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As an important technique for data pre-processing, outlier detection plays a
crucial role in various real applications and has gained substantial attention,
especially in medical fields. Despite the importance of outlier detection, many
existing methods are vulnerable to the distribution of outliers and require prior
knowledge, such as the outlier proportion. To address this problem to some
extent, this article proposes an adaptive mini-minimum spanning tree-based
outlier detection (MMOD) method, which utilizes a novel distance measure
by scaling the Euclidean distance. For datasets containing different densities
and taking on different shapes, our method can identify outliers without prior
knowledge of outlier percentages. The results on both real-world medical data
corpora and intuitive synthetic datasets demonstrate the effectiveness of the
proposed method compared to state-of-the-art methods.
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1 Introduction

Massive and complex databases often contain numerous patterns. Most traditional data
mining tasks find general patterns in the datasets and regard the outliers as noise, such
as frequent pattern mining, classification, and clustering. What should not be overlooked
is that outliers may embody more valuable information than general patterns, as they
could imply abnormal behaviors or potential new patterns, which is consistent with real-
life situations Liu and Schultz (2022). An outlier generally means a point that deviates
greatly from others, typically generated by a different mechanism Atkinson and Hawkins
(1980). Detecting outliers in a dataset is critical and beneficial for practical applications in
various fields, such as fraud detection Fiore et al. (2019); Tseng et al. (2015), cyber-security,
medical diagnostics Schlegl et al. (2017); Zhang et al. (2016), and others Kang et al. (2016).
Outliers of physiological signals in the form of time series are often studied by statistical
models, with the latest examples including self-similarity matrices Rodrigues et al. (2022)
and subsequence search Folgado et al. (2022), while graph theory-based outlier detection
algorithms shine in medical data composed of discrete points, the subject of this article.
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Research on outlier detection has a long tradition. Following
Hawkins’ classical definition of outliers Atkinson and Hawkins
(1980), researchers have developed various outlier detection
algorithms and schemes over the years. Generally speaking,
these approaches fall into four major groups: distribution-
based Zong et al. (2018), distance-based Amagata et al. (2021);
Radovanović et al. (2015), density-based Schubert et al. (2014);
Corain et al. (2021), and clustering-based Manzoor et al. (2016);
Chawla and Gionis (2013); Wang et al. (2019). The main
characteristic of the distribution-based method is that it fits
datasets with a standard distribution, assuming that the underlying
distribution of the dataset is known in advance. It identifies the
outliers as the points that do not conform to a particular distribution
that sums up most of the data points. Although effective for datasets
with a known distribution, the distribution-based approach is not
always advisable for real-world scenarios due to the unavailability of
a priori distribution knowledge and the high cost of concluding an
appropriate distribution Li et al. (2022). During the past 2 decades,
distance-based methods have attracted much attention, finding
points whose given distance range of neighbors contains less than a
predetermined percentage of points of the whole dataset Knorr
and Ng (1998). In addition to the unavoidable computational
expense of the distances between all pairs, the configuration of
the neighboring amount k significantly influences the detection
quality. The density-based algorithm was proposed to cover the
shortcoming of distance-based approaches, which often fail to
detect local outliers. The local outlier factor (LOF) proposed by
Markus is widely used to evaluate the outsiderness degree of a point
Jahanbegloo and Jahanbegloo (2000), performing well in the dataset
with different density distributions. LOF measures the difference
between the samples’ local density and their k-nearest neighbors
(k-NN) as the outlier factor. However, the choice of k can greatly
influence performance. Clustering-based methods have gained
popularity in the field of outlier detection as they can overcome the
influence of parameters. Clustering divides the dataset into several
clusters, making the intra-cluster distance much smaller than the
inter-cluster distance. Outliers are identified as the points that are
isolated from the resulted clusters. Many researchers have focused
on combining clustering and outlier detection Wang et al. (2019);
Degirmenci and Karal (2022); Liu et al. (2019). Clustering based on
minimum spanning trees (MSTs) is widely adopted for its ability
to identify clusters with irregular boundaries Wang et al. (2013).
Unlike k-means, there is no assumption that the data points are
grouped around centers or separated by a regular geometric curve.
However, building an MST is time-consuming for large datasets
and may not detect different density clusters effectively Li et al.
(2019).

