonging to the
epidermal growth factor (EGF) family of peptide hormones
(Riese and Cullum, 2014), has previously been implicated in
orchestrating the inflammatory response triggered by UVB
radiation exposure (Zha et al., 2019). Through its ceRNA
regulatory function, Meg3 played a significant role in
upregulating the expression of epiregulin. This upregulation was
closely associated with the activation of a pronounced inflammatory
response within the skin, culminating in the development of skin
lesions and damage. The study’s findings shed light on the Meg3-
miR-93-5p-epiregulin axis as a pivotal contributor to the
pathogenesis of skin lesions induced by UVB radiation exposure,
providing valuable insights into the molecular mechanisms
underlying inflammatory skin damage in this context.

1.1.3 Prediction of novel lncRNA-miRNA-mRNA
networks in UVA-induced skin photoaging

Lin et al. (2021) conducted an intriguing study in 2021 aimed at
predicting lncRNA-miRNA-mRNA networks in human skin
photoaging, particularly focusing on the effects of ultraviolet A
(UVA) radiation exposure. In this comprehensive investigation,
human skin samples subjected to UVA radiation were analyzed
using high-throughput sequencing and advanced bioinformatics
tools for a thorough examination of miRNA, lncRNA, and
mRNA expression profiles. The study revealed the differential
expression of 34 miRNAs and their potential interactions with
specific lncRNAs.

Notably, an exploration of regulatory networks highlighted
the potential impact of signal transduction pathways, including
the TNF signaling pathway, thyroid hormone signaling pathway,
and lysosome-related processes, following UVA irradiation.
Furthermore, miR-146a-5p emerged as a key player, with
experimental validation confirming its downregulation post-
UVA irradiation. Of particular interest, the study proposed
potential interactions between miR-146a-5p and several
lncRNAs, namely, BICD1-1:1, LPHN3-8:1, SLC9A11-6:1,
CENPK-2:1, and PRKAR1A-5:2. While further validation of
this network is warranted, it suggests a potentially crucial
upstream regulatory mechanism in the context of dermal
UVA-induced photoaging.

LncRNA SPRR2C-mediated miRNA sequestration in epidermal
aging-associated alteration of calcium gradient.

In a recent study by Breunig et al. (2021) conducted in 2021, the
researchers investigated the adaptive mechanisms of the epidermis
in response to altered calcium levels within various skin layers,
including the stratum granulosum, the outermost stratum
spinosum, and the stratum basale. This investigation shed light
on how epidermal cells, particularly keratinocytes, regulate their
response to calcium-induced inhibition of cell division by
modulating the expression of specific miRNAs. They revealed
that several miRNAs, including miR-542-5p, miR-125a, miR-
135a-5p, miR-196a-5p, miR-491-5p, and miR-552-5p, exhibited
altered expression levels in response to calcium-induced signals.
Importantly, these miRNAs were identified as potential
sequestration targets of the lncRNA SPRR2C. Through its sponge
mechanism, SPRR2C was shown to modulate the levels of these
miRNAs, thereby influencing the calcium-induced processes
associated with epidermal aging.
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1.1.4 LncRNA H19-miR-296-5p-IGF2 axis in
senescence of human dermal fibroblasts

Tang et al. (2022) investigated into the role of lncRNA H19 in
human dermal fibroblasts (HDFs) concerning cellular viability and
senescence. Their research led to the identification of miR-296-5p as
a significant player in the regulation of these processes through a
comparative analysis of young and aging skin samples. Further
exploration revealed that miR-296-5p critical in the context of skin
aging exerts its influence by targeting IGF2 mRNA among a pool of
three mRNA candidates, IGF2, ACTN1, and ARID3B.

Notably, IGF2 was shown to activate the PI3K/mTOR/
AWP3 signaling pathway, leading to the upregulation of
AQP3 that plays a critical role in skin aging (Li et al., 2010; Qin
et al., 2011; Bollag et al., 2020), which in turn suppressed cell viability
and was associated with the senescence of HDFs. Moreover, this
study proposed lncRNA H19 as a ceRNA for miR-296-5p, implying
its role in sequestering and modulating the activity of miR-296-
5p. This finding collectively positions lncRNA H19 as a novel
molecular target for potential therapeutic interventions aimed at
delaying the skin aging process.

