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A sophisticated and sensitive olfactory system plays a vital role in the survival
and reproduction of insects. Chemosensory receptors are indispensable for
the molecular recognition and discrimination of semiochemicals. Riptortus
pedestris is a notorious pest of legume plants, resulting in yield losses and
quality decreases in soybeans. It is well accepted that R. pedestris highly relies
on its olfactory system in detecting aggregation pheromones, host volatiles,
and pesticides; however, little research focused on its chemosensory
receptors. In the present study, we identified 237 odorant receptors (ORs),
42 gustatory receptors (GRs), and 31 ionotropic receptors (IRs) from the
reported genome of R. pedestris, and analyzed their phylogenetic
relationship with other hemipteran species. Through the results of RNA-seq
and real-time quantitative PCR (qRT-PCR), we found that RpedORs displayed
different expression levels in the antennae of R. pedestris at different
development stages. To further verify the function of odorant receptor co-
receptor (Orco), an obligate and unique insect OR, we silenced RpedOrco by
RNA interference (RNAi) method. The results showed that silencing RpedOrco
could significantly impair the response to aggregation pheromone in R.
pedestris, indicating that RpedOrco plays an essential role in odorant
detection. Our results can provide the theoretical foundations for revealing
the olfactory recognition mechanism of R. pedestris and help explore and
develop novel olfactory-based agents against this pest.
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1 Introduction

Insects rely on their accurate olfactory systems to recognize
chemical signals such as pheromones and plant volatiles, and
thereby adapt to different environments and ecological niches
(Gadenne et al., 2016; Haverkamp et al., 2018). The recognition
of chemical cues in insects is a spectacularly complex process.
When hydrophobic odorant or taste molecules diffuse into
insect sensory lymph through epidermal pores, they are
rapidly recognized, bound, and dissolved by odorant binding
proteins (OBPs) or chemical sensory proteins (CSPs).
Subsequently, they are transported to the lumen cilia of
olfactory receptor neurons (ORNs), where chemical signals
are converted into electrical signals (Leal, 2013), then these
signals are transferred to the central nervous system, which
manipulates insects to make corresponding responses. In the

process of converting semiochemicals into electrical signals in
the peripheral nerve system, at least three main chemosensory
receptor families are involved, including odorant receptors
(ORs), gustatory receptors (GRs), and ionotropic receptors
(IRs) (Fleischer et al., 2018; Wicher, 2018). At the terminal
of odorant recognition, odorant signals are inactivated or
degraded by various odorant degrading enzymes (ODEs)
(Younus et al., 2017; Wang et al., 2021).

Insect ORs, first reported in the Drosophila genome (Gao
et al., 1999; Vosshall et al., 1999), are seven transmembrane
domain (7-TMD) proteins consisting of 350–500 amino acids
(Robertson, 2019). ORs are mainly expressed in the dendritic
membranes of the ORNs, and there are two classifications:
odorant receptor co-receptor (Orco) and odorant-specific
olfactory receptor proteins (ORx) (Smart et al., 2008; Tian
et al., 2022). Orco (formerly designated as OR83b) has a

FIGURE 1
Phylogenetic relationship of ORs in Apolygus lucorum, Cimex lectularius,Halyomorpha halys, and Riptortus pedestris. The red letters represent the
ORs of R. pedestris, and the yellow square represents the Orco family. The sequences used in this analysis are listed in Supplementary Table S4.
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highly-conserved sequence, while common ORs, even in sibling
species are incredibly variable (Wicher and Miazzi, 2021). For
instance, the OR members in the fly are extremely divergent, with
an average amino acid identity of ≈20% (Wetzel et al., 2001).
Insect ORs recognize odorant molecules through a special
heterodimer composed of an ORx and an Orco. Heterodimer
ORx-Orco forms an ion channel that allows cations to pass
through when it binds specific odorant molecules (Sato et al.,
2008). In this complex, ORx is responsible for the specificity,
while Orco is an obligate factor for the localization, stability, and
protein folding of each ORx (Stengl and Funk, 2013). If Orco is
knocked out, the olfactory-related behavior of an insect would be
altered because of the disruption or even abolition of its OR
functional repertoire (Fan et al., 2022). The essential function of
Orco has been validated in numerous insects through RNA
interference (RNAi) or gene editing technology. For example,
RNAi-based silencing of Orco in the hemimetabolous blood-

sucking insect Rhodnius prolixus results in losing the ability to
find hosts, reducing the number of eggs laid and decreasing the
survival rate (Franco et al., 2016). Moreover, mutations of
Bombyx mori, whose Orco gene was knocked out by CRISPR-
Cas9, are influenced on the aspects of their larval feeding and
adult mating behavior (Liu et al., 2017).

