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Cerebral blood flow (CBF) is a critical physiological parameter of brain health,
and it can be non-invasively measured with arterial spin labeling (ASL) MRI. In
this study, we evaluated and optimized whole-brain, high-resolution ASL as an
alternative to the low-resolution ASL employed in the routine assessment of
CBF in both healthy participants and patients. Two high-resolution protocols
(i.e., pCASL and FAIR-Q2TIPS (PASL) with 2 mm isotropic voxels) were compared
to a default clinical pCASL protocol (3.4×3.4×4 mm3), all of whom had
an acquisition time of ≈ 5 min. We assessed the impact of high-resolution
acquisition on reducing partial voluming and improving sensitivity to the
perfusion signal, and evaluated the effectiveness of z-deblurring on the ASL
data. We compared the quality of whole-brain ASL acquired using three available
head coils with differing number of receive channels (i.e., 20, 32, and 64ch). We
found that using higher coil counts (32 and 64ch coils as compared to 20ch)
offers improved signal-to-noise ratio (SNR) and acceleration capabilities that
are beneficial for ASL imaging at 3 Tesla (3 T). The inherent reduction in partial
voluming effects with higher resolution acquisitions improves the resolving
power of perfusion without impacting the sensitivity. In conclusion, our results
suggest that high-resolution ASL (2 to 2.5 mm isotropic voxels) has the potential
to become a new standard for perfusion imaging at 3 T and increase its adoption
into clinical research and cognitive neuroscience applications.
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1 Introduction

Arterial spin labeling (ASL) is a non-invasive neuroimaging technique that uses
magnetically labeled arterial blood water as an endogenous tracer to measure cerebral blood
flow (CBF) (Detre et al., 1992; Williams et al., 1992). ASL provides a safe and repeatable
method for assessing brain state and functionwithout any risk of toxicity or allergic reactions
from exogenous contrast agents. ASL can also be utilized to assess the quantitative CBF in
units ofmL/100 g/min at an individual voxel level (Williams et al., 1992; Buxton et al., 1998).

In recent years, technological advances in MRI scanner hardware and software, and new
cutting-edge analysis methods have positively impacted the range of ASL applications and
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resulted in a notable increase in the number of publications
(Detre et al., 2012; Iutaka et al., 2023; Lindner et al., 2023).
Another factor for its increasing popularity in clinical research
is the community effort to standardize acquisition methods,
data structures, and analyses (Alsop et al., 2015; Clement et al.,
2022; Hernandez-Garcia et al., 2022). However, widely adopted
standards (e.g., described in the ASL “white paper” (Alsop et al.,
2015)) prescribe spatial resolutions of 3–4 mm in-plane and
4–8 mm slice thickness for ASL scans that are maximally
5–6 min long (typical length of clinical research/standard-of-
care MRI protocols) but may not be optimal anymore with
current hardware and MRI sequences. Although these protocols
may suffice for macroscopic effects (such as pattern of large
regions of hypo-perfusion), they are insufficient to detect subtle
abnormalities that may represent early stage of neurological diseases
or small lesions (Mora Álvarez et al., 2019). Therefore, ASL at
higher spatial resolution (< 3 mm nominal, isotropic) is highly
desirable.

Another reason for going to high spatial resolutions is to
reduce partial volume (PV) effects, which occur when the voxel
signal contains fractional contributions from more than one
tissue type, for example, gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). This can introduce inaccuracies
in perfusion quantification of the tissue of interest, resulting in
either or both underestimation and over-estimation, depending on
the PV fractions in the voxels. For instance, Asllani et al. (2008)
showed that a voxel mixture of 80:20% gray:white matter (this
ratio would be inclusive after the threshold, in most cases) would
result in a 24% perfusion underestimation. Another example is
the study by Donahue et al. (2006), investigating the impact of a
higher resolutionASLprotocol compared to low-resolution positron
emission tomography (PET) scans, and they demonstrated that
uncorrected CBF PET images might underestimate the gray matter
(GM) CBF by 20%. In fact, in 2006, Donahue et al. actually
envisioned the future of ASL imaging at 3 Tesla (3 T) to be
spatial resolutions of 2.5 mm in-plane or higher. Seventeen years
later, 3 T ASL imaging is still routinely carried out with voxel
sizes > 3 mm, and the voxels are almost never isotropic, which
can lead to underestimation of lesions and even misdiagnosis
in the direction of the lowest spatial resolution. Although there
have been methods and algorithms developed that can provide
a means to post hoc correct for PV effects (Kirk et al., 2020a;
Kirk et al., 2020b; Chappell et al., 2021), they usually cannot recreate
lost information, and therefore, the most straight-forward and
preferred approach is to just acquire the data at higher spatial
resolutions.

