
TYPE Original Research
PUBLISHED 21 December 2023
DOI 10.3389/fphys.2023.1299104

OPEN ACCESS

EDITED BY

Emiliano Cè,
University of Milan, Italy

REVIEWED BY

Jean-Marc Vesin,
Swiss Federal Institute of Technology
Lausanne, Switzerland
Raquel Bailón,
University of Zaragoza, Spain

*CORRESPONDENCE

Matias Kanniainen,
matias.kanniainen@tuni.fi

RECEIVED 22 September 2023
ACCEPTED 30 November 2023
PUBLISHED 21 December 2023

CITATION

Kanniainen M, Pukkila T, Kuisma J,
Molkkari M, Lajunen K and Räsänen E
(2023), Estimation of physiological
exercise thresholds based on dynamical
correlation properties of heart rate
variability.
Front. Physiol. 14:1299104.
doi: 10.3389/fphys.2023.1299104

COPYRIGHT

© 2023 Kanniainen, Pukkila, Kuisma,
Molkkari, Lajunen and Räsänen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Estimation of physiological
exercise thresholds based on
dynamical correlation properties
of heart rate variability

Matias Kanniainen1*, Teemu Pukkila1, Joonas Kuisma1,
Matti Molkkari1, Kimmo Lajunen2 and Esa Räsänen1

1Computational Physics Laboratory, Tampere University, Tampere, Finland, 2Kauppi Sports Coaching
Ltd., Tampere, Finland

Aerobic and anaerobic thresholds of the three-zone exercise model are
often used to evaluate the exercise intensity and optimize the training load.
Conventionally, these thresholds are derived from the respiratory gas exchange
or blood lactate concentrationmeasurements. Here, we introduce and validate a
computational method based on the RR interval (RRI) dynamics of the heart rate
(HR) measurement, which enables a simple, yet reasonably accurate estimation
of both metabolic thresholds. The method utilizes a newly developed dynamical
detrended fluctuation analysis (DDFA) to assess the real-time changes in the
dynamical correlations of the RR intervals during exercise. The training intensity
is shown to be in direct correspondence with the time- and scale-dependent
changes in the DDFA scaling exponent. These changes are further used in
the definition of an individual measure to estimate the aerobic and anaerobic
threshold. The results for 15 volunteers who participated in a cyclo-ergometer
test are compared to the benchmark lactate thresholds, as well as to the
ventilatory threshods and alternative HR-based estimates based on the maximal
HR and the conventional detrended fluctuation analysis (DFA). Our method
provides the best overall agreement with the lactate thresholds and provides a
promising, cost-effective alternative to conventional protocols, which could be
easily integrated inwearable devices. However, detailed statistical analysis reveals
the particular strengths and weaknessess of each method with respect to the
agreement and consistency with the thresholds—thus underlining the need for
further studies with more data.

KEYWORDS

heart rate variability, time series analysis, detrended fluctuation analysis, aerobic
threshold, anaerobic threshold, wearable health technology

1 Introduction

Increasing availability and popularity of health technology including wearable devices
such as wrist monitors, rings and smart clothing brings significant possibilities to analyze
the physiological signals in everyday life. There are multiple different measures to evaluate
the effects of physical exercise from the collected data alone. One of the applications from
the exercise data is to optimize the training load, and determine the different physiological
zones during the exercise. Currently, there are several measures to determine different
physiological changes during exercise including the conventional measurements of oxygen
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consumption (Foster, 1983) and lactate concentration of the blood
(Faude et al., 2009), as well as estimates based on the heart rate
(HR) and HR variability (HRV) measurements (Cottin et al.,
2006; van Campen et al., 2020) with varying reliability and
usefulness.

In a three-zone model of the exercise (Stöggl and Sperlich,
2019), the training zones are separated by thresholds, which can
be either determined through the ventilatory exchange (VT1,
VT2) (Beaver et al., 1986), or the lactate concentration (LT1,
LT2) (Binder et al., 2008). The first (TH1) and second thresholds
(TH2) are known as the aerobic and anaerobic thresholds,
respectively. There are multiple different ways to determine the
lactate thresholds from the lactate concentration (Newell et al., 2007;
Jamnick et al., 2018; Jamnick et al., 2020), which brings uncertainty
in the analysis. Furthermore, these invasive measurements are
costly and time-consuming. On the other hand, the non-invasive
measurements of the ventilatory exchange require a strict set of
quality-control criteria (Gaskill et al., 2001; Cannon et al., 2009)
and furthermore requires a specialized test environment with
trained personnel to perform the measurements during the
exercise.

