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Remote photoplethysmography (rPPG) provides a non-contact method
for measuring blood volume changes. In this study, we compared rPPG
signals obtained from video cameras with traditional contact-based
photoplethysmography (cPPG) to assess the effectiveness of different RGB
channels in cardiac signal extraction. Our objective was to determine the most
effective RGB channel for detecting blood volume changes and estimating heart
rate. We employed dynamic time warping, Pearson’s correlation coefficient,
root-mean-square error, and Beats-per-minute Difference to evaluate the
performance of each RGB channel relative to cPPG. The results revealed that
the green channel was superior, outperforming the blue and red channels
in detecting volumetric changes and accurately estimating heart rate across
various activities. We also observed that the reliability of RGB signals varied
based on recording conditions and subject activity. This finding underscores
the importance of understanding the performance nuances of RGB inputs,
crucial for constructing rPPG signals in algorithms. Our study is significant in
advancing rPPG research, offering insights that could benefit clinical applications
by improving non-contact methods for blood volume assessment.

KEYWORDS

rPPG, pulse oximentry, blood flow, volumetric changes, digital health, mobile health,
non-contact assessment, remote monitoring

1 Introduction

Photoplethysmography (PPG) signals are instrumental in monitoring essential health
indicators such as heart rate (HR) (Elgendi, 2020), heart rate variability (Mayampurath et al.,
2018), blood pressure (Elgendi et al., 2019), atrial fibrillation (Pereira et al., 2020),
and mental health (Lyzwinski et al., 2023). Recent advancements have facilitated the
development of affordable smart wearables with contact PPG (cPPG) sensors for cardiac
activity assessment (Elgendi, 2012; Mashhadi et al., 2015; Ayesha et al., 2021). A novel
approach, remote PPG (rPPG), utilizes video cameras and RGB color channels for
non-invasive cardiac signal extraction, aligning with the blood volume pressure (BVP)
absorptivity spectrum (Zijlstra et al., 1991).

We hypothesize that the green channel is ideal for rPPG signal extraction. This is
explored through algorithms like PCA (Lewandowska et al., 2011), CHROM-based rPPG
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(De Haan and Jeanne, 2013), LGI (Pilz et al., 2018), POS
(Wang et al., 2016), and emerging deep learning methods (Yu et al.,
2019; Schrumpf et al., 2021), over diverse datasets (Haugg et al.,
2022; van Es et al., 2023). Understanding the reliability of RGB
signals, influenced by recording settings and subject factors, is
crucial when compared to cPPG for robust signal transformation
(Charlton et al., 2023).

Previous research, including Verkruysse et al. (Verkruysse et al.,
2008), Sinhal et al. (Sinhal et al., 2021), and Bhattacharjee et al.
(Bhattacharjee and Yusuf, 2021), has explored the quality
of rPPG signals from RGB data. While the green channel’s
potential is acknowledged, the roles of blue and red channels,
assessed under limited conditions, remain unclear. Our study
addresses these limitations, utilizing three diverse datasets with
varying camera types, pulse oximeters, lighting conditions,
distances, and participant activities (Frey et al., 2022; Haugg et al.,
2023).

We aim to identify the RGB channel in rPPG that most closely
mirrors cPPG across different settings. Our objectives include
assessing the similarity between RGB and cPPG signals in various
contexts and statistically validating the robustness of the identified
signal’s performance. This comprehensive analysis will enhance our
understanding of cardiac insights and improve future video-based
health monitoring techniques.

2 Materials and methods

2.1 Datasets

This study used three publicly-available datasets: LGI-PPGI,
PUREandMR-NIRP.All three datasets include participants engaged
in different activities while a video is recording them, and the cPPG
signal is taken with a pulse oximeter.

LGI-PPGI (Pilz et al., 2018) is a dataset that contains videos
from six participants, five males and one female. Each participant
records a session doing four activities: Resting, Talking, exercising
on a bicycle ergometer (Gym), and Rotation. The camera is a
Logitech HD C270 webcam (25 fps), and the gold standard cPPG
signals are taken with a pulse oximeter, CMS50E PPG device
(sampling rate of 60 Hz). The camera video stream was captured
uncompressed with autoexposure. The lighting condition depends
on the activity; Talking is recorded outdoors, while the other
activities are recorded indoors.