This is notwithstanding high-resolution ASL studies carried
out at field strengths higher (4.7 T, 7 T) than those typically used
in the clinic (1.5 T, 3 T). For example, Mora Álvarez et al. (2019)
demonstrated the feasibility of a high-resolution continuous ASL
(CASL) at 4.7 T within a clinical time frame of 6 min. The study
also observed reduced PV averaging at 1.5× 1.5× 3 mm3 resolution.
Another interesting example is the study published by Zuo et al.
(2013) where they employed Turbo-FLASH (fast low angle shot)
ASL, both pseudo-continuous ASL (pCASL) and pulsed ASL (PASL)
at 7 T showing the feasibility of achieving an in-plane resolution
of 0.85× 1.7 mm2. At 7 T, recent functional MRI (fMRI) studies
also showed the feasibility of using perfusion-weighted contrast

with ASL at sub-millimeter spatial resolutions of 0.9 mm isotropic
(Kashyap et al., 2021) and 0.7 mm isotropic (Ivanov et al., 2018;
Kashyap et al., 2022) using a 3D-EPI (Poser et al., 2010) readoutwith
a FAIR (Kim, 1995)QUIPSS II (Wong et al., 1997;Wong et al., 1998)
labeling scheme.

Although there is evidence of the transformative potential
that ultra-high-field scanners can have for clinical research
and cognitive neuroscience applications, they are limited in
availability compared to the ubiquity of 3 T scanners. Therefore,
a translation of high-resolution ASL to widely available 3 T
clinical platforms is urgently needed to catalyze clinical
research as well as further advance the standards of care. This
requires systematic optimization attuned to easily accessible
workflows, which is currently not explored in the existing ASL
literature.

The current study addresses these aforementioned challenges
and gaps in the literature by first developing, testing, and evaluating
high-resolution ASL protocols at 3 T in clinically feasible times,
and then it compares them to a vendor default protocol that
is typically used in routine clinical scanning. To this end, we
developed optimized 2 mm isotropic pCASL and PASL protocols
that balance the trade-off between signal-to-noise ratio (SNR)
and acquisition time (TA) to be feasible for clinical application
(TA ≈ 5 min). Furthermore, we also evaluated the impact of
the choice of standard head coils on 3 T perfusion imaging. We
systematically evaluated our protocols and the clinical default
protocolwith all three commercially available head coils (20-channel
head and neck coil, 32-channel head coil only, and 64-channel
head and neck coil) to ascertain the optimal hardware for high-
resolution acquisitions. In addition, we quantify and demonstrate
the reduction in partial voluming enabled by the high-resolution
acquisitions. Finally, the lengthening of the readout with 3D-GRASE
is recognized to result in through-plane (z-axis) blurring, resulting
in loss of spatial resolution (Tan et al., 2011; Paschoal et al., 2021).
We also assess the impact of advanced post-processing methods
such as z-deblurring to improve spatial fidelity of the acquired
data.

2 Materials and methods

2.1 Participants

Eight healthy volunteers (four female and four male volunteers,
mean age = 29 ± 4 years) participated in the study and provided
written informed consent prior to scanning. All participants
were screened healthy individuals, non-smokers, not taking any
medications, and with no history of neurological or neurovascular
conditions. All procedures in this study conformed to the standards
set by the Declaration of Helsinki and was approved by the
Research Ethics Board of University Health Network according to
the guidelines of Health Canada.

2.2 Data acquisition

Datawere acquired on a SiemensMAGNETOMPrisma 3 TMRI
scanner (Siemens Healthineers, Erlangen, Germany) at the Slaight
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Family Centre for Advanced MRI (Toronto Western Hospital,
Toronto ON, Canada); the scanner has a maximum gradient
strength of 80 mT/m and a slew rate of 200 T/m/s, and runs on
the XA30A IDEA software platform. We used three commercial
MRI coils, namely, a 20ch head and neck coil, a 32ch head
coil only, and a 64ch head and neck coil for receiving, and
the transmission was carried out by the body coil. Participants
were positioned by taking the eye centers as a reference for the
magnet isocentering to minimize B0 offsets for the labeling in
the neck. All data of participants were acquired in the same
scan session. The participants were brought out of the scanner,
coils were exchanged, and the participants were repositioned
to the magnet’s isocenter. The sequential order of coils was
pseudo-randomized between participants to avoid any systematic
biases.