Most wearable devices use the relative HR compared to the
estimated maximal HR to determine the training zones. With
this method the aerobic threshold is usually estimated to be
around 60%–70% of the maximal HR (HRmax) and the anaerobic
threshold around 85%–90% of the HRmax, respectively. However,
this estimation has a few shortcomings. First, the HRmax has
significant individual variability, so the simple age-dependent
models are not accurate or universal (Shookster et al., 2020).
Secondly, even when using the actual measured individual HRmax
the percentage of the HRmax is also highly individual. So this model
only works for population averages but fails to accurately detect
individual thresholds. This opens a huge need and market for more
accurate detection methods.

To date, there is no golden standard in the determination
of the metabolic thresholds. There is variation in the preference,
depending also on the exercise protocols and their availability
on the market. The Finnish standard for threshold determination
is based on the lactate values (Keskinen et al., 2018), and single
case studies (Jones, 1998; Tjelta, 2019) support the use of the
lactate concentration to determine the thresholds. However, there
are publications and standards (Hoffman, 1999; Blain et al., 2005)
which use the ventilatory thresholds as a baseline measure for the
thresholds. Often, these conventional methods give quantitatively
different results (Yeh et al., 1983; Şekir et al., 2002), and they are
also dependent on subjective visual analysis included in the
interpretation of the results, e.g., in the fitting procedures of
linear trends. At present, there are new computerized methods
available to define the training zones (Kim et al., 2021; Zignoli,
2023), but a simple, cost-effective and accurate method is still to be
found.

HRV is a physiological measure, which captures the variation
of the cardiac interbeat intervals (IBI) (Goldberger et al., 2002). The
physiological responses of the exercise during both rest and exercise
can be analyzed with HRV (Gronwald and Hoos, 2020). There
are many different HRV metrics, often divided into time-domain,
frequency-domain and non-linear measures (Shaffer and Ginsberg,
2017). There are several studies examining the determination of

the physiological thresholds using the frequency-domain methods
(Di Michele et al., 2012; Ramos-Campo et al., 2017). Regarding
non-linear HRV methods, it was recently suggested that the
short-term scaling exponent α1 of detrended fluctuation analysis
(Peng et al., 1995) (DFA), i.e., a measure for the characteristics of the
RR interval (RRI) correlations for the time scale of 4–16 consecutive
RR intervals, provides a simple yet accurate approach to determine
the ventilation thresholds (Rogers et al., 2021a; Rogers et al.,
2021b).

In this study, we utilize a modified version of the DFA, i.e.,
dynamical detrended fluctuation analysis (Molkkari et al., 2020)
(DDFA) to derive an approximation for both aerobic and anaerobic
thresholds. DDFAallows themonitoring of the scaling exponent and
thus the characteristics of the RR interval correlations as functions
of both scale s and time t. In particular, it was shown by some of
the present authors that under running α(t, s) gradually decreases
from small up to higher scales, and high-intensity exercise can be
characterized by anticorrelations of the RR intervals, especially for
small scales (Molkkari et al., 2020).TheDDFA results can be further
sorted according to the HR to examine α(HR, s). Here, this quantity
was used to derive a simple yet effective measure for the aerobic and
anaerobic threshold. The method was tested with HR data obtained
from 15 subjects during a cyclo-ergometer test and compared to
simultaneous lactate and ventilation measurements. Overall, our
method yields the smallest overall difference from the LTs, thus
overperforming other HR-based estimations. The VTs, instead, give
fairly consistent results, e.g., relatively small variations across the
samples with, however, systematic and significant overestimation of
both LTs.

Our further statistical analysis shows that the introduced
method is relatively consistent over the HR range of the subject-
specific thresholds, even though the number of subjects (15)
limits the conclusions. In summary, our method provides a
promising tool to determine the physiological zones and the
corresponding thresholds during training. We further discuss
the potential and applicability of the method in wearable
technologies.

2 Materials and methods

2.1 Participants

The participants of the study are 15 healthy volunteers (aged
22–44), who performed an exercise test at Kauppi Sports Coaching
Ltd. The participants filled a form stating their legal gender, age,
medical risk factors, exercise background and training goals. The
individual information and maximal HR, VO2, power and the RR
interval filtering (described below) percentages are shown inTable 1.
The participants were instructed to only eat lightly and not to
consume caffeine for a few hours or alcohol for a few days before
coming to the test. The exercise backgrounds of the subjects were
taken into account when choosing the power levels for the test.
The participants gave a written consent for the study. The approval
of the study was given by the Tampere University Hospital Ethics
Committee, and the principles of the Declaration of Helsinki were
followed.
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TABLE 1 Subject-specific information including the gender (male =M, female = F), age (years), maximal heart rate: HRmax (BPM), maximal VO2 intake: VO2max
(mL/min), maximal ergometer power: Powermax (W), exercise duration (min:sec) and filtered RR intervals (%) for the studied subjects.