Like ORs, insect GRs also contain 300–500 amino acids.
However, GR family members are usually abundant in the taste
organs and play key roles in sensing carbon dioxide, sugar,
bitter compounds, and taste pheromones (Agnihotri et al., 2016;
Fleischer et al., 2018). Insect IRs are related to the ionotropic
glutamate receptors (iGluRs) family. They have been identified
in both olfactory and gustatory organs and reported to be
responsible for detecting acids, aromatics, and nitrogen-
containing compounds (Agnihotri et al., 2016; Wicher and
Miazzi, 2021; Dong et al., 2023). Several GRs and IRs are
expressed in the antennae and have been characterized to

FIGURE 2
Phylogenetic relationship of GRs in Apolygus lucorum, Halyomorpha halys, Tropidothorax elegans, Drosophila melanogaster and Riptortus
pedestris. The sequences used in this analysis are listed in Supplementary Table S4.
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mediate multiple olfactory-related capabilities, such as
pheromone detection (Jones et al., 2007; Benton et al., 2009;
Croset et al., 2010; Koh et al., 2014). GRs, IRs, and ORs together
form a complex olfactory reception system and participate in
olfactory responses.

The bean bug, Riptortus pedestris (Fabricius) (Hemiptera: Alydidae),
is a polyphagous pest attacking legume plants in many East Asian
countries (e.g., China, Japan, South Korea, and Thailand) (Mizutani
et al., 2011; Lim, 2013). In the past 2 decades, this pest has become the
dominant pest in soybean fields (Do et al., 2014; Li et al., 2019; Zhang
et al., 2022). Both adults and nymphs of R. pedestris absorb soybean
nutrients through the piercing-suckingmouthparts, and result in soybean
stay-green, a phenomenon of a lack of leaf senescence, pod abortion, and
abnormal seeds (Hill et al., 2006; Sakuraba et al., 2015; Li et al., 2019).
Outbreak ofR. pedestris could cause soybean yield losses, quality decrease,
and potential germination decline of seeds (Rahman and Lim, 2017; Ahn

et al., 2019; Park et al., 2023). It is convinced that R. pedestris population
highly relies on chemicals cues in their aggregation, location of hosts, and
avoidance of adverse environment (Xu et al., 2021). R. pedestris
individuals of all developmental stages and sexes are reported to be
attracted by the intraspecific aggregation pheromones, which were
identified as a 1:5:1 mixture of (E)-2-hexenyl (Z)-3-hexenoate
(E2HZ3H), (E)-2-hexenyl (E)-2-hexenoate (E2HE2H) and myristyl
isobutyrate (MI) (Leal et al., 1995; Rahman et al., 2018). Meanwhile,
R. pedestris can recognize soybean through a particular blend of plant
volatiles, including (Z)-3-hexenol, (Z)-3-hexenyl acetate, 4-
ethylbenzaldehyde, α-farnesene, and methyl salicylate (Song et al.,
2022). The bean bugs also show the ability to distinguish hosts
treated with chemical insecticides, especially bifenthrin (Maharjan and
Jung, 2015). These odorants are recognized through its complicated and
sophisticated olfactory system, with various olfactory-related proteins
involved. A previous report claimed that 188 ORs, 6 GRs, and two IRs

FIGURE 3
Phylogenetic relationship of IRs in Apolygus lucorum,Halyomorpha halys, Tropidothorax elegans,Drosophila melanogaster and Riptortus pedestris.
The sequences used in this analysis are listed in Supplementary Table S4.
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were identified from the antennal transcriptome of R. pedestris (Song
et al., 2017), but the sequence information remains undisclosed and
unavailable. More recently, 49OBPs and 25CSPs were annotated fromR.
pedestris genomedata (Li et al., 2022), which is significantlymore than the
transcriptome-based identification (eight OBPs and eleven CSPs) (Song
et al., 2017). The results trigger a prediction that more chemosensory
receptors would be explored from the R. pedestris genome.