2.2.1 Anatomical imaging
Structural scans were acquired with the 32ch head coil. Whole-

brain anatomical data were acquired using a 3D multi-echo
magnetization-prepared rapid gradient echo (3D-MEMPRAGE)
sequence (van der Kouwe et al., 2008) that uses volumetric EPI
navigators combined with selective data reacquisition (Tisdall et al.,
2012) to produce (prospectively) motion-corrected T1w images
(Tisdall et al., 2016) that were used in the study. The 3D-
MEMPRAGE data were acquired at 0.8 mm isotropic resolution (TI
= 1000 ms, TEs1−4 = 1.81, 3.6, 5.39, 7.18 ms, TR = 2500 ms, α = 8°,
208 sagittal slices, matrix = 320× 320, GRAPPA = 2, Ref. lines =
32, partial Fourierslice = 6/8, echo spacing = 11.2 ms, bandwidth =
740 Hz/px, turbo factor = 168, total acquisition time ≈ 8 min). The
four echoes were combined (using root mean squares, RMS) into
a high-fidelity T1-weighted image following the scanner’s on-line
reconstruction. Quantitative T1 mapping was carried out using a 3D
magnetization-prepared 2 rapid gradient echoes (3D-MP2RAGE)
sequence (Marques et al. 2010). The MP2RAGE T1 maps were only
used to facilitate perfusion quantification and thus were acquired
at a 1.2 mm isotropic resolution (TIs1−2 = 700, 2500 ms, α1−2 =
4°, 5°, TE = 4.04 ms, TR = 3200 ms, 144 axial slices, matrix =
192× 192, GRAPPA = 2, Ref. lines = 32, partial Fourierphase = 6/8,
echo spacing = 9.08 ms, bandwidth = 150 Hz/px, turbo factor =
144, total acquisition time ≈ 4 min). T1 maps were calculated in-line
using the Siemens MapIt package (Siemens Healthineers, Erlangen,
Germany).

2.2.2 Perfusion imaging
All ASL protocols were developed using the Siemens Advanced

3D-ASL work-in-progress (WIP) sequence (courtesy of Siemens
Healthineers, Erlangen, Germany) available for the XA30A baseline
platform. The ASL data were acquired with a segmented 3D-
GRASE readout for improved SNR (Fernández-Seara et al., 2008;
Feinberg et al., 2009; Vidorreta et al., 2014). Three ASL protocols
were acquired per coil in each participant: 1) the clinical default
protocol (3.4× 3.4× 4 mm3, “Clinical” in Table 1), 2) a high-
resolution (or hires) pCASL protocol (2 mm isotropic, ‘Hires’ in
Table 1), and 3) a hires PASL protocol employing a FAIR-Q2TIPS
(Luh et al., 1999) labeling scheme (2 mm isotropic, “PASL Hires”
in Table 1). For clinical and hires ASL variants, two steady-state
magnetization (M0) calibration images were acquired without any
labeling, but with matched readout and TR increased to 20 s, one

of M0 had the opposite phase encoding for distortion correction.
The new hires protocols developed in this study were acquired in
approximately the same total time as the spatially anisotropic clinical
ASL scan (≈ 5 min).

2.3 Data processing

2.3.1 Anatomical imaging
The RMS-combined, motion-corrected, T1-weighted 3D-

MEMPRAGE was processed using FreeSurfer v 7.3.2 (Dale et al.,
1999; Fischl et al., 1999; Fischl et al., 2002) (https://surfer.nmr.mgh.
harvard.edu/) using a brain mask that was generated using mri_
synthstrip (Hoopes et al., 2022) and was provided as an additional
input to the recon-all pipeline.