Subject Gender Age HRmax VO2max Powermax Duration Filtered RRI

1 M 33 195 3715 275 26:29 15.0

2 M 36 193 4353 370 27:19 0.2

3 M 44 204 3998 370 26:48 0.6

4 M 37 182 4139 370 29:05 0.0

5 F 27 202 2611 240 27:00 0.0

6 M 31 200 3911 300 29:11 0.0

7 F 35 172 2642 200 24:06 0.1

8 F 41 185 2687 200 21:33 0.0

9 F 22 200 3171 220 25:43 0.0

10 F 34 186 3152 250 24:31 0.1

11 F 30 185 3276 280 30:31 0.1

12 F 35 172 3224 225 19:54 5.6

13 F 42 176 2650 220 25:47 0.2

14 M 42 184 4132 330 23:52 0.1

15 M 27 202 4639 390 27:00 0.0

mean M = 7/F = 8 34 189 3487 283 25:55 1.5

(±std) (±6) (±11) (±611) (±66) (±02:43) (±3.9)

2.2 Test protocol and RR interval
measurement

Before the exercise test weight, height and body composition
of the participants were measured. The test was performed
with a Monark LC4 cyclo-ergometer, and the test started after
a 5-min warm up period. Based on the training background
of the participant, the test was commenced with a power of
40–120 W and every 3 min the power was increased incrementally
by 20–30 W. Individually chosen power levels were chosen to
best suit each participant’s fitness level. The choice is based
on Keskinen et al. (2018), where the change of one level is
derived from the body weight of the subject. As suggested by
American College of Sports Medicine (2013) et al., the maximal
power level is estimated as the eight increase of the power
level, and the starting level is therefore determined with
(Starting level = Estimated level(W) − 7× change of one level(W)).
The test was done until exhaustion, when the subjects could not
keep the required power level. During the measurement, the
RR intervals were measured with a Polar H10 heart rate sensor,
which has been shown to be highly reliable for RRI determination,
especially during intense physical exercise (Gilgen-Ammann et al.,
2019; Schaffarczyk et al., 2022). We considered the RR intervals

only during the exercise, so the analysis does not cover the warm-up
period. Polar H10 was connected to the Polar M430 watch for data
storage. After the test, the RRI data was transferred to the computer
for analysis, which was performed with Python.

2.3 Preprocessing of RR intervals

First, we ignored the RRI values outside of the data range of
200–2,000 ms, or correspondingly 30–300 BPM in the HR. Then
automatic filtering was performed by ignoring values that deviated
by more than 10% from windowed median filter with kernel size of
7 RRIs. Data filtering in HRV measurements is a commonly known
problem (dos Santos et al., 2013) and it is challenging to develop a
robust and universal filtering algorithm. We did not have the access
to the full ECG recordings and there is no certainty about the nature
of the outliers. Therefore, we visually examined the samples and
removed the beats which were statistically outliers in the current
context not to cause problems in the following analysis. A few
apparently incorrect missing beats or extra R peaks not detected by
the automatic algorithm were removed by visual inspection.

The filtered percentages of the RRI data are shown in Table 1.
Generally, the data was of excellent quality and little to none
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removal of the intervals was required for themajority of the samples.
However, a significant amount (15.0%) of the RRIs of subject 1 were
removed. Despite this removal, the filtered data of subject 1 was also
used in the analysis with relatively little effect on the results.

2.4 Lactate and ventilation measurements

To measure blood lactate concentrations, fingertip blood
samples were taken at the end of each 3-min exercise load. These
samples were analyzed with EKF Biosen C-line Clinic device.
In the definition of the thresholds through lactate measurements
we followed the standard protocol used in Finland, refined over
the years (Keskinen et al., 2018). The data points from the lactate
measurements (mmol/L) are plotted as a function of time and
visual analysis is performed. LT1 is defined as 0.3 mmol/L above
the lowest lactate level (by linear interpolation between two lactate
measurements, if necessary). Then the remaining data points are
split into two linear fits: the first fit is made between LT1 and
the following data point, and the second fit is made through the
final points where the lactate concentration increases by more than
0.8 mmol/L during the exercise step. LT2 is defined as the crossing
point of the two slopes (Keskinen et al., 2018).

The ventilatory exchange was measured with Cosmed Quark
CPET respiratory gas analyzer during the exercise. The ventilatory
thresholds were defined by combining multiple automatic methods
and taking the average, as described in Kim et al. (2021). VT1 is the
average of the V-slope and excess carbon dioxide methods, whereas
VT2 is the average of the V-slope and excess minute ventilation
methods (Kim et al., 2021).

Furthermore, we converted the thresholds from time to HR by
taking a corresponding HR value from the measurement results.
During the measurement, the HR was averaged with a 30-s window,
so the HR distribution was stable and thus easily convertible.