1.1.5 LncRNA PVT1-miR −551b-3p-AQP3 network
in skin photoaging

In a recent study by Tang et al. (2023), the focus was directed
towards elucidating the regulatory mechanisms underlying skin
photoaging in HDFs mediated by lncRNAs. They employed in
silico analysis to identify photoaging-related genes, followed by
the screening of differentially expressed lncRNAs and miRNAs to
establish ceRNA interaction networks. Among the genes examined,
AQP3 emerged as a noteworthy candidate (Jing et al., 2016),
exhibiting a negative correlation with aging in HDFs within one
of the datasets. Subsequent experiments validated the role of
AQP3 in enhancing HDF viability and mitigating senescence,
primarily by impeding the ERK/p38 MAPK signaling pathway.

Intriguingly, miR-551b-3p, identified as one of the upstream
miRNAs of AQP3 through the ENCORI database, was found to be
significantly upregulated in senescent HDFs, suggesting its
involvement in the aging process. Furthermore, the study
predicted potential upstream lncRNA regulators of miR-551b-3p
and identified PVT1 as a downregulated candidate in senescent
HDFs. Mechanistically, PVT1 was demonstrated to function as a
sponge for miR-551b-3p in senescent HDFs, effectively suppressing
its expression through seed-mediated base-pairing. These findings
collectively shed light on the intricate regulatory networks governing
skin photoaging in HDFs.

1.1.6 Bioinformatics analysis of lncRNA-miRNA-
mRNA networks in skin aging

Xiao et al. (2023) advanced computational and bioinformatics
methodologies, which were harnessed to comprehensively analyze
extensive datasets containing genetic and molecular information
pertinent to the intricate phenomenon of skin aging. They
meticulously examined two distinct gene expression datasets,
namely, GSE55118 and GSE72264, which are particularly
pertinent to skin aging processes. This analysis identified a
curated selection of 169 mRNAs, 27 miRNAs, and 50 lncRNAs
that exhibited close associations with skin aging within co-
expression networks. As a consequential outcome of this analysis,

the study spotlighted ten hub genes, which include AQP4, TRPM8,
TBR1, NTSR2, MPPED1, BARHL2, PAX9, CPN1, CES3, and
CHGB. These hub genes were determined to play pivotal roles in
orchestrating protein-protein interactions (PPIs) relevant to the
progression or potential reversal of skin aging (Jing et al., 2016;
Bicakci et al., 2017; Ikarashi et al., 2017; Owasil et al., 2020; Thapa
et al., 2021; Chen et al., 2022a; Chen et al., 2022b), underscoring their
significance in the intricate biological processes involved.

Furthermore, this study extended its inquiry to identify ten
potential compounds with the capacity to alleviate skin aging. These
compounds, including tretinoin (Bergstrom, 2009), pifithrin
(Marsolais et al., 2007), selamectin (Bozzatto et al., 2014),
entinostat (Jiang et al., 2023), bretazenil (Guldner et al., 1995),
syringic-acid (Ha et al., 2018; Ren et al., 2019; Abd-Allah et al.,
2023), BRD-K96475865, emedastine (Murota et al., 2008), abacavir
(Chuang and Chen, 2018), and rotenone (da Cruz et al., 2023), were
rigorously validated throughmolecular docking analysis with AQP4,
which was ranked the core in the PPI analysis. Such computational
insights into promising compounds hold substantial promise for the
development of interventions aimed at mitigating the effects of skin
aging. In summation, the comprehensive dataset and findings
generated by this study constitute a valuable resource that not
only deepens our understanding of the molecular underpinnings
of skin aging but also serves as a foundational platform for future
investigations in this crucial area of research.

1.2 CeRNA networks in skin wound healing

1.2.1 LncRNA MALAT1-miR-124 network in H2O2-
induced wound healing

He et al. (2020) investigated the intricate mechanisms
underlying wound healing, with a particular focus on
extracellular vesicles (exosomes) derived from adipose-derived
stem cells (ADSCs) harboring the lncRNA MALAT1. This
research unveiled a specific miRNA, miR-124, as a key target of
MALAT1 in HaCaT and HDF cells. Importantly, MALAT1-
containing ADSC-Exos were found to play a crucial role in the
activation of the Wnt/β-catenin signaling pathway. Through this
activation and the concurrent targeting of miR-124, MALAT1-
containing ADSC-Exos were demonstrated to facilitate and
expedite the wound healing process induced by hydrogen
peroxide (H2O2). These findings offer novel insights into
potential therapeutic approaches for enhancing wound healing in
human normal subcutaneous adipose tissues.