2.3.2 Perfusion imaging
The first volume of the ASL timeseries was discarded as

separate M0 scans had been acquired for quantification. The pre-
processing steps were carried out using FSL (Smith et al., 2004)
included motion and distortion correction, where all control and
label volumes were independently realigned to the first volume
of the ASL scan. The separately acquired M0 scans were rigidly
registered to the first volume of the ASL scan, and then distortion
correction was performed using FSL’s topup (Andersson et al., 2003)
with the two M0 images. The perfusion timeseries was calculated
using sinc-subtraction as implemented in FSL’s perfusion_subtract.
The M0 images, perfusion-weighted data, and the MP2RAGE
T1 maps (co-registered to M0) were used as input to oxasl
(Chappell et al., 2009) (https://github.com/physimals/oxasl) for
voxelwise perfusion quantification. M0 images were co-registered
to the anatomical image using FreeSurfer’s bbregister (Greve and
Fischl, 2009) to obtain CBF maps in both native and structural
space. No adaptive spatial smoothing (Groves et al., 2009) or partial
volume correction (Chappell et al., 2011) was applied. Next, all
anatomical scans were carefully registered to the 1 mm isotropic
MNI non-linear 2009c asymmetric template space (Fonov et al.,
2009; 2011) using the ANTs SyN algorithm (Avants et al., 2014;
2011) (https://github.com/ANTsX/ANTs). Native space maps from
oxasl were resampled in a single step to the MNI space using
antsApplyTransforms. The stability of the perfusion signal over
time (temporal SNR, tSNR) was calculated dividing the temporal
mean by the temporal standard deviation of the perfusion-weighted
data (also referred to as perfusion tSNR). The SNR (consequently,
tSNR) of a voxel is expected to scale proportionally with its
volume, and this condition makes it challenging to compare
datasets of highly different spatial resolutions. Therefore, to better
appreciate the tSNR relative to a dataset’s spatial resolution,
the perfusion tSNR map from the hires scan was scaled by
the ratio of the voxel volumes of clinical to hires datasets
(46.24 mm3/8 mm3 = 5.78).

2.3.3 Partial volume analysis
In order to visualize the impact of the higher spatial

resolution acquisition, participant-wise T1-weighted images were
resampled to the nominal spatial resolution of the clinical protocol
(3.4× 3.4× 4.0 mm3) or the hires protocol (2.0 mm isotropic). The
resampled T1-weighted images were segmented using FSL’s fsl_anat
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TABLE 1 Sequence parameters for the three ASL protocols in the present study.

Parameter Clinical Hires PASL hires

Labeling pCASL pCASL FAIR-Q2TIPS

TR/TEeff 4720/20.40 ms 4000/16.80 ms 4000/16.80 ms

Tag control pairs 12 12 12

BS Gray–White strong Gray–White Gray–White

Bolus (TI1)/PLD (TI2)  1800/1800 ms 1600/1800 ms 700/1800 ms

FOV 220 × 220 192 × 192 192 × 192

Matrix 64 × 64 96 × 96 96 × 96

Slice oversampling 20% 22.5% 22.5%

Acceleration GRAPPA 2 2D-CAIPI 3 2D-CAIPI 3

Slices 30 66 66

Partial Fourier Off 6/8 yz 6/8 yz

Bandwidth 2442 Hz/px 1930 Hz/px 1930 Hz/px

Echo spacing1 0.49 ms 0.68 ms 0.68 ms

EPI factor 31 23 23

Segments (kz) 3 3 3

Turbo factor2 12 20 20

Echo-train length3 245 ms 336 ms 336 ms

Acquisition time 05:09 min 05:11 min 05:11 min

Although the study focuses on the two pCASL protocols, the PASL protocol is included here for completeness.
TR, repetition time; TE, echo time; FA, flip angle; BS, background suppression (gray–white = 2, gray–white strong = 4 non-selective pulses); PLD, post-labeling delay; TI, inversion time (for
PASL); FOV, field-of-view.
1 echo spacing, time between echoes in the 2D readout;
2 turbo factor, number of echoes acquired after excitation;
3 echo-train length≈TE×turbo factor.

(Zhang et al., 2001) to obtain PV estimates. The cortical gray matter
segmentation from FreeSurfer was morphologically dilated by one
voxel and resampled to the two resolutions, and this resampled,
dilated cortical mask was used as the ROI for the PV analyses.
To this end, we used a histogram-based analysis to first sort the
voxels into different PV fraction bins. Then, to compare the two
different acquisition resolutions, the number of voxels in each
histogram bin was scaled by their voxel volumes of 46.24 mm3

and 8 mm3, respectively, for the clinical and hires protocols, giving
us the volume of PV voxels in each bin. This normalization enabled
a direct comparison of the PV. A difference between the hires and
clinical histograms (after rescaling) was computed for all values
above a PV fraction threshold of 0.5 for each of the three tissue
classes, namely, GM, WM, and CSF.

2.3.4 Deblurring analysis
In an additional analysis, ASL data acquired from the

32ch coil were pre-processed using oxasl_deblur (https://github.

com/physimals/oxasl_deblur). We evaluated two different methods
for deblurring the data, namely, fast Fourier transform division
(FFT) and Lucy–Richardson deconvolution (Lucy) as implemented
in oxasl_deblur, with three different kernel options (direct
estimation, Lorentzian, and Lorentzian with a Weiner filter).
Smoothness of the deblurred data was estimated using AFNI’s
(Cox, 1996; Cox and Hyde, 1997) 3dFWHMx (Cox et al., 2017)
function.