2.5 Thresholds from heart rate and heart
rate variability

2.5.1 Maximal HR method
We calculated the thresholds based on maximal HR analysis,

where the first threshold (HRmaxT1) was set at 70% of the HRmax,
and the second threshold (HRmaxT2) was set at 85% of the HRmax
(McPartland et al., 2010). These values are often used by different
manufacturers of the wearable devices, in which physiological
threshold estimates are built in. However, some manufacturers use
different values and even determine the exercise zones in a different
way compared to that of Stöggl and Sperlich (2019). Nevertheless,
we resort to themost common values given above, but point out that
there is significant individual variation in the percentage of HRmax
for both thresholds depending on, e.g., the training background and
age.This is a subject of assessment also in this work (see Section 3.2).

2.5.2 DFA α1 method
We compared our threshold estimation method with that

of Rogers et al. (2021a); Rogers et al. (2021b) by calculating the
conventional DFA α1 every 5 seconds in 2-min segments as a
function of the average HR within the segments. Smoothness priors

detrending (Tarvainen et al., 2002) was applied to the RRI time
series (smoothing parameter λ = 500), but other preprocessing was
conducted according to Section 2.3 instead of the Kubios software
as described in Rogers et al. (2021a); Rogers et al. (2021b). The
algorithm relied on linear regression on the HR versus α1 in the
region of rapid near-linear decline of α1 to determine the aerobic and
anaerobic thresholds wherein the regression line crossed α1 = 0.75
and α1 = 0.5, respectively. However, the definition of the regression
region was left subjective in Rogers et al. (2021a); Rogers et al.
(2021b). Therefore, we adopted the following algorithmic approach
to support systematic studies:

1) Initially select all the data points that fall within the interval
0.5 ≤ α1(HR) ≤ 0.75.

2) If there are multiple disjoint regions (as a function of HR) where
this condition is fulfilled, connect the regions by also selecting
the intervening data points if there are at most n of them. Here
we chose n = 4.

3) If there are still multiple disjoint regions, choose the one with the
most data points. Perform linear regression over this region and
record the coefficient of determination.

4) Expand the region one data point at a time from either end, and
choose the one region that results in the largest coefficient of
determination for the linear regression.

The performance of the algorithm was visually inspected to
ascertain that it produced sensible results. We point out that this
method was originally developed to assess the VTs (instead of LTs).
This is taken into account in the interpretation of the results below.

2.5.3 Dynamical DFA method
Our computational method introduced below to estimate the

metabolic thresholds from the RR intervals is based on DDFA
Molkkari et al. (2020) with recent improvements (Molkkari and
Räsänen, 2023).We utilize the second-orderDDFA,where a second-
order polynomial is fitted in the conventional DFA fluctuation
function instead of a linear fit. The DDFA scaling exponents are
calculated as follows.

1) Perform dynamic segmentation for each scale s, where the
segment length l = 5s.

2) Compute the second-order DFA fluctuation function in
maximally overlapping windows for each segment at scales
s− 1, s, s+ 1.The fluctuation function is thus denoted as ̃Ft(s− 1),
̃Ft(s) and ̃Ft(s+ 1), for the respective scales.

3) In each segment, compute the dynamic scaling exponent α(t, s)
by the finite difference approximation

α (t, s) ≈
[h2
− ̃Ft (s+ 1) + (h2

+ − h2
−) ̃Ft (s) − h2

+ ̃Ft (s− 1)]
[h−h+ (h+ + h−)]

,

where h− = log(s) - log(s− 1) and h+ = log(s+ 1) - log(s) are the
logarithmic backward and forward differences.

The metabolic thresholds are derived from the resulting DDFA
scaling exponents, where the scaling exponents are aggregated as a
function of HR. The procedure consists of the following steps.

1) Calculate the second-order DDFA (DDFA-2) for the RRI time
series with 20 logarithmically spaced integer scales between 5–64
RRIs. The range of scales corresponds to the to the joint scales of
DFA α1 and α2.
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2) Calculate the scaling exponents α(HR, s) as a function of HR and
scale s, where HR is the average of each segment. Sort the HR
values by binning them to the nearest integer HR and assign
α(HR, s) values to the corresponding bins. For each scale s, take
the mean value of the scaling exponents within the bins yielding
a distribution of α(HRbin, s).

3) Calculate an individual baseline to reduce the variability of
different physiological starting conditions. The baseline is
determined from the mean value of α(HRbin, s) for the 25
bins with the lowest HR for each scale s. The baseline values
of each scale are subtracted from α(HRbin, s) over the whole
measurement.

4) Calculate the mean value of α(HRbin, s) over each scale s of a HR
bin. Smoothen the resulting α(HRbin) curve with a mean filter
with a kernel size of 10 HR bins to prefer the trend over small
local fluctuations obtaining themean smoothed scaling exponent
̃α(HRbin).

The first DDFA derived threshold (DDFAT1) is the point, where
̃α(HRbin) distribution drops below the baseline. The determination

of this point is derived through the following calculation. First find
the points where ̃α(HRbin) distribution crosses the baseline. If the
intersection is not stable, i.e., ̃α(HRbin) keeps fluctuating around the
baseline, move to the next one until a stable intersection is found.
We find that sufficient stability can be found when ̃α(HRbin) remains
negative for at least 10 consecutive binned HR values.