1.2.2 MSC-comprised exosomal lncRNA H19 for
NLRP3 regulation in diabetic skin wound healing

Yang et al. (2023) has further explored the potential role of
mesenchymal stem cell (MSC)-derived exosomes containing
lncRNA H19 in the context of skin wound healing in individuals
with diabetes. This study encompassed a series of experiments
involving the use of human immortalized keratinocyte cell line
HaCaT cells and murine models. Their findings revealed that
exosomes derived from hair follicle MSCs, which encapsulated
lncRNA H19, exhibited the capacity to augment cell proliferation
and migration. This effect was attributed to the inhibition of
pyroptosis, a form of programmed cell death, achieved by
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suppressing the activation of the NLRP3 inflammasome. These
observations were consistent both in vitro experiments conducted
with HaCaT cells and in vivo studies using murine models.
Consequently, these findings suggest that lncRNA H19 holds
promise as a potential therapeutic candidate for the repair of
skin wounds in individuals afflicted with diabetes.

1.2.3 LncRNA SAN-miR-143-3p-ADD3 network in
aged adipose tissue stem cells and wound healing

Clinical applications involving cell-based wound healing hold
immense therapeutic promise across a spectrum of medical contexts.
Adipose-derived mesenchymal stem cells (ASCs) have garnered
considerable attention for their utility in promoting wound
healing (Jo et al., 2021). However, the therapeutic potential of
ASCs appears to be compromised with aging, necessitating a
concerted effort to mitigate the senescence-associated decline in
their efficacy. Addressing this critical concern, a recent study by
Xiong et al. (2023) introduced an innovative approach for
rejuvenating ASCs by leveraging the regulatory properties of a
lncRNA known as senescence-associated noncoding RNA (SAN).
In this study, they delved into the pivotal role played by SAN as a
ceRNA against miR-143-3p, a known regulator of ASC senescence
through its targeting of ADD3 mRNA, as elucidated in prior
research (Deacon et al., 2010). These findings suggest that SAN,
by acting as a molecular sponge for miR-143-3p, exerts control over
the senescence-related processes in ASCs. While acknowledging the
need for further in vitro and in vivo validations and in-depth
mechanistic investigations, the study underscores the significance
of the lncRNA SAN-miR-143-3p-ADD3 network in governing ASC
senescence. Importantly, this research sheds light on the potential of
lncRNAs as invaluable therapeutic tools for effectively managing the
aging-related challenges encountered in cell-based wound healing
strategies.

2 Concluding remark

In the relentless pursuit of elucidating the intricate molecular
mechanisms underpinning the processes of skin aging and wound
healing, the burgeoning domain of ceRNA networks has emerged as
a fertile ground yielding promising insights and potential
therapeutic avenues. CeRNAs, constituting a subset of non-
coding RNAs, have conspicuously ascended as pivotal
orchestrators of gene expression regulation, exerting their
influence through intricate miRNA-mediated competition. This
review showcases a compendium of ceRNA networks, the
elucidation of which collectively contributes to the enhancement
of our comprehension regarding the molecular underpinnings of
skin aging and wound healing. These revelations offer a solid
foundation upon which future research and therapeutic strategies
can be erected.

It’s important to note that the development of ceRNA-based
therapeutics is still in its early stages, and many challenges need to be
addressed, including delivery methods, specificity, and potential off-
target effects. Additionally, the success of ceRNA-based
interventions by targeting central nodes in context would depend

on a thorough understanding of the ceRNA networks involved in the
particular skin aging process or condition of interest. Further
molecular validations and clinical studies are needed to
determine the feasibility and effectiveness of these approaches
compared to miRNA or mRNA-based regulation.

In the last decade, there have been lots of experimentally
validated supports for the ceRNA-miRNA-mRNA networks that
affect complexed cellular processes, such as cancer biology,
cellular development, and host cell regulation by viruses (Tay
et al., 2014; Thomson and Dinger, 2016; Xu et al., 2022). Likewise,
the multifaceted potential inherent in ceRNA networks augurs
well for their role as a versatile and dynamic toolset in the
relentless quest to promote the attainment of healthier, more
youthful skin and to bolster the efficacy of wound healing
processes. It is imperative to note, however, that substantial
terrain remains uncharted in the realm of ceRNA networks,
promising a fertile landscape for further scientific exploration.
In the foreseeable future, fortified by the knowledge gleaned from
these endeavors, individuals may find themselves endowed with a
diverse molecular arsenal, empowering them to adopt proactive
approaches in the stewardship and rejuvenation of their skin,
thereby enabling the realization of the full spectrum of their
skin’s innate health and aesthetic potential.
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