3 Results

3.1 Comparison of clinical and hires ASL
data

Figure 1 shows the group average absolute CBF (in units of
mL/100 g/min) maps from clinical and hires pCASL protocols
presented in three orthogonal views (middle panel) for the three
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FIGURE 1
Mosaic of orthogonal views of the group average (n = 8) CBF (in mL/100 g/min) for data acquired using the three respective head coils (drawing on the
left). In the middle column, the maps obtained from the clinical and hires pCASL acquisitions are displayed in the top and bottom rows, respectively.
(Right) Violin plots of the CBF distribution across all participants’ data (n = 8) for the two acquisitions. The annotation represents the mean ± standard
deviation of the distribution.

head coils used to acquire the data (drawing in left panel). The panel
on the right shows the distribution of the CBF values in GM across
the participants’ data as a violin plot with the CBF values represented
on the y-axis for the two protocols. The figure annotation represents
the mean ± standard deviation of the distribution. A comparison
of the group average perfusion weighting and relative CBF (rCBF,
in arbitrary units) for the two protocols and three head coils is
shown in Supplementary Figure S1. It is important to note that
the rCBF calculated using oxasl is the perfusion-weighted image
(PWI) following kinetic model inversion (i.e., one step before M0
calibration to physiological units of mL/100 g/min) and is not
relative to the whole brain mean or normal white matter (Chappell
et al., 2023). For the clinical and hires protocols, we observe that
the mean CBF values are very similar for all three coils. The
CBF values obtained from the clinical protocols are ≈ 17% greater
than those obtained from the hires data, and both measures are
in the acceptable range for healthy volunteers (Alsop et al. 2015).
Summary statistics for all the different perfusion metrics calculated
from the data are tabulated in Supplementary Tables S2–S6.

3.2 Analysis of the partial voluming

One of the primary advantages of acquiring higher spatial
resolution data is the reduction of the partial voluming of the
signal of interest. As shown in Figure 2, the differences in voxel
volumes (hires−clinical) are plotted at each partial volume fraction
bin ranging from0.5 to 1.0 (50% to “pure” single-tissue composition)
for three tissue classes, that is, GM (a), WM (b), and CSF (c), using a
dilated GM ROI. Data from each participant are shown as a colored
dot, with the mean across participants plotted as a black dashed
line. In Figure 2A, we observe that on average, above a PV fraction
of 0.6 (60% GM), there is a net positive change in the volume
of GM and remains positive for all higher PV fractions. In other
words, even within the dilated GM ROI, there is a larger volume
(total ≈ 6713 mm3) of “pure” GM in hires than in the clinical data;
therefore, partial voluming is reduced. This finding is corroborated
by the spatial maps of PV, as illustrated in the right panels with
the PV map of hires and clinical shown on top and bottom rows,
respectively. A similar pattern is observed in Figures 2B, C that
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FIGURE 2
Histogram difference plot for all bins ≥0.5 threshold of PV fraction for (A) GM, (B) WM, and (C) CSF tissue classes of the hires and clinical acquisitions.
Value from each participant is represented as a color-coded circle, and the group average is plotted as a black dotted line. A single-participant PV
estimate map is shown in the right panel for the clinical and hires spatial scales, spatially illustrating the findings of the histogram analysis. It is to be
noted that sub-07 is excluded from this analysis as fsl_anat could not be completed.

quantifies the PV in WM and CSF, respectively. In other words,
within the dilated GM ROI used to extract these results, there is
a significantly larger volume of “pure” WM (total ≈ 16,938 mm3)
and “pure” CSF (total ≈ 15,422 mm3). As GM is bound on either
side with WM and CSF, we can infer that the greater the number
of “pure” non-GM voxels, the lower the amount of voxels which are
PV with GM, and this finding is corroborated by the spatial maps of
PV.

3.3 Deblurring analysis of 3D-GRASE ASL

Table 2 shows that the effective spatial resolution of both the
clinical and hires datasets is different from what is indicated in
the protocol, also referred to as the nominal spatial resolution
(in this study, 3.4× 3.4× 4.0 mm3 and 2.0 mm isotropic,
respectively). Systematic evaluation of five parameter combinations
in oxasl_deblur (Supplementary Table S2) shows that all five