In the present study, we aimed to systematically identify
chemosensory receptors from the genome of R. pedestris, explore their
phylogenetic relationship with other Hemiptera insects, and determine
their expression in the antennae of different development stages through
RNA-seq and real-time quantitative PCR (qRT-PCR). We also verified
the importance of RpedOrco in responding to aggregation pheromones
using RNAi-based technology. Our results will provide a theoretical basis
for further understanding of the olfactory recognition of R. pedestris.

2 Materials and methods

2.1 Identification and bioinformatics analysis
of candidate chemosensory receptors

To identify candidate ORs, we used the OR sequences of
Adelphocoris lineolatus, Apolygus lucorum, Halyomorpha halys, T.
elegans, and Yemma signatus as template sequences to homologous
blast with the R. pedestris genome database (https://ngdc.cncb.ac.cn/
gwh/Assembly/18849/show) (An et al., 2016; Sun D. et al., 2020;
Huang et al., 2021). As for GRs and IRs, the sequences of A.

lineolatus, Ap. lucorum, H. halys, and T. elegans were selected as
queries with an E-value of 1e−5 (He et al., 2020; Chen et al., 2021).
Then, OR, GR, and IR genes were further verified by blasting against
the NCBI non-redundant (Nr) database and removing genes of low
identity (<30%). The candidate chemoreceptor genes were then
validated by the Pfam protein family database (http://pfam.xfam.
org/search) and InterProScan 5 (Jones et al., 2014).

2.2 Sequence analysis and phylogenetic tree
construction

The chromosomal location data of chemosensory receptor
genes were obtained from the R. pedestris GFF files and mapped
onto the chromosomes using Mapchart 2.32. The
transmembrane domains were predicted using TMHMM
Server v.2.0 (https://services.healthtech.dtu.dk/service.php?
TMHMM-2.0), and the graphical representation of RpedOrco
was generated with TMRPres2D (http://bioinformatics.biol.
uoa.gr/TMRPres2D/) (Harrison et al., 2018). Protein
sequence alignment was performed using ClustalX-2.1, and
the results were presented by GeneDoc software (http://
nrbsc.org/gfx/genedoc). The phylogenetic tree of
chemosensory receptors from R. pedestris and homologous
species was constructed using the neighbor-joining method.
Trees with 1000-fold bootstrap replication were viewed and
decorated using iTOL online tools (https://itol.embl.de/)
(Letunic et al., 2021).

FIGURE 4
Localization of chemosensory receptors in the Riptortus pedestris genome.
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2.3 Insect rearing and sample collection

R. pedestris cultures were fed with green beans and
maintained at a temperature of 24°C ± 2°C under a 14:
10 photoperiod (L:D) and 70% ± 5% relative humidity (RH)
(Fu et al., 2021). The antennae samples were collected from
nymphs of 2nd, 3rd, 4th, and 5th instar, and 3-day-old adults
(females and males). Each sample contains 80 pairs of antennae.
Collected samples were immediately frozen in liquid nitrogen
and stored at −80°C for standby.

2.4 RNA-Seq analysis

Total RNA was extracted using TRIzol reagent (TransGen,
Beijing, China) following the manufacturer’s instructions. One
microgram of high-quality RNA per sample was used to
construct cDNA libraries. cDNA library preparation and
transcriptomic sequencing were performed by Sangon Biotech
(Shanghai, China) following the previously described protocol
(Wen et al., 2020). The clean reads of six transcriptomes were
uploaded to the Sequence Read Archive (SRA) database with the
accession numbers SRR21820231-SRR21820236. Clean reads
generated from transcriptome were used to map the R. pedestris
genome (https://ngdc.cncb.ac.cn/gwh/Assembly/18849/show) using
HISAT2 (Kim et al., 2019). The clean readings mapped to the
reported genome were listed in Supplementary Table S1 Read
summarization was used to obtain gene expression levels using
featureCounts, while the trimmed mean of M-values (TMM) was
used to normalize the counts (Robinson et al., 2010; Liao et al.,
2014). Tests for pairwise differential expression were performed in
the DESeq2 R package with p < 0.05 (Love et al., 2014; Tang et al.,
2021). Based on log-transformed TMM values, the expression levels
of the 177 OR genes (over 300 aa) in R. pedestris antennae at
different stages were visualized by the heatmap using TBtools
(version 1.098728) (Chen et al., 2020).