This article proposes a novel outlier detection method, called
Mini-MST-based Outlier Detection (MMOD), which does not
require specifying the number of outliers. For the emerging real-
world data without ground truth, sometimes called black-box
data, algorithms that do not require a predetermined number or
proportion of outliers can often be straightforwardly plug-and-
play. Our approach uses a new distance measure as the edge
weight of MST, to better differentiate the clusters so that the
outliers in datasets with various density clusters can be identified.
To improve the efficiency, we compute some mini-MSTs with
a small proportion of the whole dataset and delete the points

added to the trees. Our method starts with constructing a Prim’s
MST to find one data point in the densest cluster. Subsequently,
some small mini-MSTs are computed from the densest point
using a distance scaled by the termination threshold of Prim’s
algorithm instead of the traditional Euclidean distance to represent
the edge weight. The points in each mini-MST can be regarded
as a cluster. We compute a termination condition for the MST
construction so that the remaining points are outliers after all the
mini-MSTs are constructed. The novelty of the proposed method
includes a new distance measure to construct the MST to identify
different density clusters and efficiency enhancement by employing
the mini-MST structure and deleting the data points while
constructing the trees. Compared with eight state-of-the-art outlier
detection methods on various real-world medical datasets and five
synthetic datasets, our method’s feasibility and effectiveness will be
proven.

The remainder of the article is organized as follows. Section 2
discusses relevant work on outlier detection. Section 3 prepares
the foundations of the preliminaries and definitions for subsequent
tasks. Section 4 presents our mini-MST-based outlier detection
method. Section 5 manifests the experimental results in comparison
to the state-of-the-art technologies. Section 6 concludes our work
and looks into the future.

2 Related work

2.1 Distance-based outlier detection

Knorr and Ng advocated distance-based outlier detection
(DOD) for the first time to soften the limitation of distribution-
based methods on data distribution and prior information Knox
and Ng (1998). The local distance-based outlier factor (LDOF)
is one of the most known variants in distance-based approaches
Zhang et al. (2009), which measures the outsiderness degree in
scattered real-world datasets. The relative location of one point
and its neighbors evaluates the deviation of the patterns, based
on which the classical top-n strategy chooses outlier candidates.
As the volume of data increases and the form of data diversifies,
data streams are becoming popular, spawning many studies on in-
streamoutlier detection. Angiulli et al. presented three algorithms to
detect distance-based outliers in a sliding-window model Angiulli
and Fassetti (2010). A novel notion called the one-time outlier
query identifies outliers in a targeted window at an arbitrary
time. Milos Radovanovic et al., focusing on the effects of high-
dimensional datasets, analyzed the relationship between antihubs
and outliers taking into account the reverse nearest neighbor,
that is, the point neighboring its k-NN Radovanović et al. (2015).
Continuous outlier mining employs the sliding-window data
structure to reduce time and memory costs, which is flexible
in terms of input parameters Kontaki et al. (2016). Scaleable,
distributed algorithms have been put forward for substantial data.
MapReduce works for distributed tasks: A multi-tactic strategy
for DOD is proposed, where data characteristics are considered
in data partitioning Cao et al. (2017). The in-memory proximity
graph copes with the memory problem of large datasets, analyzing
the type of proximity graph for the algorithm Amagata et al.
(2022).
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2.2 Minimum spanning tree-based outlier
detection

MST is an important andwidely used data structure in clustering
analysis. MST-based clustering finds inconsistent edges and deletes
them to form reasonable and meaningful clusters. In the case of the
existence of outliers, cutting inconsistent edges can result in isolated
points or clusters, which can be utilized for outlier detection.

Jiang et al. proposed a two-phase outlier detectionmethod based
on k-means and MST, in which small clusters are selected and
deemed outliers Jiang et al. (2001). There are two stages to this
method. In the first phase, they used modified k-means clustering
by assigning the far point as a new cluster center. In the second
phase, an MST is constructed, and the longest edges are cut to find
the small clusters, the tree with a few nodes. MST-based spatial
outlier detection combines MST-based clustering constructed by
the Delaunay triangle irregular net (D-TIN) and density-based
outlier detection, performing effectively on the data of soil chemical
elements Lin et al. (2008). Previous work also modified the k-
means algorithm to construct a spanning tree efficiently Wang et al.
(2012). Integrating MST-based clustering and density-based outlier
detection improves the quality of detection.Meanwhile, the removal
of outliers may lead to enhanced results of MST-based clustering
Wang et al. (2013).

2.3 Summary of deficiencies

From the existing work in outlier detection, it can be concluded
that.

• Distance-based models are weak in detecting local outliers.
Furthermore, the boundary points in a sparse cluster may be
misclassified as outliers.
• Density-based models are less effective at identifying global

outliers because these outliers are usually scored low.
• Clustering-based models, ignoring the locations and

conditions, can identify outliers that do not belong to any
cluster, but are not robust to the presence of different density
clusters.

We propose a novel method inspired by MST to tackle the
shortcomings mentioned above.