combinations result in an improvement in a reduction in the
full width at half maximum (FWHM). We found that using the
FFT method with direct kernel estimation yields the smallest
effective FWHM (clinical: 6.38 ± 0.33 mm vs. hires: 2.38 ± 0.13 mm,
Supplementary Table S2). Table 2 shows FWHM estimated from
AFNI’s 3dFWHMx for x, y, and z axes as well as the effective
FWHM (ACF). We observe that irrespective of the acquisition
resolution, the smoothness ismaximal along the z-axis (clinical: 8.73
± 0.65 mm, hires: 4.01 ± 0.31 mm), and this is the axis along which
oxasl_deblur is most effective, reducing the smoothness estimate
to 5.22 ± 0.49 mm and 1.41 ± 0.12 mm for clinical and hires data,
respectively. The change in the estimated FWHM along z after
deblurring (ΔFWHMclinical/ΔFWHMhires) is 1.35 times larger for
the hires dataset than that for the clinical data. Figure 3 shows the
group average CBF maps for the clinical and hires datasets before
(“orig”) and after (“deblurred”) deblurring, and the distribution of
CBF values across all participants’ data is also shown as a violin
plot.
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TABLE 2 FWHM (inmm) estimated using AFNI’s 3dFWHMx for the clinical and hires 3D-GRASE datasets deblurred using the FFTmethod and direct kernel
estimation as implemented in oxasl_deblur.

FWHM Clinical Clinical deblurred Hires Hires deblurred

x 5.51 ± 0.27 5.49 ± 0.76 3.08 ± 0.18 2.65 ± 0.21

y 6.24 ± 0.20 5.91 ± 0.55 2.85 ± 0.17 2.42 ± 0.22

z 8.73 ± 0.65 5.22 ± 0.49 4.01 ± 0.31 1.41 ± 0.12

ACF 10.08 ± 0.67 7.24 ± 0.58 4.83 ± 0.36 2.69 ± 0.12

A comparison of FWHM for different deblurring methods can be found in Supplementary Table S2.
Numerical values presented are mean ± std. dev across participants.

FIGURE 3
(Top) Orthogonal views of the group average CBF maps (in mL/100 g/min) (n = 8) obtained using the 32-channel head coil, before and after deblurring
using the FFT method and direct kernel estimation as implemented in oxasl_deblur. (Bottom) Violin plots of the CBF distribution across all participants’
data (n = 8) for the two acquisitions before and after deblurring. The annotation represents the mean ± standard deviation of the distribution.

3.4 Impact of head coil choice for imaging
perfusion

Figure 1 demonstrates that robust CBF maps can be acquired
independently of the coil choice. However, the spatial distribution
of the CBF maps from the hires protocol shows a preference for
32 and 64ch. Figure 4 (top and middle rows) illustrates the impact
of perfusion tSNR across the three coils. In the case of the clinical
protocol, the increasing coil count has ≈ 2–2.5% gain in perfusion
tSNR, whereas the hires protocol has ≈ 34–42% gain in perfusion
tSNR with increasing coil count (Supplementary Table S5). The
perfusion tSNR maps of the hires data, rescaled by the ratio of voxel
volume (Figure 4, bottom row), illustrate the improvement of tSNR
with 32 and 64 coils over 20ch. In addition, Supplementary Table S4
shows that the inter-quartile range (IQR) of the perfusion weighting

increases with increasing coil count (20/32/64 ch: for clinical,
312.50/334.30/338.79 a. u., and for hires, 386.34/423.67/440.03 a.
u.) for both protocols. The IQR of perfusion weighting between
the three coils behaves similarly with the hires PASL protocol
(20/32/64 ch: 396.12/447.66/454.97 a. u., Supplementary Table S9).
Therefore, it is the SNR benefits afforded by higher coil count rather
than the quality or type of labeling used that is responsible of the
improvement in the higher IQR of perfusion values.

4 Discussion

In this study, we demonstrate that it is feasible to measure
perfusion robustly and repeatably using ASL at a high spatial
resolution of 2 mm isotropic within clinically feasible times of
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FIGURE 4
Orthogonal views of the group average perfusion tSNR maps (n = 8) where the pCASL clinical and hires maps are presented in the top and middle
rows, respectively. The bottom row shows the hires tSNR data (middle row) but with rescaled values.

≈ 5 min. In this study, we used the updated version of the
vendor provided 3D-GRASE ASL sequence (Siemens Advanced
3D-ASL WIP), and no custom sequence developments were
carried out to enable widespread usage without the necessity to
developing custom MR sequences or image reconstruction, despite
the continuous progress being made on the development of ASL
methods (Hernandez-Garcia et al., 2022). Therefore, we expect the
sequence parameter choices made in this study can be selected in
the 3D-GRASE ASL sequence available from the vendor on most
modern scanners.We show that the increased spatial resolution does
result in a reduction of partial voluming compared to the default
clinical protocol. We show that through-plane blurring is a problem
for 3D-GRASEASL independent of the protocol being used.We find
z-deblurring to be more effective on the hires than the clinical data.
Finally, the choice of head coil for imaging perfusion with ASL at 3 T
does play an important role with 32 and 64 ch being particularly well
suited. Consistent with the results of deblurring, the hires datasets
benefit most from perfusion tSNR improvements with higher coil
counts.