5) Similarly, select the second DDFA derived threshold (DDFAT2)
in a stable intersection where ̃α(HRbin) equals −0.5.

Thus, ̃α(HRbin) measures physiological changes compared
to the baseline scaling exponent, according to the previously
observed decrease in the scaling exponent under physical exercise
(Karasik et al., 2002; Hautala et al., 2003; Gronwald et al., 2019;
Molkkari et al., 2020).

2.6 Statistical analysis

We computed Pearson correlation coefficients for the different
threshold determination methods against the LTs. As the
correlations were expected to be positive, we considered the
corresponding one-sided alternative hypothesis against the null
hypothesis of no correlation. Because of the small sample size, we
computed the p-values with a random permutation test.

In addition to correlations, we assessed agreement between the
threshold estimates and LTs by performing an analysis akin to Bland
and Altman (1999). Assuming normality of the differences, the 95%
limits of agreement (LoA) were computed as the mean difference
±1.96 standard deviations.

The uniformity of the differences throughout the range of
measurements was assessed by linear regression. The test statistic
was the absolute value of the regression slope, which was compared
against the regression slopes of Monte Carlo–sampled uncorrelated
normally distributed differences with the observed standard
deviation. We calculated the p-values for the null hypothesis that
the absolute value of the slope is drawn from normally distributed
uncorrelated differences with the same standard deviation as the
real differences versus the one-sided alternative hypothesis that the

absolute value of the slope is greater than what is expected for
those normally distributed uncorrelated differences. Furthermore,
we calculated the p-values for the Shapiro-Wilk normality test,
where again the null hypothesis is that the differences are drawn
from the normal distribution.

For all the statistics, 95% confidence intervals were computed
with bias-corrected and accelerated bootstrapping (Efron, 1987). In
all the methods that relied on random (re)sampling, the sampling
was performed 104 times.

3 Results

3.1 Demonstration of threshold estimation

As described above, our method for the threshold estimation
utilizes the dynamical RRI correlations through the DDFA scaling
exponent α(HR, s). Figure 1 illustrates our method for subject 3
during the exercise. The colors in the figure correspond to the
values of the second-orderDDFA scaling exponent. In Figure 1A the
scaling exponent is shown as functions of HR (x-axis) and scale ( y-
axis), whereas in Figure 1B it is given as functions of time and scale.
The transition from higher to lower α values during the exercise,
or with increasing HR, is evident in colors than turn from red to
blue across an increasing range of scales. The solid line in Figure 1A
shows the mean ̃α(HRbin) used in the determination of DDFAT1
and DDFAT2 as described above. The corresponding estimates for
the thresholds are shown as cyan vertical dashed lines, and they
can be compared with the benchmark LT values shown in black
vertical dashed lines. In this particular example DDFAT thresholds
underestimate LT1 and LT2 by only one and three BPM, respectively.

Next we consider the behavior of the RRIs during the exercise
over all the subjects. These results can be qualitatively compared
with the distribution of the LT values computed from the lactate
measurements. Figure 2 shows an aggregate plot of α(HR, s) for all
the subjects (upper panel) together with the LTs (lower panel) as a
function of HR. At lowHR—corresponding here to the beginning of
the exercise test—the scaling exponent value is relatively high. The
behavior is in accordance with the DFA results previously obtained
for a healthy heart at rest Goldberger et al. (2002). At higher HR the
scaling exponent decreases, first at scales of 10–20 RRIs, and then
through an extending range of scales with increasing HR. At high
HRabove about 160 BPM, the scaling exponent decreaseswell below
0.5, indicating anticorrelated behavior in line with the previous
findings (Molkkari et al., 2020).

On the average, LT1 qualitatively corresponds with the point
where the scaling exponent begins to decrease below the baseline
around 10 RRIs. On the other hand, LT2 is approximately located
in the area where the scaling exponent decreases below 0.5 from the
baseline.The value is selected as themean scaling exponents over the
scales at rest corresponds to a value of around 1.0, thus a reduction
of 0.5 corresponds to an arise of anticorrelated behaviour in the
RRI correlations, which is associated with fatigue (Molkkari et al.,
2020). This average behavior is in accordance with the threshold
determination method described in the previous section. We point
out, however, that as there is a large individual variance in the HRs
corresponding to the respective LTs as demonstrated in the box
plots of Figure 2. Quantitative comparison between the individuals,
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FIGURE 1
Illustration of the determination of the thresholds DDFAT1 and DDFAT2

(cyan vertical lines) compared to the lactate thresholds (black vertical
lines) for subject 3 during the exercise. The results are plotted as a
function of binned HR in (A) and as a function of time in (B).

including different threshold estimationmethods, is presented in the
following section.