3 Foundation

3.1 Preliminaries

Spanning tree. Given N n-dimensional data points (vertices)
in Euclidean space, the spanning tree is a tree that includes all N
vertices without closed loops, in which the number of edges is not
greater than N(N−1)

2
because full connectivity is not required.

Minimum spanning tree (MST). An MST is a spanning tree
whose total weight is minimal among all spanning trees, which
means that the number of edges in an MST isN− 1. The total weight
is the sum of the weight of all edges of the tree. Generally speaking,
the weight of an edge in a tree is the Euclidean distance between its

two endpoints. Mahalanobis distance or other metrics can also be
used as a measure.

Prim’s MST. Among the three traditional algorithms for
constructing MST, Prim, Kruskal, and Boruvka, this work employs
Prim Medak (2018), whose process can be briefly described as.

• Randomly choose one point in the dataset as the root of the tree;
• Compute the pairwise distances between the chosen point and

other points to find the shortest edge;
• Add the shortest edge and the other endpoint of it to the tree;
• Repeat the steps above until all the data points are added to the

tree.

Euclidean distance (d). Given two endpoints x1 and x2 of the
ith edge ei of an MST in the n-dimensional Euclidean space, the
Euclidean distance between x1 and x2 is

di = d (x1,x2) = √
n

∑
j=1
(x1j − x2j)

2. (1)

3.2 Definitions

Threshold of termination (Tt). A global termination threshold
sets the stopping condition of the cluster computation to identify
the remaining points as outliers, defined as

Tt = d+√
N−1

∑
i=1
(di − d)

2
, (2)

where d is the average weight of all edges {ei} in the Prim’s MST
constructed of the dataset, computed as

d =
∑N−1

i=1
di

N− 1
, (3)

where the numerator accumulates all edges in the Prim’s MST.
Threshold-based Euclidean distance (ted). We put forward a

weighted Euclidean distance to replace the traditional Euclidean,
computed as

ted (x1,x2) =
d (x1,x2)

Tt
. (4)

Tt is calculated based on all edges from the MST of the entire
dataset, which enables the scaled distances to handle different
density clusters by reducing the discrepancy of the edge weights.

Mini-MST generation. In this work, the mini-MST generation
algorithm starts from a point in the densest cluster and computes the
MST using ted. When an edge is supposed to be added to the tree,
its weight is first compared to the adaptive exit condition defined
below. If the former is greater, the other end of the current edge does
not belong to the current cluster. Consequently, the computation
of the current mini-MST terminates and a new construction
starts.

Mini-edge weight set (MEW). A mini-edge weight set records
the weight of the edges added to the mini-MST. Once an edge is
added to the MST, its weight enters MEW.

The first value added toMEW, denoted asMEW1, defaults to d1,
the length of the first edge added to mini-MST. The default value
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performs well on all real-world datasets applied in this work, as
Section 5.2 manifests. In exceptional cases, like a significantly high
value of d1, MEW1 can be tuned, such as for the synthetic “Two
densities” and “Three clusters” datasets in Appendix, where MEW1
was set to 1.

Adaptive exit condition of mini-MST generation (aec). To
improve efficiency, we repeatedly compute mini-MSTs and delete
the points added to the MST, applying an adaptively updated exit
condition that judges whether the mini-MST generation should
terminate at the targeted edge ei:

aec(ei) =MEW+√
|MEW|

∑
i=1
(MEWi −MEW)2, (5)

where |MEW| and MEW are the size and the average weight of the
current MEW that ei is supposed to enter, respectively.

MST-based outliers. MST-based outliers are the points not
added to any generated mini-MSTs. Our method does not require
a given number of outliers; Instead, aec and Tt differentiate the
different density clusters and outliers. The construction of the mini-
MSTs finishes when the weight of the next edge is greater than
the threshold, so that the points in this current mini-MST can be
regarded as a cluster with the same density. Furthermore, a sliding
window is applied to the edge weight denoted by the Euclidean
distance. If the mean value of such a window is greater than Tt, the
remaining points that are not ready to be added to the tree should
be deemed outliers.

4 Methods

4.1 MST generation details and an
illustrative example

In response to traditional MST-clustering-based outlier
detection’s weak performance on datasets with different densities,
this work applies a novel distance measure scaled by the threshold
of algorithm termination for better discrimination of normal
points and outliers. Such a threshold could be considered a quasi-
measure of noise in the dataset. The second algorithm improvement
of this work targets efficiency: Mini-MSTs are built iteratively.
Finishing a mini-MST generation in a cluster is followed by the
deletion of processed points and a new construction procedure
on the remaining points. An adaptive exit condition based on a
progressively updated MEW qualifies the termination of the mini-
MST building. A traditional MST algorithm, like Prim, is first
applied to create an exact MST to find the point in the densest
cluster. Subsequently, all edges are sorted in non-decreasing order
to ensure that the first edge’s two endpoints are in the densest cluster
because the higher the cluster’s density, the shorter the distances
between its points. The edges between different density clusters are
taken into account.