4.1 Impact of spatial resolution on ASL
imaging

We show that increasing the spatial resolution of ASL 5.78×,
the clinical resolution does not have a detrimental effect on
the measuring perfusion (Figure 1) and takes the same duration
as a clinical scan (≈ 5 min). The mean perfusion-weighting
values in the high-resolution data were found to be similar to
the clinical data (e.g., 32 channel: 608.55 ± 256.24 vs. 605.91
± 313.30 a. u.) (Supplementary Table S4). Importantly, however,
the hires perfusion-weighted images exhibited approximately 27%
greater IQR (32ch: clinical 334.3 vs. 423.67 a. u.) than the

clinical data. As the IQR is a measure of spread around the
mean, this measure is indicative of the dynamic range of
perfusion in the data. Being capable of resolving a wider range of
perfusion values is critical to detect subtle abnormalities and early
detection of neurological diseases (Clement et al., 2018), therefore
emphasizing the importance of high spatial resolution imaging
(Mora Álvarez et al., 2019) in clinical research and cognitive
neuroscience applications.

Acquiring data at a higher spatial resolution supports the
observed improvement in dynamic range and concurrently reduces
PV effects.The cortical GM is bound on either side byWM and CSF,
and PV occurs when a GM voxel contains fractional distributions
from these adjacent tissue classes that influence cortical perfusion
measures. Figure 2 shows that hires ASL data consistently yield a
greater volume of “pure” tissue voxels than the clinical data (GM:
≈ 6713 mm3, WM: ≈ 16,938 mm3, CSF: ≈ 15,422 mm3) (It is to be
noted that these PV fractions were derived from a dilated, cortical
GM ROI, that is, the ROI does not consist of the large ventricles or
the majority of WM in the brain). The increased number of “pure”
WM and CSF voxels indicates that the hires data can enable a more
effective separation of non-GM signal contributors to the perfusion
signal of interest.

Partial volume correction was not performed at any stage of
processing of the datasets (Chappell et al., 2011; Chappell et al.,
2021). In the absence of PV correction of the lower resolution
clinical protocol data, the lower CBF in WM partial voluming
with GM would result in a reduction of the average CBF in GM.
However, PV of GM with CSF (or rather vessels in CSF) can have
the opposite effect, resulting in higher than expected CBF values
in GM, which is likely the case here. It is also important to note
the default clinical protocol was not subject to any optimization in
the present work. Although seemingly contrary to expectations, for
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parameter sets similar to the default clinical protocol, the CBF values
in our data are consistent with those of studies that use a similar
sequence (Vidorreta et al., 2014). Other reasons could be the fact
that high-resolution acquisitions inherently reduce partial voluming
effects and, therefore, can be more sensitive to the CBF variability
within GM. Maps including that of the perfusion weighting and
rCBF are shown in Supplementary Figures S1 (clinical vs. hires)
and Supplementary Figure S2 (pCASL vs. PASL). We found that
the hires PASL results are in good agreement with the hires
pCASL (Supplementary Figure S2). Consistent with the previous
work (Wu et al., 2007; Chen et al., 2011), the pCASL labeling scheme
exhibits approximately 22%–26% higher perfusion tSNR than FAIR-
Q2TIPS for the hires acquisitions in our study.

4.2 Impact of deblurring on 3D-GRASE ASL
data

Because high spatial resolution is required, the total echo-train
length (TE × TF) can exceed 300 ms (≫ π×T2

* of tissue), resulting
in increased blurring (Qin, 2012; Liang et al., 2014; Zhao et al.,
2018), that occurs maximally in the slice direction (through-plane
or z-axis). Thus, requiring post-processing correction or making
compromises would render whole-brain acquisitions infeasible. We
find that the application of z-deblurring has a demonstrable effect
on the improvement of the spatial fidelity (or reducing the estimated
FWHM) of the ASL data, as shown in Table 2. It is interesting to note
that FWHM along z for the deblurred clinical data (5.22 ± 0.49 mm)
is still larger than the non-deblurred hires data (4.01 ± 0.31 mm).
This has an important implication in clinical settings where
advanced image post-processing is often unavailable. Importantly,
the hires ASL protocols enable researchers and clinicians to
resolve perfusion changes with a higher spatial fidelity (without
requiring advanced image processing) than the post hoc deblurred
clinical datasets. Furthermore, post-processing deblurring methods
have their limitations and they cannot synthesize resolution from
information lost in acquisition. Although lengthening the echo-
train is an important concern, our findings (Table 2) indicate that
deblurring methods are more effective for high-resolution ASL
imaging.