3.2 Comparison of the methods

Table 2 shows the subject-specificHRs for both the first (aerobic)
and second (anaerobic) thresholds computed with all the methods.
The mean values and standard deviations are shown on the last two
rows, respectively. As the first observation, the HRs of the LTs are
significantly lower than those of VTs, the mean differences being
20 and 12 BPM for the first and second thresholds, respectively.
This is in line with previous findings Yeh et al. (1983), although
recent studies in treadmill tests have showed rather good agreement
between LTs and VTs (Neves et al., 2022). Secondly, Table 2 allows
the examination of different thresholds for the same subject, which
is not visible on the visualizations. For example, for subject 5, LTs
and DDFATs are close to each other and VTs and DFAα1Ts are

FIGURE 2
Aggregate plot of the DDFA scaling exponents for all 15 subjects as a
function of the heart rate. The mean values of the aerobic and
anaerobic lactate thresholds are shown as vertical dashed lines, and
the box plots show the distributions of the threshold values.

close to each other, but HRmaxTs are heavily underestimated. On the
other hand, for subject 13 all the other thresholds are relatively close
to each other, but once again VTs and DFAα1Ts have significantly
higher values for both thresholds.

The differences of themethods from both LT1 and LT2 (in BPM)
are visualized in Figure 3A Most of the methods display relatively
large variations with distinctive outliers for both thresholds. Some
correlation between the differences with respect to LT1 and LT2,
especially for VT and DFAα1T is also visible. The summed absolute
differences to illustrate the overall performance with respect to both
LTs are shown in Figure 3B. The DFAα1T results agree well with
VTs and thus systematically exceed the LT thresholds, leading to
relatively high distances from the baseline in Figure 3B. On the other
hand, HRmaxT shows reasonable overall agreement, but include a
few distinctive outliers. DDFAT shows relatively good agreement
with the LT values with the smallest summed deviation in Figure 3B.

In addition to mere comparison between the HR estimates for
the thresholds, it is worthwhile to examine the correlations between
the estimates and the LTs and their statistical significance. Table 3
shows the Pearson correlation coefficients r with their bootstrapped
95% confidence interval lower bounds (LB) and the p-values for
Pearson correlation against LTs (pcorr). The VTs correlate the most
with the LTs with the best statistical significance, whereas all the
other methods show low to moderate correlation. We point out,
however, that with the present data size correlation analysis is
considerably affected by individual outliers present in the data.

Next, we utilize Bland–Altman plots to analyze the consistency
in the comparisons between the methods in further detail. Figure 4
shows the differences from LT1 Figure 4A and LT2 Figure 4B as
a function of HR with several statistical measures. In particular,
the dark gray lines show the mean differences μdiff from the
LTs listed also in Table 3, and the ends in the lines indicate
their 95% confidence intervals calculated with bootstrapping.
Correspondingly, the light grey lines show the 95% limits of

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2023.1299104
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Kanniainen et al. 10.3389/fphys.2023.1299104

TABLE 2 Subject-specific heart rates (in BPM) for the first (aerobic) and second (anaerobic) thresholds obtained by the different methods, along with the
populationmean and standard deviation.

Subject LT1 VT1 HRmaxT1 DFAα1T1 DDFAT1 LT2 VT2 HRmaxT2 DFAα1T2 DDFAT2

1 150 171 141 153 138 177 186 171 168 178

2 145 160 137 157 132 171 177 166 175 174

3 135 162 158 162 134 171 171 192 177 168

4 144 157 130 165 146 163 172 157 173 171

5 169 182 144 188 163 186 194 175 194 188

6 123 164 144 158 144 148 179 174 175 182

7 131 149 122 155 126 151 161 148 163 151

8 125 150 131 169 122 153 174 159 179 185

9 150 169 142 181 154 172 187 172 189 188

10 153 158 133 146 127 169 173 162 157 162

11 140 164 132 166 119 163 174 160 176 179

12 141 157 122 161 132 159 165 148 165 159

13 133 151 126 157 129 153 168 153 169 162

14 135 156 131 159 128 161 173 160 165 157

15 160 179 144 173 140 181 196 175 188 181

mean 142 162 136 163 136 165 177 165 174 172

std 12.7 9.88 9.78 10.9 12.1 11.4 10.1 11.9 10.3 12.0

FIGURE 3
(A) Comparison of differences between LT1 (x-axis) and LT2 ( y-axis) for each subject with different threshold estimation methods. (B) Box plot of the
summed absolute differences from both LT1 and LT2.
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TABLE 3 Statistical data of different estimates against LT values: Pearson correlation coefficients r, their 95% confidence interval lower bounds (LBs), p-values
for the null hypothesis of no correlation, mean difference μdiff, its 95% confidence interval LBs, p-values for the null hypothesis of zero slope (pslope) w.r.t. HR, and
p-values for the null hypothesis that the differences are normally distributed with Shapiro–Wilk normality test (pnorm).