Figure 1 illustrates a simplified case that embodies four clusters
with different densities and six outliers. C1 is the densest cluster
with the smallest average weight of edges. A Prim’s MST is
constructed first to find the point in the densest cluster, as Figure 1A
demonstrates. The shortest edge can be identified by sorting the
edges in Prim’s MST in non-decreasing order. Let s denote the

FIGURE 1
An intuitive example of the adaptive mini-minimum spanning
tree-based outlier detection (MMOD) method. C1, C2, C3, and C4: four
clusters of different densities; (A) Prim’s MST on the original dataset;
(B)–(E) procedure of iterative mini-MST construction; (F) detected
outliers (in red).

start point of the shortest edge in C1, from which a mini-MST
is computed. Like Prim, the shortest edge is repeatedly added to
the mini-MST until the next edge’s weight is larger than the exit
condition aec (see Eq. (5)). The points in the built mini-MST are
labeled normal and removed from the dataset. The above steps are
repeated from the point of the next densest cluster, which in this
example is C2, and the whole procedure ends with the adaptive
exit condition being satisfied. The remaining points are considered
outliers.

4.2 Adaptive mini-minimum spanning
tree-based outlier detection (MMOD)

As can be observed from the example in Section 4.1, the
proposed method is centered on the iterative computation of
mini-MSTs. Similarly to Prim, two arrays, labeled_data and
unlabeled_data, are used to record data points added or not added
to the tree, initialized by an empty set and all points, respectively.
Unlike the traditional exact MST, the MST in our algorithm is
constructed according to the data density, and an exit condition is
added to obtain a mini-MST for efficiency. The edge weight of the
mini-MST is a threshold-based Euclidean distance in place of the
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Require: a set of N data points, R; start point,

s; labeled_data; unlabeled_data

Ensure: an MST

1: Let MEW denote mini edge weight set

2: Let result_set denote the generated MST

3: Let ted_arr denote N−1 threshold-based

Euclidean distances

4: Let edge_arr denote the parents of the N data

points

5: for i ← 1: N do

6:  edge_arr[i] ← s

7: ted_arr[i] ← ted (s ,ith point in R) (see

Equation 4)

8: end for

9: choose another point p from R which is the

nearest point to s

10: add the edge denoted by s, p, ted_arr[s] to

result_set

11: move p from unlabeled_data to labeled_data

12: initialize MEW with distance (s, p)

13: while True do

14:  initialize min_ted with ∞;

15:  for q in unlabeled_data do

16:   last_weight← ted(p,q)

17:   if last_weight < ted_arr[q] then

18:    update ted_arr with the last_weight

19:    update edge_arr with the index of p

20:    min_ted← last_weight

21:   end if

22:  end for

23:  compute aec(ei) according to Equation 5

24:  if min_ted > aec(ei) then break

25:  end if

26:  choose point r with smallest ted in ted_arr

27:  add the edge denoted by p, r, ted_arr[p] to

result_set

28:  move r from unlabeled_data to labeled_data

29:  update p with r

30:  add ted_arr[p] to MEW

31: end while

32: return result_set, edge_arr and ted_arr

Algorithm 1. Mini-minimum spanning tree construction

conventional Euclidean distance (see Eq. 4). s denotes the start point
of the mini-MST. Aside from the MST array used in Prim’s MST, an
additional ted_arr records the threshold-based distance between all
data points. Algorithm 1 details the mini-MST construction.

Least number. To be noted, the number of points in the cluster
falls within a certain range. A cluster containing too few points
is considered an outlier cluster. least_number distinguishes normal
clusters from outlier clusters:

least_number = ROUND(√N
n
), (6)

Require: dataset R

Ensure: a label array, labels

1: labels← [−1]*N

2: compute a Prim’s MST using Prim algorithm

3: sort the Prim’s MST in non-decreasing order

4: compute Tt according to Equation 2

5: compute the least_number according to

Equation 6

6: for edge in MST do

7:  s←start point of edge

8:  if one of the two ends of the edge is in

labeled_data then

9:   continue

10:  end if

11:  window← the weight of the current edge and

the next 5 edges;

12:  edge_threshold← the mean value of window

13:  if edge_threshold < Tt then

mini_mst← Mini_MST(DS,s,labeled_data,unlabeled_data)

14:   if len (mini_mst) >least_number then

15:    labeled the two ends of the edges in

mini_mst as normal

16:   end if

17:  else

18:   break

19:  end if

20: end for

21: return labels

Algorithm 2. Adaptivemini-minimum spanning tree-based outlier detection

where the ROUND function finds the closest integer to the
parameter; N and n are the size and dimension of the dataset,
respectively. If the number of edges of a mini-MST is less than
least_number, the points belonging to the tree aremarked as outliers.