4.3 Impact of coil choice on ASL imaging

We demonstrate that robust rCBF maps can be acquired
independently of the coil choice (Figure 1); however, higher coil
counts (32 and 64ch) offer substantial gains in perfusion tSNR than
the 20ch coil (Figure 4). We find that increasing coil count results in
≈ 2–2.5% gain in perfusion tSNR for the clinical protocol compared
to ≈ 34–42% gain for the hires protocol (Supplementary Table S5).
One reason for this difference could be that data acquired with
clinical protocol in Figure 1 are relatively insensitive to the choice
of coil due to its low spatial resolution (i.e., low thermal noise)
and acceleration (i.e., no g-factor penalty) requirements. On the
other hand, the hires protocols accelerate higher and have increased
thermal noise than the clinical protocol, owing to the smaller voxel
sizes, and therefore benefit from the increased number of coils
(Figure 4).

Interestingly, Figure 4 shows that reducing the voxel size (i.e.,
higher spatial resolution) actually results in a gain in perfusion SNR
(clinical vs. hires (scaled)), which may seem counterintuitive from
the standpoint of conventional fMRI where the SNR of the BOLD
signal decreases with increasing resolution. However, this is due to
the different signal origins of the BOLD and perfusion contrasts. By
reducing PV with veins and macro-vasculature, we are reducing the
signal contributors of the BOLD signal, whereas these same signal
components are sources of noise in perfusion imaging, as they have
very low perfusion signals. In addition, reducing WM contribution
of voxels dominated by GM improves the fidelity of GM perfusion
values and reduced influence of physical noise stemming from
WM. Therefore, reducing PV increases our sensitivity to the cortical
microvasculature signal and reduces noise and signal contribution
from WM and CSF. In other words, higher spatial resolution not
only decreases image SNR in both BOLD and perfusion methods
due to reduction in the number of protons (i.e., voxel volume) but
also reduces noise sources in perfusion imaging stemming fromCSF,
veins, and WM.

4.4 Limitations

Although we demonstrate clear benefits of high-resolution
ASL imaging for clinical research and cognitive neuroscience
applications (group studies), the present study is limited in its
ability to comment on a potential impact in daily clinical practice
(single subject, diagnostic). Nevertheless, we believe future studies
investigating the impact of ASL sequence parameters in routine
clinical practice should use a modestly higher isotropic resolution
(e.g., 2.5 mm) to enable better visualization of localized differences
in perfusion. Here, we also opted for modest acceleration schemes
(Table 1) as the protocols were to be compared on all three
available head coils and the 20ch coil would be the lowest common
denominator. The availability of the 3D-GRASE readout with
2D-CAIPIRINHA undersampling enabled us to achieve higher
isotropic spatial resolution for perfusion imaging (Vidorreta et al.,
2014; Ivanov et al., 2017; Boland et al., 2018). For a future non-
comparison type of study, this protocol optimization can be pushed
further to take advantage of the higher coil count and achieve
higher acceleration. A systematic exploration of different CAIPI
acceleration schemes or trajectories, impact of reduced g-factor
noise amplification on image quality, is, unfortunately, beyond the
scope of the present work.

4.5 Concluding remarks

Taking together, this study demonstrates the feasibility and
benefits of imaging perfusion using high-resolution isotropic ASL
for clinical research and cognitive neuroscience applications at
3 T. We have shown that increasing the spatial resolution does
not compromise the accuracy and quality of the perfusion maps,
and allows for a wider dynamic range of perfusion values. We
have shown that high-resolution data can more effectively separate
out the non-GM signal contributors (reduce PV effects), which
improves the sensitivity to cortical microvasculature and tissue in
GM. In addition, post-processing methods such as z-deblurring are
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important considerations for whole-brain perfusion imaging using
3D-GRASE ASL to improve the spatial fidelity of the data. High-
resolution acquisitions take advantage of the higher coil counts
and offer substantial gains in perfusion tSNR with 32 and 64ch
coils. Echoing what Donahue and colleagues envisioned in 2006,
we strongly believe that high-resolution ASL (2–2.5 mm isotropic)
can be a new standard for perfusion imaging using ASL at 3 T
and be adopted into clinical and cognitive neuroscience research
workflows.
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