The PURE dataset (Stricker et al., 2014) consists of 10
participants, eight males and two females. They perform activities
classified as Steady, Talking, Slow Translation, Fast Translation,
Small Rotation, and Medium Rotation. An eco274CVGE camera
by SVS-Vistek GmbH (30 fps) with a 640 × 480 pixel resolution
and 4.8 mm lens was used. The pulse oximeter model is CMS50E
(sampling rate of 60 Hz). The lighting is daylight through a window
frontal to the face. The distance to the camera was 1.1 m, on
average.

TheMR-NIRP video dataset (indoor) (Magdalena Nowara et al.,
2018) is composed of eight subjects, six males and two females, with
different skin tones labelled by the data creator: one participant with
an Asian skin tone, four with an Indian skin tone, and three with
a Caucasian skin tone. The activities were Still and Motion, and in

the latter, the participants talked and moved their heads. The main
camera used is a FLIR Blackfly BFLY-U3-23S6C-C (sensor format
‘rggb’) with a resolution of 640 × 640 (30 fps). The device used to
record the cPPG sequences was a CMS 50D + finger pulse oximeter
(sampling rate of 60 Hz).

2.2 Data processing

To obtain the rPPG signals that were later compared with
the cPPG signals, several pre-processing steps were applied.
A visualization is shown in Figure 1. The framework pyVHR
(Boccignone et al., 2022) was implemented to do the preprocessing.
For every video, the same procedure was applied. The regions of
interest (ROIs) were extracted using the MediaPipe (Lugaresi et al.,
2019) framework, which allowed the selection of 468 facial
landmarks. Each landmark corresponds to a specific facial area,
identified by a numerical label denoting its location. The choice was
based on a combination of ROIs from the right cheek, left cheek, and
forehead, as proposed by other authors (Kwon et al., 2015; Kim et al.,
2021). Specifically, the landmarks were (107, 66, 69, 109, 10, 338,
299, 296, 336, 9) from the forehead, (118, 119, 100, 126, 209, 49,
129, 203, 205, 50) from the left cheek, and (347, 348, 329, 355, 429,
279, 358, 423, 425, 280) from the right cheek (Haugg et al., 2022).
After extracting the ROIs, the average of each color was calculated
for each frame. Consequently, each video consisted of a series of
distinct frames, with each frame being characterized by three values
denoting the average intensity across the Red, Green, and Blue
(RGB) channels.This transformation effectively rendered the videos
as signal representations, wherein each video was associated with
three signals, each signal having a length equal to the number
of frames within the video. Each signal is an rPPG signal, which
will be compared to the cPPG signal extracted from the pulse
oximeter.

To compare the ground truth cPPG and the rPPG, both
signals were normalized according to robust normalization. This
normalization is useful in cases where outliers exist, and it is more
effective than other scaling techniques, such as min–max.The rPPG
signals were downsampled to have the same sampling frequency
as the cPPG signals, which allowed for comparison. Then, two
filters were applied to the rPPG and cPPG: detrend and bandpass.
The bandpass filter is a sixth order Butterworth filter with a cutoff
frequency range of 0.65–4 Hz. The signals were divided into 10-s
windows with no overlap, accounting for a total of 60 s per video.
Therefore, the final dataset consisted of samples of 10 s of processed
rPPG and the ground truth cPPG, which are compared with the
metrics described later in this section.

2.3 Frequency domain

For the spectral analysis, Welch’s method was applied to every
rPPG and cPPG window after preprocessing. The highest peak
in the frequency domain was then chosen as the estimated HR.
Other methods, such as autocorrelation, were implemented, but
the absolute differences in |ΔBPM| were very small. We found this
metric useful as it evaluates the frequency domain and it shows the
capability of the rPPG signals from every channel to predict the HR.
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FIGURE 1
Visualization of the data extraction to remote photoplethysmograpm (rPPG) evaluation process. DTW = dynamic time warping, r = Pearson’s
correlation coefficient, RMSE = root-mean-square error, |ΔBPM| = difference in heartbeats obtained from rPPG and contact PPG.