2.5 Expression analysis of RpedORs

To estimate the consistency between RNA-seq and qRT-PCR data,
we randomly selected 16RpedOR genes to determine their expression in
antennae on anABIQuantStudio6Q6Real-TimePCR System (Applied
Biosystems, Foster City, CA, United States of America). The primers for
RpedORs and reference genes were designed by Primer 6.0
(Supplementary Table S2). qRT-PCR reactions were performed in a
20 μL reaction system containing 10 μL TransStart Tips Green Mix
(TransGen, Beijing, China), 0.5 μL of each primer (10 μM), 1 μL of
sample cDNA, and 8 μL of sterilizedH2O. Three independent biological
and three technical replicates were conducted for each sample. The
relative expression of RpedORs was analyzed using the 2−ΔΔCT method
(Livak and Schmittgen, 2001).

2.6 RNAi of RpedOrco gene

Double-stranded RNA (dsRNA) was synthesized using the
T7 Ribomax Express RNAi System (Promega, Madison,

United States), based on the fragment of RpedOrco that
beforehand amplified using specific primers with T7 RNA
polymerase promoter (Supplementary Table S2). And then,
the quality and concentration of dsRNA were determined by
agarose gel electrophoresis and Nanodrop
2000 spectrophotometer (Thermo, Wilmington, DE,
United States), respectively. A double-stranded green
fluorescent protein (dsGFP) fragment amplified from the GFP
gene (GenBank No. U50963) was used as the negative control.
The newly emerged R. pedestris were separated and reared
individually before dsRNA injection. For each bug, 2 μg of
dsOrco or dsGFP in 2 μL water was injected into the head of
the adults using a microsyringe (Ikeno et al., 2011). The antennae
of dsRNA-injected bugs were collected at 1, 3, 5, and 7 days of
post-injection to evaluate the silencing efficiency of RpedOrco
using qRT-PCR. Three independent biological repeats were
carried out.

2.7 Dual choice bioassay

Dual-choice bioassays were conducted in a two-choice cage
(1800 mm × 600 mm × 600 mm) to evaluate the influence of
silencing the RpedOrco gene on R. pedestris’s response to
aggregation pheromone. A handful of green beans with and
without an aggregation pheromone lure (purchased from Beijing
Pherobio Technology Co., ltd. China) were placed at two sides of the
cage (Supplementary Figure S1). The lure was a ternary mixture of
E2HZ3H, E2HE2H and MI at a ratio of 1:5:1. Ten dsOrco- or
dsGFP-injected R. pedestris (5–7 days post-injection) individuals
were released at the center. The bugs were allowed to make
behavioral choices in 3 h, and after that, their final position was
checked (Song et al., 2022). Three biological repeats were conducted
for each treatment.

2.8 Statistical analysis

The statistical analysis was performed by SPSS (version 22.0)
and the R (version 4.0.5). The differences for qRT-PCR data
among six samples were subjected to one-way analysis of variance
(ANOVA) with Tukey’s multiple comparison test. The
significant differences of RpedOrco mRNA levels after
injection and the dual-choice bioassays were analyzed by
Student’s t-test. p < 0.05 was considered to represent
statistically significant differences between samples. The data
were expressed as mean +standard error. Finally, the results
were displayed with GraphPad Prism 8 software.

3 Results

3.1 Identification of ORs, GRs, and IRs

A total of 237 candidate RpedORs, 42 RpedGRs, and 31 RpedIRs
were identified from the R. pedestris genome (Supplementary Table
S3). The amino acid (aa) number of RpedOR sequences ranged from
103 to 1,131. Among them, 177 RpedORs were over 300 aa in
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sequence length. RpedOR2 had the most extended sequence
(1,131 aa), significantly differing from typical insect ORs,
presumably due to abnormal sequence splicing. In addition, we
also noticed that RpedORs had relatively low amino acid identities
(30.13%–69.88%) with the homologous ORs in other species
according to the BLASTx results of NCBI (Supplementary Table
S3). Furthermore, except for a few RpedORs (e.g., RpedOR3,
RpedOR13, and RpedOR16, etc.), the majority of RpedORs
significantly matched the 7tm_6 (PF02949) or olfactory receptor
(IPR004117) domain (Supplementary Table S3).