Since the algorithm starts building MSTs from the densest
cluster, it keeps outliers until all mini-MSTs have been generated.
Therefore, the threshold of termination Tt (see Eq. 2) can be applied
to stop finding normal points. To compare with Tt, a window filled
with the weights of the current edge and the following five edges is
used: If the mean value of this window is greater than Tt (see Eq. 2),
the remaining data points will be treated as outliers.

Algorithm 2 provides the pseudocode of the proposed adaptive
mini-MST-based outlier detection, which takes the input of the
dataset R with N data points and its corresponding Prim’s MST
denoted by the edges. Each edge of the MST consists of a starting
point, an endpoint, and an edge weight.

5 Experimental results and evaluation

5.1 Applied datasets

Ten experiments were conducted on different real-world
datasets, as summarized in Table 1, to demonstrate MMOD’s
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TABLE 1 Description of the applied real-world datasets.

Dataset Number of Samples Number of Outliers Number of Attributes

HeartDisease 270 120 13

Parkinson 195 147 22

Pima 768 268 8

SpamBase 4601 1813 57

WDBC_v05 367 10 30

WDBC_v06 367 10 30

WDBC_v07 367 10 30

WDBC_v08 367 10 30

WDBC_v09 367 10 30

WDBC_v10 367 10 30

applicability on the benchmark Campos et al. (2016). The datasets
will be introduced in detail in Section 5.4, along with the results of
the experiments carried out on them.

As a supplement, experiments onfive synthetic two-dimensional
datasets with different morphologies are added to demonstrate
MMOD’s parameter tuning and its availability on manually
generated data; plus, the two-dimensional visualization is intuitive
and well-readable (see Appendix).

5.2 State-of-the-art methods for
comparison

MMOD’s experimental results were compared with eight
algorithms from the Python outlier detection package Zhao et al.
(2019), including four classical algorithms, k-NN Ramaswamy et al.
(2000), LOF Jahanbegloo and Jahanbegloo (2000), angle-based
outlier detection (ABOD) Pham and Pagh (2012), and histogram-
based outlier score (HBOS) Goldstein and Dengel (2012), as
well as four recent algorithms, one class support vector machine
(OCSVM) Erfani et al. (2016), lightweight online detector of
anomalies (LODA) Pevný (2016), locally selective combination
of parallel outlier ensembles (LSCP), and multiple-objective
generative adversarial active learning (MOGAAL) Liu et al. (2019)
Zhao et al. (2018). LOF and k-NN are classical density-based and
distance-based methods, respectively. ABOD is developed for
high-dimensional feature space datasets to alleviate the “curse
of dimensionality,” an efficient version of which was used in our
experiments. HBOS is an unsupervised outlier detection method
that computes the outsiderness degree by building histograms.
OCSVM is an extension of the support vector algorithm that learns
a kernel function called the decision boundary, distinguishing
outliers from inliers. LODA is operative for data streams and real-
time applications. LSCP, also unsupervised, chooses the competent
detectors by using the local region of the data points. The newly
presented MOGAAL is based on a generative adversarial active
learning neural network.

To generate a fair comparison reference, the kthreshold value for
each state-of-the-art method being compared was set to 7, a typical

value setting. Literature such as Campos et al. (2016) records the
performance of other kthreshold values on most reference methods.
The outlier percentage is calculated as the number of outliers divided
by the size of the dataset. All experiments were run through Python
3.6.5 on a computer with an Intel® Core™ 3.2 GHz i5-3470 CPU and
4 GB RAM.