FIGURE 2
Similarity of each channel with the contact PPG, measured with the r coefficient. The results are shown for the datasets LGI-PPGI, PURE, and MR-NIRP.
The p-value of every combination of channels, obtained with the Friedman test followed by the post hoc Nemenyi test, is represented by the bars
above the boxplots.

2.4 Evaluation of the signals

Four metrics were used to evaluate the signals: dynamic time
warping (DTW), Pearson’s r correlation coefficient, root-mean-
square error (RMSE), and difference in heartbeats obtained from
rPPG and cPPG (|ΔBPM|). For each video, the evaluation was
done for every metric over 10-s windows. The resulting values were
averaged to obtain the final results for each video. This enabled
us to evaluate the results of every color channel from different
perspectives.

2.4.1 DTW
DTW(Müller, 2007) is an algorithm thatmeasures the similarity

between two time series, defined as:
Given two time seriesA = [a1,a2,… ,an] andB = [b1,b2,… ,bm],

where n andm are the lengths of the time series, the DTW distance
between A and B is defined as:

DTW (A,B) =min{
K

∑
k=1

d(ik, jk)}

where K is a warp path that maps the indices ik of time series A to
indices jk of time series B and d (i, j) is a local distance function that
measures the dissimilarity between data points ai and bj.

It is particularly useful when the time series have different
speeds and lengths. This applies to this case, given that, sometimes,
the rPPG and its ground truth are not aligned, so other metrics
that match timestamps are less suitable. The Python package
DTAIDistance (Meert et al., 2020) was used to implement the
metric.

2.4.2 Pearson’s correlation coefficient (r)
The r coefficient measures the strength of the association

between rPPG and cPPG using the following equation:

r =
∑N

i=1
(xi − x̂)(yi − ŷ)

√∑N
i=1
(xi − x̂)

2(yi − ŷ)
2

(1)

where xi and yi are points at lag i of the rPPG and PPG signals,
respectively. x̂ and ŷ represent theirmeans.N is the number of points
of the discrete signals.
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TABLE 1 Comparison of each color channel and the contact PPG (cPPG) across different activities and datasets. Results are averaged over subjects and time
windows. Themetrics DTW, r, and RMSE are shown. DTW = dynamic time warping, r = Pearson’s correlation coefficient, and RMSE = root-mean-square error.

DTW r RMSE DTW r RMSE

LGI-PPGI

Red vs. cPPG 39.66 0.19 3.14

Resting

Red vs. cPPG 7.38 0.37 1.19

Green vs. cPPG 26.58 0.35 2.38 Green vs. cPPG 5.92 0.49 1.12

Blue vs. cPPG 32.79 0.24 2.72 Blue vs. cPPG 6.81 0.41 1.16

PURE

Red vs. cPPG 8.66 0.39 1.29

Talking

Red vs. cPPG 12.61 0.2 1.46

Green vs. cPPG 6.48 0.55 1.22 Green vs. cPPG 11.21 0.29 1.4

Blue vs. cPPG 7.09 0.5 1.24 Blue vs. cPPG 11.95 0.25 1.43

MR-NIRP

Red vs. cPPG 9.97 0.19 1.24

Rotation

Red vs. cPPG 30.98 0.24 2.6

Green vs. cPPG 7.64 0.23 1.08 Green vs. cPPG 17.96 0.45 1.9

Blue vs. cPPG 9.29 0.2 1.19 Blue vs. cPPG 24.07 0.36 2.24

All datasets

Red vs. cPPG 15.97 0.32 1.71

Translation

Red vs. cPPG 6.86 0.51 1.24

Green vs. cPPG 11.27 0.46 1.46 Green vs. cPPG 5.49 0.65 1.19

Blue vs. cPPG 13.32 0.39 1.57 Blue vs. cPPG 5.86 0.61 1.21

2.4.3 RMSE
RMSE is the standard deviation of the prediction error (i.e.,

residuals between the ground truth values and the extracted rPPG
signals). It is expressed as follows:

RMSE = √
∑N

i=1
(xi − yi)

2

N
, (2)

where N is the number of points and xi, yi are the
points at lag i of the rPPG and contact PPG signals,
respectively.