The sequences of RpedGRs ranged from 113 to 499 aa, of which
23 RpedGRs are more than 300 aa. The homology search of the GR
sequences using BLASTx showed that most of the RpedGRs
matched those of H. halys, and some RpedGRs matched those of

T. elegans, such as RpedGR2, RpedGR7, RpedGR19-20, RpedGR25,
RpedGR30, RpedGR36 and RpedGR39 (Supplementary Table S3).
As for candidate RpedIRs, the sequences ranged from 126 to
1,226 aa. Similar to RpedGRs, RpedIRs were mainly matched to
those of H. halys, and T. elegans, with amino acid identities ranging
from 31.39% to 92.23% (Supplementary Table S3).

3.2 Phylogenetic analysis

A phylogenetic tree was reconstructed using 469 ORs from R.
pedestris, Ap. lucorum, H. halys, and Cimex lectulari, to
understand the relationships ORs between R. pedestris and
other hemipteran species. The phylogenetic relationship

FIGURE 5
Expression profiles of olfactory receptor genes in the antennae of Riptortus pedestris nymphs and adults. Expression levels of the OR genes in the six
transcriptomes are represented as heat plots based on log-transformed TMM values.
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showed that RpedOrco gene was clustered in the branch with
Orcos from other species with high bootstrap values. Meanwhile,
other RpedORs are distributed in various branches (Figure 1).
The phylogenetic tree of GRs, constructed using 136 GRs from R.
pedestris, Ap. lucorum, H. halys, T. elegans, and D. melanogaster,
showed that RpedGR4, RpedGR5, and RpedGR21 were clustered
in the CO2 receptor subfamily, and RpedGR2, RpedGR15, and
RpedGR19 were classified into the sugar receptor subfamily
(Figure 2). In the IR phylogenetic tree, 151 IRs from R.
pedestris, Ap. lucorum, H. halys, T. elegans, and D.
melanogaster were divided into several branches. Among the
31 RpedIRs, four putative IR co-receptors (RpedIR8a,
RpedIR25a, RpedIR76b, and RpedIR93a) were clustered on

one branch. RpedIR21aand three RpedIR41a were also
clustered with IR21a and IR41 subfamilies, respectively
(Figure 3).

3.3 Genomic distribution of chemosensory
receptors

To clarify the location of the chemosensory receptors, we located
the position of 237 RpedORs, 42 RpedGRs, and 31 RpedIRs on the
chromosomes of R. pedestris. The results showed that all identified
chemosensory receptors were distributed on six chromosomes and
three scaffolds. Among them, chr4 contained the most significant

FIGURE 6
qRT-PCR based relative expression levels of several RpedOR genes in the antennae of nymphs, male and female Riptortus pedestris. Data presented
are the mean of three independent biological replicates +standard error. Different letters represent significant differences according to a one-way
ANOVA followed by a Tukey’s multiple comparison test (p < 0.05, n = 3).
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number of chemosensory receptor genes (72 ORs, 7 GRs, and three
IRs), followed by chr3 (66 ORs, 5 GRs, and one IRs). The number of
chemosensory receptors on chrX was the smallest, with only five
genes, including RpedOrco. In addition, three scaffolds not spliced to
the present chromosome also contained six chemosensory receptor
genes (Figure 4). To better understand the gene structure of
chemosensory receptors, we analyzed the introns and exons of
these chemosensory receptors. The results showed that most
RpedORs contained 4-6 exons, while 36 RpedORs possessed 7-
9 exons. Furthermore, most RpedGRs contained 4-5 exons.
Compared with RpedORs and RpedGRs, RpedIRs had significantly
more exons, most of which contained over eight exons
(Supplementary Table S3).