5.3 Evaluation metrics

Conventional evaluation metrics precision, recall, and F-
measure were applied to analyze and compare the experimental
results on real-world datasets. Let m denote the number of correct
outliers returned by the detector, n denote the total number of
all outliers returned by the detector, and o denote the number of
ground-truth outliers. The precision P is the proportion of correct
outliers in all outliers identified by the detector:

P = m
n
. (7)

The recall R is the proportion of correct outliers that the detector
returns in all ground-truth outliers:

R = m
o
. (8)

The F-measure is the harmonic mean of precision and recall:

F = 2
1
P
+ 1

R

= 2PR
P+R
. (9)

5.4 Results on real-world datasets

Applying real-world datasets can demonstrate the effectiveness
of the proposed method straightforwardly. Since medical data
are one of the most prominent application scenarios of outlier
detection, nine widely investigated open-source medical datasets
are utilized for experiments. A spam dataset is additionally brought
into the experiment as a case for other domain applications. On
each real-world dataset, default MMOD parameter settings or
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formulas defined in Section 3.2 were adopted, such as the MEW’s
first added valueMEW1, the threshold-based Euclidean distance ted,
and the exit condition aec, which evidences the broad applicability
of MMOD without parameter tuning. The precision, recall, and
F-measure values of MMOD’s and the experimental results
of the peer methods’ are entirely recorded in Tables 1–3,
of which the statistics are plotted in Figures 2–4 for visual
comparison.

5.4.1 The HeartDisease dataset
HeartDisease contains 270 instances, of which 120 outliers

represent patients, and the rest describe healthy individuals, showing
a close number of normal samples and outliers. Normalized,
unduplicated data were used for the experiments of the nine
algorithms. Overall, all methods did not perform ideally on
this dataset. The highest precision and recall were generated
by HBOS and MMOD, respectively. Regarding the F-measure,
MMOD came in second place, slightly below HBOS, while the
rest of the methods did not exceed 0.6. It is worth noting
that MMOD’s perfect recall. In terms of dataset composition,
HeartDisease is the only one from all participating datasets with
normal samples and outliers close to half-and-half. With such a

high percentage of outliers (only lower than Parkinson), there
are only 13 attributes used for detection (the second fewest),
which evidences the difficulty of detection. Nevertheless, MMOD
detected all outliers without any missing, despite causing many
false identifications. In contrast, although HBOS has a higher F-
measure than MMOD with a 0.80 gap, it has a recall loss of 0.30,
which is too high a leakage rate, being insensitive for disease
detection.

5.4.2 The Parkinson dataset
To evaluate MMOD’S effectiveness on a large percentage of

outliers, we use the normalized, unduplicated Parkinson dataset,
consisting of 195 instances, amongwhich 147 are Parkinson’s disease
patients as outliers. Due to the outlier percentage being larger than
50%, no parameters were passed to the eight peer algorithms. All
methods performed acceptably in terms of precision, but MMOD
is the only one standing out in terms of recall, contributing to its
far-leading F-measure. For comparison, the F-measures of all peer
algorithms are below 0.5. Compared to HeartDisease, Parkinson
has a substantially higher percentage of outliers, over three-
quarters, the highest among all datasets applied. Meanwhile, its total
number of attributes is sizably greater than HeartDisease, at 22.

TABLE 2 The precisions of experimental results fromMMOD and eight state-of-the-art algorithms on the real-world datasets. The best performance on each
dataset is indicated in bold.

Dataset MMOD ABOD HBOS KNN LODA LOF LSCP MOGAAL OCSVM

HeartDisease 0.44 0.52 0.70 0.50 0.28 0.45 0.44 0.35 0.59

Parkinson 0.75 0.85 1.00 0.90 0.90 0.85 0.90 0.65 0.70

Pima 0.35 0.53 0.66 0.49 0.44 0.45 0.45 0.47 0.52

SpamBase 0.41 0.00 0.53 0.36 0.14 0.49 0.35 0.15 0.25

WDBC_v05 0.80 0.50 0.20 0.80 0.70 0.30 0.24 0.00 0.03

WDBC_v06 0.70 0.70 0.00 0.60 0.50 0.60 0.24 0.00 0.00

WDBC_v07 0.48 0.80 0.20 0.70 0.70 0.70 0.24 0.00 0.03

WDBC_v08 0.48 0.80 0.20 0.80 0.80 0.40 0.27 0.00 0.03

WDBC_v09 0.86 0.50 0.10 0.60 0.50 0.50 0.24 0.00 0.03

WDBC_v10 0.77 0.90 0.10 0.90 0.90 0.20 0.27 0.00 0.03

TABLE 3 The recalls of experimental results fromMMOD and eight state-of-the-art algorithms on the real-world datasets. The best performance on each dataset
is indicated in bold.