2.4.4 |ΔBPM|
Using Welch’s method, the HR was calculated with the power

spectral density as the highest peak of the signal in the frequency
domain. The range was restricted from 39 BPM to 240 BPM.
To find the |ΔBPM|, the absolute difference in BPM from rPPG
and the reference HR was calculated for every window, and then
averaged.

3 Statistical tests

Statistical tests were conducted to compare the RGB
channels. Non-parametric statistical tests are implemented,
given that they do not make as many assumptions about the
data as parametric statistical tests and, for some cases, the
sample size is not large enough, e.g., comparing activities
within a particular dataset where the number of subjects is
small.

3.1 Friedman test

The Friedman test is suitable for this study because it compares
the means of three or more groups. The following hypotheses were
tested:

• Null hypothesis (H0): the medians of the groups are equal.
• Alternative hypothesis (H1): the median of at least one group is
different.

The groups are represented by the three channels red, green,
and blue. When RGB signals are compared among datasets or
activities, the blocks are represented by the subjects. Within each
block, the ranks are calculated (the idea of ranks is based on the
order of the values, i.e., greater or less than) (Friedman, 1937).
Then, for each group, find the average rank value as Rij =

1
n
∑ni=1rij,

where i represents the color channel, i = {1,… ,k} and j represents
the subject, j = {1,… ,n}. The test statistic is approximated by: chi-
squared distribution. It is expressed as

χ2F =
12n

k (k+ 1)
[

k

∑
j=1

R2
j −

k(k+ 1)2

4
]. (3)

If the p-value is significant, the means of the groups are equal, so
the null hypothesis can be rejected. The next step is to use a post hoc
test to calculate the pairwise group differences in the groups.

3.2 Nemenyi test

The Nemenyi test was applied to find the difference in the
average ranking values and then to compare the difference with a
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TABLE 2 Comparison of the RGB channels regarding similarity to cPPG, with the purpose of finding significant differences between each channel. The p-values
are shown for DTW, r, and RMSE for both experiments, obtained with the Friedman test followed by the post hoc Nemenyi test. The results for the datasets are
shown on the left; the results for the participants’ activities are shown on the right.

DTW r RMSE DTW r RMSE

LGI-PPGI

Red vs. Green 0.001 0.001 0.293

Resting

Red vs. Green 0.001 0.001 0.001

Red vs. Blue 0.365 0.712 0.293 Red vs. Blue 0.107 0.193 0.146

Green vs. Blue 0.061 0.007 0.293 Green vs. Blue 0.001 0.001 0.146

PURE

Red vs. Green 0.001 0.001 0.001

Talking

Red vs. Green 0.001 0.028 0.007

Red vs. Blue 0.001 0.001 0.002 Red vs. Blue 0.061 0.799 0.288

Green vs. Blue 0.001 0.001 0.001 Green vs. Blue 0.018 0.123 0.288

MR-NIRP

Red vs. Green 0.001 0.017 0.001

Rotation

Red vs. Green 0.001 0.001 0.001

Red vs. Blue 0.228 0.830 0.228 Red vs. Blue 0.007 0.003 0.023

Green vs. Blue 0.003 0.073 0.003 Green vs. Blue 0.002 0.001 0.023

All datasets

Red vs. Green 0.001 0.001 0.001

Translation

Red vs. Green 0.001 0.001 0.001

Red vs. Blue 0.001 0.001 0.001 Red vs. Blue 0.001 0.004 0.254

Green vs. Blue 0.001 0.001 0.001 Green vs. Blue 0.140 0.004 0.001

FIGURE 3
Heart rate estimation from each RGB channel with Welch’s method using the PURE and LGI-PPGI datasets, composed of different videos of 10 and 6
subjects, respectively, performing a wide range of activities. The blue signal shows better results than the red signal in PURE, but not in LGI-PPGI, where
the blue signal, on average, is outperformed by the red signal. The green signal is consistently the optimal signal. Note that |ΔBPM| = absolute
difference in heartbeats obtained from rPPG and contact PPG.