Threshold Pearson r 95% LB pcorr μdiff pslope pnorm

VT1 0.78 0.37 4.5 × 10–4 19.7 0.15 0.18

HRmaxT1 0.28 −0.14 0.16 −6.5 0.30 0.031

DFAα1T1 0.46 −0.17 0.046 21.1 0.51 0.72

DDFAT1 0.57 0.085 0.015 −6.7 0.81 0.60

VT2 0.76 0.35 4.9 × 10–4 11.5 0.48 0.18

HRmaxT2 0.58 0.13 0.012 5.8 0.83 0.0017

DFAα1T2 0.52 0.034 0.025 9.0 0.64 0.38

DDFAT2 0.43 −0.035 0.053 7.1 0.83 0.014

agreement and their 95% confidence intervals. In addition, the figure
shows the linear fits to data as a function of HR in colored lines
together with their pointwise 95% confidence intervals shown in
shaded areas. The statistical measure for the linearity is assessed by
considering a null hypothesis of zero slope, and the corresponding
p-values (pslope) are shown in Table 3. Here high p-values indicate
a small degree of linearity. In that case the slope is consistent with
normally distributed differences, implying a low chance of a trend.
Table 3 shows also the p-values for the null hypothesis that the
differences are normally distributed with Shapiro–Wilk normality
test (pnorm). The deviations from normality appear to be mainly
due to few outliers in an already limited set of studied individuals,
instead of skewness or other properties of the distributions.
This underlines the fact that the analysis of the consistency
of the results is cumbersome with the available amount of
data.

Several observations can be made from Figure 4. First, the
systematic overestimation of both LT1 and LT2 by VT1 and VT2,
respectively, is clearly visible, even though the correlation between
LT and VT values is relatively high as noted above, i.e., VT
provides consistent results in this respect. In addition, VT1 shows
the clearest linear trend with pslope = 0.15 in comparison with
the other methods. HRmaxT1 shows also a linear trend, although
its uncertainty is large, mainly due to a few distinctive outliers.
The overall performance of HRmaxT is relatively good, especially
for LT2. However, the applicability of the estimate depends of
the percentages of HRmax selected for the thresholds (here 70%
and 85%), and these percentages depend on individual fitness
levels.

Figure 4 also shows that—as expected and noted also
above—DFAα1T values are generally in line with VTs but the mean
difference from the LTs is relatively large, especially for the first
threshold. In contrast with VTs, however, DFAα1T values do not
show linear bias. Finally, DDFAT shows reasonable agreement with
LTs for both thresholds without linear bias; the values of pslope are
the highest in DDFAT of all the methods.

4 Discussion

This study explores the possibilities to determine the
physiological exercise thresholds through dynamical correlation
properties of RRIs captured by DDFA. We implemented a method
to quantify the exercise intensity by performing theDDFA of theHR
time series and calculating the thresholds from the scaling exponents
α(HR, s) for incremental cyclo-ergometer exercises. In accordance
with previous studies (Molkkari et al., 2020), it is found that physical
exercise leads to a decrease in the scaling exponents down to the
regime of anticorrelations between the RRIs. These anticorrelations
may reach relatively long scales comprising dozens of RRIs. A
combination of the scaling exponents for scales 5–64 RRIs yields
a model to predict the exercise thresholds. The overall agreement
with both LTs is good, and the method does not yield notable linear
bias with respect to the HR. However, more data including different
testing protocols are needed for further validation. If needed, the
proposedmodel can bemodified in a straightforwardway to account
for, e.g., different testing protocols.

Our HR-based method is directly applicable in all wearable
technologies measuring the HR. As demonstrated in Figure 1,
the thresholds are computed from the RRIs dynamically, which
opens the possibility of calculating the thresholds in real time
with a constant data flow from the measurement device, yielding
a comprehensive image of the whole exercise. Hence, we find
considerable potential in the implementation of our method to the
wearable devices that are intensively becoming more popular in the
consumermarket. Such commercial development is already foreseen
(Molkkari and Räsänen, 2023).

Of other HR-based methods, HRmaxT compares the present
HR to the expected or measured maximum HR and estimates
the thresholds according to pre-determined fractions (percentages)
HR/HRmax for both thresholds, respectively.Thus, the validity of the
method strongly depends on the assessment of HRmax and especially
on the validity of the aforementioned percentage for the individual.
The method can be accurate for a uniform set of studied subjects
with similar training background. This is reflected in our study,
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FIGURE 4
Bland–Altman plots of the differences to lactate for each method for (A) threshold 1 (B) threshold 2. The solid lines correspond to the mean (dark) and
95% limits of agreement (light) of the distributions.

where HRmaxT gives relatively good results for both thresholds,
but—on the other hand—the cohort consists of subjects with high
fitness levels compared to the general population. In practice, the
parameters may need to be adjusted for different study groups
Tanaka et al. (2001). We have implemented automization for the
definition of the regression region to DFAα1Tmethod.We also want
to point out that the consideration of individual baselines in the
method could improve the results, which should be considered in
the future studies with DFAα1T.