Dataset MMOD ABOD HBOS KNN LODA LOF LSCP MOGAAL OCSVM

HeartDisease 1.00 0.52 0.70 0.50 0.28 0.45 0.10 0.35 0.13

Parkinson 1.00 0.12 0.14 0.12 0.12 0.12 0.12 0.09 0.10

Pima 1.00 0.15 0.19 0.14 0.13 0.13 0.13 0.13 0.15

SpamBase 1.00 0.00 0.13 0.09 0.04 0.12 0.09 0.04 0.06

WDBC_v05 0.80 0.50 0.20 0.80 0.70 0.30 0.90 0.00 0.10

WDBC_v06 0.70 0.70 0.00 0.60 0.50 0.60 0.90 0.00 0.00

WDBC_v07 1.00 0.80 0.20 0.70 0.70 0.70 0.90 0.00 0.10

WDBC_v08 1.00 0.80 0.20 0.80 0.80 0.40 1.00 0.00 0.10

WDBC_v09 0.60 0.50 0.10 0.60 0.50 0.50 0.90 0.00 0.10

WDBC_v10 1.00 0.90 0.10 0.90 0.90 0.20 1.00 0.00 0.10
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TABLE 4 The F-measures of experimental results fromMMOD and eight state-of-the-art algorithms on the real-world datasets. The best performance on each
dataset is indicated in bold.

Dataset MMOD ABOD HBOS KNN LODA LOF LSCP MOGAAL OCSVM

HeartDisease 0.62 0.52 0.70 0.50 0.28 0.45 0.16 0.35 0.22

Parkinson 0.86 0.20 0.24 0.22 0.22 0.20 0.22 0.16 0.17

Pima 0.52 0.24 0.30 0.22 0.20 0.20 0.20 0.21 0.23

SpamBase 0.58 0.00 0.21 0.15 0.06 0.19 0.14 0.06 0.10

WDBC_v05 0.80 0.50 0.20 0.80 0.70 0.30 0.38 0.00 0.04

WDBC_v06 0.70 0.70 0.00 0.60 0.50 0.60 0.38 0.00 0.00

WDBC_v07 0.65 0.80 0.20 0.70 0.70 0.70 0.38 0.00 0.04

WDBC_v08 0.65 0.80 0.20 0.80 0.80 0.40 0.43 0.00 0.04

WDBC_v09 0.71 0.50 0.10 0.60 0.50 0.50 0.38 0.00 0.04

WDBC_v10 0.87 0.90 0.10 0.90 0.90 0.20 0.43 0.00 0.04

FIGURE 2
The precision of MMOD’s and peer methods’ experimental results on the real-world datasets.

Regarding Parkinson’s detection, MMOD’s perfect recall means no
miss.

5.4.3 The Pima dataset for diabetes
Another normalized, unduplicated medical dataset, Pima,

contains 768 cases, including 268 diabetic patients as outliers. Each
sample is composed of 8 attributes. MMOD works imperfectly in
terms of precision, although all methods are not bright; however,
MMOD’s recall and F-measure are highlights. Table 1 implies that
Pima contains exactly 500 normal samples, which makes the
proportion of outliers about 34.90%, roughly one-third of the total
data, for which the number of attributes used to describe the samples
is the lowest of all the datasets. MMOD succeeded in detecting all
diabetic cases but resulted in a certain number of false positives.
Similar to Parkinson, on the F-measure, which indicates the overall
performance, MMOD outperformed the other methods by a large
margin, as none of the others exceeded 0.30.

5.4.4 The WDBC corpus and its variation sets for
breast cancer

WDBC describes the nuclear characteristics of a breast
cancer diagnosis, whose different variation datasets used in
our experiments are randomly downsampled from the original
classification dataset for outlier detection Zhang et al. (2009). Each
variation of WDBC contains 367 samples, among which there are
10 outliers representing malignant cancers, while other instances
indicate benign cancers. Therefore, the outlier proportion of the
five WDBC datasets is uniform and tiny, about 2.72%, much
smaller than others. Nevertheless, a relatively higher number
of attributes are used to characterize the samples, reaching 30,
the second highest. The nine algorithms, including MMOD,
were experimented on the WDBC dataset’s six unnormalized,
unduplicated subsets. For all applied WDBC datasets, MOGAAL
was unable to identify any outliers, quitting the competition
early.
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FIGURE 3
The recall of MMOD’s and peer methods’ experimental results on the real-world datasets.

FIGURE 4
The F-measure of MMOD’s and peer methods’ experimental results on the real-world datasets.

For WDBC_v05, the proposed MMOD achieves the highest
precision of 0.8, along with KNN, followed by LODA with 0.7.
None of the other methods achieves a precision greater than
0.5 in this dataset. Regarding recall, LSCP achieves 0.9, while
MMOD and KNN are 0.8. Nonetheless, LSCP’s F-measure is
underperforming due to its low precision, while MMOD and
KNN win at F-measure. MMOD on WDBC_v06 and WDBC_v09
also yielded similar situations of “optimal precision, suboptimal
recall, and best F-measure,” just that ABOD replaced KNN as
the joint winner on WDBC_v06, while MMOD alone performed
best on WDBC_v09. It is noteworthy that besides MOGAAL,
HBOS and OCSVM also failed on WDBC_v06. MMOD’s

performance metrics on WDBC_v07, WDBC_v08, and WDBC_
v10 are similar: perfect recalls with non-optimal precisions and
F-measures.