critical distance (CD). The CD is defined as:

CD = qα√
k (k+ 1)

6n
, (4)

where qα follow the Studentized range statistic divided by √2
(Demšar, 2006), and α = 0.05 for this study. If the difference for a
given pair Ri,Rj, is greater than the CD, the difference is significant.

The general procedure is to apply the Friedmann test to each
group (in our case it is the channels RGB) and if the p-value is
significant, the difference in the means of the groups is different.

In that case, the Nemenyi test is performed to rank the channels
pairwise, i.e., green versus red, green versus blue and red versus blue.

4 Results

The main goal of the experiments was to show the differences
between RGB channels in diverse settings. This was done by
comparing the DTW, r, RMSE, and |ΔBPM| metrics. The first
experimentwas designed to evaluate theRGB signals across datasets.
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This makes it possible to assess whether the difference between
the red, green, and blue channels is significant, depending on the
dataset. For every dataset, there is a variation in the source of the
illumination and the devices employed, including the camera and
pulse oximeter. For the second experiment, the focal point was the
activities conducted by the subjects. We analyzed the importance
of the subjects’ activity and its impact on the performance of the
rPPG signal. This makes it possible to differentiate the factors that
can negatively alter the signal.

4.1 Analysis across datasets

Figure 2 shows the boxplots for every channel according to
its r coefficient. As shown, for all the datasets, the green channel
performs the best, followed by the blue and red channels, with p-
values <0.01. In contrast to the results for the combination of all
datasets, LGI-PPGI and MR-NIRP showed no significant difference
for red versus blue. Furthermore, the results for the PURE dataset
agree with those for the combination of datasets and subjects.
Indeed, the PURE dataset had the best performance in terms of the r
coefficient, DTW, and RMSE (Table 1). The better the quality of the
signal, the more evident the difference between the red, green, and
blue channels. The p-values are shown in Table 2.

4.2 Analysis across activities

The second experiment was designed to determine the
differences between the RGB and cPPG signals based on the activity
the subjects performed. This is also a useful way to detect whether
RGB signals are prone to be unreliable when the subjects engage in
different activities. The activities were divided into Resting, Talking,
Rotation, and Translation. Rotation considers the Rotation activity
from LGI-PPGI and the Small Rotation andMedium Rotation from
the PURE dataset. Talking includes the Talking activity from the
LGI-PPGI and PURE datasets and Motion from the MR-NIRP
dataset (during the Motion activity, the subjects talk). Lastly,
Translation includes the Small and Medium Translation activities
from the PURE dataset.

The performance of the RGB colors is similar to the previous
case, that is, the green channel is the best-performing signal,
followed by the blue and red channels. Having said that, green always
shows significantly better results than red, but this is not always
the case with the green channel versus the blue channel. For the
Rotation and Translation activities, the green signal outperformed
the blue signal in terms of the r coefficient; however, in the other
cases, the difference was not significant. The results for every metric
and the p-values are listed in Tables 1 and 2. As shown, the results
are consistent in terms of the RGB analysis of both the datasets and
the activities.