4.1 Limitations

There are some considerable limitations in the present study.
Firstly, even though the results are fairly consistent, the study
population is relatively small (N = 15), decreasing the statistical
power of the analysis. Hence, as mentioned above, further studies
with larger cohorts with different testing protocols are needed.
In particular, it is worth studying how accurately our method
works for other endurance sports such as running, swimming or
rowing, or for longer exercises, where the HR is elevated and then
decreased again due to breaks (e.g., due to lactate measurements)
or lowered training intensity in interval training. Furthermore,
as the present study focused on healthy individuals with high
fitness levels, it is important to study how the physiological
thresholds hold in more diverse populations with different ages,
conditions and medications such as beta-blockers (BBs), which
are known to alter the HRV (Niemelä et al., 1994; Pukkila et al.,
2023).

Secondly, the determination of the LTs can be done in several
different ways, and there is no universal golden standard of
the protocol (Jamnick et al., 2020). Here, the lactate thresholds

were determined by automated algorithm according to a Finnish
standard procedure with visual inspection to ascertain sensible
results. In practice, the values are usually manually corrected
by physician to confirm the training zones, which is prone
to subjective interpretation. In this regard, it can be debated
whether VTs—often determined by an average of multiple
methods—provide a more reliable benchmark than LTs. Here we
resorted to LTs as the benchmark, but included also VTs in the
comparison.

Finally, even though the present study contains high-quality RR
intervals measured using Polar H10 sensors with up to 1,000 Hz
sampling rate (Schaffarczyk et al., 2022), it remains to be studied
whetherwearable deviceswithout an externalHR sensor canprovide
accurate data for our analysis. Another limitation in this study is
the lack of the ECG recording, which complicates the evaluation of
the nature of the outliers. Since the ECG recording is not available,
we have resorted to visual examination of the samples and we
removed the beats which were statistically outliers in the current
context. Previously, it has been shown that sampling rates as low as
100 Hz are applicable for someHRVmeasures (Kwon et al., 2018). In
controlled laboratory testingwith standardized test procedure, some
of the popular smartwatches employing photoplethysmography
(PPG) have been shown to measure HRV with sufficient accuracy
in rest (Shumate et al., 2021; Nuuttila et al., 2022). However, there
are several sources of noise in PPG measurements including, e.g.,
individual variations in the body temperature and composition,
gender and skin tone, as well as external factors such as light and
applied pressure of the device (Fine et al., 2021). Hence, in order to
estimate the physiological thresholds with PPG, significant attention
has to be paid to the signal quality and preprocessing. To conclude,
further studies to evaluate the DDFA-based thresholds with PPG
measurements are required.
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4.2 Conclusion

Knowledge of aerobic and anaerobic thresholds are of great
importance not only for professional athletes but also for wellness-
oriented consumers to optimize their training. There is a need to
develop simple yet accurate estimates for the thresholds without
a need for tedious respiratory gas exchange and blood lactate
measurements.

Here we have introduced a computational method that
estimates the both lactate thresholds (LTs) by utilizing the RR
intervals during a HR measurement in an exercise setting. The
training intensity corresponds to the time- and scale-dependent
changes in the scaling exponent of the dynamical detrended
fluctuation analysis (DDFA). This information was used to define
individualized estimates for the thresholds (DDFAT1 and DDFAT2).
The performance of the method was compared against LTs
and ventilation thresholds (VTs), as well as to two other HR-
based estimates obtained for 15 participants in a incremental
cyclo-ergometer test.

Our DDFAT method was found to yield a reasonable agreement
with the LTs. The combined agreement with both LT1 and LT2
was the best of all the tested methods. The simple estimate
based on HRmax was found to yield relatively good results as
well, but this is possibly due to the uniform fitness profile of
the subjects, for which the optimized percentages of HRmax are
suitable.

The VTs were found to exceed LTs by ≳10 BPM in a systematic
fashion. A similar effect was found with the DFAα1 method, which
was originally constructed to assess VTs and performed well in that
regard. Our statistical analysis showed that DDFATs have no linear
bias in terms of the HR and thus appear as promising estimates for
different fitness conditions.

In summary, DDFA provides a simple, cost-efficient, and
accurate HR-based method to assess the athletic metabolic
thresholds, and it could be easily integrated in wearable devices.
However, it is still to be tested if the findings are applicable
to larger populations or to other sports and alternative test
protocols. After performing more extensive studies, we believe
that the method can be successfully integrated into modern
wearable devices such as smartwatches to be utilized in everyday
use.
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