A perfect recall of 1 means that all true malignancies are found
withoutmissing, while suboptimal precision represents the presence
of a false positive chance. Overall, MMOD has a relatively high
recall on WDBC, slightly inferior to LSCP (MMOD is higher only
on WDBC_v06, while on par or lower at rest). Still, given LSCP’s
inferior precision, it can be claimed that MMOD works well overall
on WDBC_v05–WDBC_v10, as evidenced also by the F-measures.
It can also be observed from Figure 4 that MMOD’s F-measure
performance is relatively stable among a group of algorithms.
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5.4.5 The SpamBase dataset
Additionally, an email dataset beyond medical scenarios,

SpamBase, was applied, which consists of 4,601 objects of 57
attributes, 1,813 of which are spam emails as outliers. It is
considerably formidable to detect outliers in such a dataset. Like
in WDBC, MOGAAL did not manage to work. MMOD ranks
third in precision, while its recall is again far ahead, leading to
the winning F-measure. In addition to having the most significant
number of samples and attributes, SpamBase has a large outlier
quantity, accounting for 39.40%. This relatively “big” data witnessed
MMOD’s report card of not missing any spam. All other algorithms
have weak F-measures worse than 0.21.

5.5 Comprehensive performance analysis
and discussion

MMOD has perfect or nearly perfect recalls on most datasets,
which should be attributed to its ability to greatly retain possible
outliers, enabled by the adaptive exit condition. Such an adaptive
termination mechanism also improves the efficiency of the
algorithm. LSCP’s recall performance is comparable to MMOD
on WDBS, but on the one hand, its recall is extremely worse than
MMOD on the other datasets; on the other hand, its precision on
WDBS is also significantly inferior to MMOD. Regarding precision,
HBOS works well on four datasets, but is overall unstable and
particularly poor on the other six. MMOD is optimal in three
datasets and at an average level globally.

Two of the advanced aspects of MMOD are that it does not
require the number of outliers as input and that it is outlier quantity
and proportion insensitive. Such a characteristic was well reflected
in the experimental results. The applied datasets include various
outlier percentages, such as a small portion of outliers, a large
percentage of outliers, and a close proportion of outliers and normal
samples. Evidently, most of the peer methods are affected by such
setups. For datasets with a high percentage of outliers, such as
HeartDisease, Parkinson, Pima, and SpamBase, HBOS has high
precision values; however, for cases with a low percentage of outliers,
HBOS’s precision almost hits rock bottom. Worse, its recalls are
always poor, no matter the outlier percentage. k-NN, LODA, and
LSCP are almost the opposite. k-NN and LODA’s precision and
recall on datasets with a low percentage of outliers are significantly
better than the case with a high percentage of outliers. LSCP’s recall
is excellent when the percentage of outliers is low; for the high
percentage of outliers, LSCP is almost incapable, not to mention
its unsatisfying precision all the time. As a comparison, MMOD’s
performance is more consistent regardless of the outlier percentage,
without dramatically poor metric values. Its recall is especially
consistently splendid, its precision is in the middle of the pack,
and its F-measure is relatively robust, all verifying that MMOD,
which does not take outlier numbers or percentages as inputs, works
insensitively to outlier quantity and proportion.

Which one of recall and precision is more valued during outlier
detection is relevant to the application scenario. For medical data,
especially disease diagnosis, recall is related to whether cases with
real diseases will be missed. The preliminary validation experiments
of MMOD’s method suggest its usability on medical data.

6 Conclusion

Outlier detection is an important approach to data mining,
which is widely studied in medical scenarios. MST has been widely
applied to clustering and outlier detection as an essential data
structure in graph theory. In order to overcome the problems in
distance-based and density-based outlier detection, an adaptive
mini-minimum spanning tree-based outlier detection (MMOD)
method was proposed in this article, employing threshold-
based Euclidean distances as the edge weight and adaptive exit
conditions of mini-MST generation, to improve efficiency. MMOD
does not require the outlier percentage as an input parameter,
which peer outlier detection algorithms usually need. Moreover,
MMOD can detect outliers in datasets with different densities
and is insensitive to the outlier proportion and distribution. A
series of experiments in real-world medical datasets manifested
the promising results of MMOD; additional spam and five
synthetic datasets further validated its applicability. Topics on
MST-based outlier detection methods, such as the quantitative
measurement of outsiderness degree, remain research values in
the future.
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