4.3 HR and frequency domain

Welch’s method was used to quantify how each signal performs
when predicting HR. A comparison of the HR for LGI-PPGI and
PURE is shown in Figure 3. The estimation was done with the

TABLE 3 Comparison of the heart rate estimated from each RGB channel
and the ground truth heart rate. Results are shown for the |ΔBPM|metric for
the comparison across activities and datasets. In both experiments and
datasets, the green channel yields themost favorable outcomes. However,
its variation shifts from 3.31 |ΔBPM| in Translation to 16.16 |ΔBPM| in
Talking, showing great variation. Note that |ΔBPM| = absolute difference in
heartbeats obtained from rPPG and contact PPG.

|ΔBPM| |ΔBPM|

LGI-PPGI

Red 24.47

Resting

Red 12.41

Green 18.73 Green 7.33

Blue 25.4 Blue 11.08

PURE

Red 13.15

Talking

Red 23.4

Green 7.17 Green 16.16

Blue 9.29 Blue 20.81

All datasets

Red 16.23

Rotation

Red 19.66

Green 10.31 Green 11.61

Blue 13.66 Blue 15.3

Translation

Red 8.38

Green 3.31

Blue 3.99

LGI-PPGI and PURE datasets because they were the only datasets
that included the ground truth BPM. PURE is better than LGI-PPGI
not only in terms of r, RMSE, and DTW, but also HR estimation.
The results are shown in Table 3; the p-values are shown in Table 4.
The green channel again outperformed the other channels, which
followed the same pattern as the results of the morphology of
the signals in the time domain. However, the red channel signal
estimates the HR better than the blue channel signal in the LGI-
PPGI dataset. It is important to note that the |ΔBPM| varies greatly
between the PURE and LGI-PPGI datasets.

To conduct an overall comparison of the RGB channels, all the
metrics were visualized.The results are shown in Figure 4. Note that
all the metrics are normalized to one. Overall, the green channel is
best in terms of r, DTW, RMSE, and |ΔBPM|. In every case, the blue
channel was ranked second and the red channel was ranked third.

5 Discussion

We assessed the performance of the RGB channels as rPPG
signals for different datasets and activities, and we evaluated them
using fourmetrics to rank the channels. First, themorphology of the
signals was compared for r, RMSE, and DTW. For the comparison
with datasets, the green channel showed better overall results than
the blue and red channels. However, depending on the metric, some
of the results are not statistically significant. This is the case of the
red channel versus the blue channel for theMR-NIRP and LGI-PPGI
datasets for all themetrics. Nonetheless, the PUREdataset results for
every metric and channel were significant, with all of the p-values
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TABLE 4 Comparison of the channels when estimating the heart rate against the ground truth to find significant differences between each channel. The p-values
for |ΔBPM| are shown for both experiments, obtained with the Friedman test followed by the post hoc Nemenyi test. The results for the datasets are shown on
the left; the results for the activities are shown on the right. Note that |ΔBPM| = absolute difference in heartbeats obtained from rPPG and contact PPG.

|ΔBPM| |ΔBPM|

LGI-PPGI

Red vs. Green 0.003

Resting

Red vs. Green 0.002

Red vs. Blue 0.452 Red vs. Blue 0.280

Green vs. Blue 0.088 Green vs. Blue 0.127

PURE

Red vs. Green 0.001

Talking

Red vs. Green 0.001

Red vs. Blue 0.001 Red vs. Blue 0.061

Green vs. Blue 0.027 Green vs. Blue 0.020

All datasets

Red vs. Green 0.001

Rotation

Red vs. Green 0.001

Red vs. Blue 0.001 Red vs. Blue 0.004

Green vs. Blue 0.003 Green vs. Blue 0.028

Translation

Red vs. Green 0.001

Red vs. Blue 0.002

Green vs. Blue 0.556

FIGURE 4
Overall performance for the red, green, and blue channels. The r,
dynamic time warping (DTW), and root-mean-square error (RMSE)
metrics were used. The results are shown for an average over subjects
and time windows for each metric. The green channel consistently
shows the best performance, followed by the blue and red channels.
All the metrics are normalized to one.

<0.01 and a better performance than the other datasets for every
metric.This could be due to the quality of the signals and the settings
in which the MR-NIRP and PURE datasets were obtained. Still, the
green signal outperformed the red signal for every dataset. When

the comparison is done across activities, the pattern is the same; the
green channel is ranked first, followed by the blue channel and then
the red channel. As the activity becomes more complex and involves
more movements from the subject, the signal becomes unreliable, as
can be the case for Rotation, with aDTWof 30.98 for the red channel
in contrast to Resting, with a DTW of 5.92 for the green channel.

Regarding the spectral analysis, the results confirmed what had
been previously shown in terms of the ranking of the channels. The
|ΔBPM|was greater for the red signal, followed by the blue and green
signals. Again, the results were better for the PURE dataset than for
the LGI-PPGI dataset.This is partly due to the better morphology of
the signals in the PURE dataset compared to the LGI-PPGI dataset.
In some cases, the RGB signals are not reliable, especially when the
settings in which the videos are recorded are not appropriate and
the subject moves. For example, when the subject engages in fast
rotation or is exercising on a bicycle in a gym, it can negatively
affect the quality of the signal. Nevertheless, some algorithms, such
as CHROM, perform well when abrupt changes in amplitude and
shape occur in the signal due to different subject movements.

While other studies have confirmed these results, to date, there
has been no exhaustive study of what channel is the best for different
datasets, activities, and metrics. Most researchers used the green
channel based on the results obtained by a research group in 2008
(Verkruysse et al., 2008). Still, that study (Verkruysse et al., 2008)
aimed to demonstrate rPPG with ambient light, and the results
were shown only for one participant at a time. This indicates that
the green channel is a proper candidate, but there is no exhaustive
scientific study that has confirmed it. One recent study (Sinhal et al.,
2021) pointed out the difference between RGB signals and other
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algorithms, but only for one dataset, and it used fewer metrics. It
is important to include several datasets because, as we have seen,
the dataset has a significant impact on the results. Moreover, in
that study (Sinhal et al., 2021), there was no analysis of how the
subjects’ movements could affect the assessment. Another study
(Lee et al., 2013), focused on the differences in RGB in relation to
movement. That study had 12 subjects, and the movements were
divided into horizontal and vertical. Our study included a wider
range of movements and more subjects. They confirmed the results
for HR but did not find statistically significant differences between
green and blue for the SNR ratio (Lee et al., 2013).

We have shown that to obtain high-quality rPPG signals
using only the RGB channels, the settings (such as the camera
or illumination) in which the subjects’ activities are recorded is
important because the variation in the inter-dataset is mostly due
to those settings. Moreover, the cPPG signals of some datasets are
obtained with unreliable devices, such as wristbands, instead of a
pulse oximeter. Therefore, the rPPG from the RGB is not robust.
Furthermore, although the RGB ranking results were the same, the
values obtained for every metric showed differences between the
activities. For the green channel, the |ΔBPM| obtained in the Resting
activity was 7.73; it was 16.6 for the Talking activity. It is important to
note that Resting has a higher |ΔBPM| than Translation because the
latter only includes data from PURE, which is the best performing
dataset. Overall, this leads to the conclusion that RGB signals should
be recorded in situations where the subject is not moving and,
more importantly, when the cameras and illumination conditions
are adequate.Whilemanymodern algorithms overcomemost of this
reliability problem, when less noisy RGB signals with higher quality
are obtained, the algorithms’ results are better.

6 Conclusion

In conclusion, the green channel signal exhibited the most
favorable outcomes in all metrics assessed, followed by the blue
and red channels. This conclusion was verified not only for
signal morphology but also for HR estimation in the frequency
domain. However, when analyzing the signal morphology, the RGB
performance varied depending on the dataset and activity, with the
selection of dataset having a significant impact on the rPPG for all
metrics.The PURE dataset performed better than the LGI-PPGI and
MR-NIRP datasets in terms of all metrics. Furthermore, the green
channel provided the most accurate HR estimation in the frequency
domain, with the blue and red channels following closely behind.
Notably, for different activities, the |ΔBPM| exhibited a substantial
change, ranging from 3.31 BPM for the green channel in the Resting
activity to 33.9 BPM for the red channel in the Rotation activity.
This implies that RGB signals are not resilient to diverse datasets and
activities, which is an important consideration when utilizing them
in clinical applications.
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