3.4 Expression of RpedORs in antennae of R.
pedestris nymphs and adults

To better predict the role of RpedORs in olfactory
recognition, we used RNA-seq to analyze the expression of
237 RpedORs in the antennae of the 2nd-5th instar nymphs
and adults (Supplementary Table S3). The heatmap showed
that 177 RpedORs (over 300 aa) in the antennae was roughly
divided into two branches based on the expression values, one
highly expressed in the antennae and the other low. In the
branch of high expression, the expression values of RpedORs
increased with the development stage of the bean bugs
(Figure 5). For individual genes, there was a clear bias for
male and female expression. For example, the expression
level of RpedOR60 in male antennae was significantly higher
than in female antennae. In contrast, RpedOR167 is expressed
higher in the antennae of females than of males (Figure 5).
Interestingly, some RpedORs were significantly expressed in the

antennae of 2nd- and 3rd-instar nymphs in comparison to the
adults (e.g., RpedOR106).

In order to ensure the accuracy of transcriptome data, we
selected 16 RpedORs with high TMM values and verified the
expression of RNA-seq through qRT-PCR tests. The results
showed that the expression trend of these ORs in the antennae
of nymphs and adults was consistent with the results of RNA-
seq (Figure 6).

3.5 Sequence analysis of RpedOrco

Increasing reports demonstrate that Orco receptors are highly
conserved during insect evolution. Sequence alignment of RpedOrco
with Orcos from other Hemiptera insects (A. fasciaticollis, A.
lineolatus, A. suturalis, Ap. lucorμm, C. lectularius, Cyrtorhinus
lividipennis, H. halys, T. elegans, Y. signatus) revealed that these
Orco sequences were highly conserved. The similarities of RpedOrco
with other hemipteran insects were 80.84% (AfasOrco), 83.58%
(AlinOrco), 82.74% (AlucOrco), 80.84% (AsutOrco), 86.92%
(ClecOrco), 77.64% (ClivOrco), 93.26% (HhalOrco), 94.94%
(TeleOrco) and 93.04% (YsigOrco), respectively. Multiple amino
acid sequence alignment showed that Orco was highly conserved in
Hemiptera insects and had the highest degree of identity in the
C-terminal sequences (TM5-TM7) (Figure 7).

3.6 Silencing RpedOrco impairs the
response to aggregation pheromone

To better investigate the role of RpedOrco in physiology, we
silenced the RpedOrco using RNAi technology. Few injected bugs
died during our experiment, suggesting the dsRNA injection at the

FIGURE 7
Sequence analysis of RpedOrco. (A) Amino acid sequence alignment of RpedOrco with other Orcos from Hemiptera insects. Afas: Adelphocoris
fasciaticollis; Alin: Adelphocoris lineolatus; Asut: Adelphocoris suturalis; Aluc: Apolygus lucorμm; Cliv: Cyrtorhinus lividipennis; Clec: Cimex lectularius;
Hhal: Halyomorpha halys; Tele: Tropidothorax elegans; Ysig: Yemma signatus. (B) Seven-transmembrane topology of representative RpedOrco. The
double line represents themembrane regionwith labeled extracellular and cytoplasmic sides. TM: transmembrane. TheOrco sequences used in this
analysis are listed in Supplementary Table S4.
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head of the adults was feasible. The silencing efficiency determined
by qRT-PCR showed that the knockdown rate soared to
approximately 80% on the third post-injection day and
maintained at >85% in the following days (Figure 8). On the
seventh day of post-injection, a decrease of more than 85% in
RpedOrco expression was observed in bugs injected with dsOrco
(Figure 8). Consequently, the bugs at 7 days post-injection were
selected for behavioral bioassays. The results of behavior bioassays
showed that more dsOrco-injected R. pedestris (male: t = 0.446, p =
0.669; female: t = 0.784, p = 0.477) failed to locate beans with
aggregation pheromone, while most dsGFP-injected bugs succeeded
(male: t = 3.826, p = 0.019; female: t = 12.247, p < 0.001) (Figure 8C).

4 Discussion

Insects’ behavior highly relies on their accurate
chemosensory system, in which chemosensory receptors play
critical roles in detecting chemical signals. Particularly, ORs
have been more widely studied. Since the first discovery of
insect ORs in D. melanogaster (Clyne et al., 1999; Gao et al.,
1999), ORs have been widely studied in a variety of insects,
including dipterans, hymenopterans, lepidopterans,
coleopterans, and hemipterans (Fan et al., 2022; Tian et al.,
2022). The present study identified 310 candidate
chemoreceptors from the reported R. pedestris genome,
including 237 RpedORs, 42 RpedGRs, and 31 RpedIRs.
Furthermore, their phylogenetic relationship, localization in
chromosomes, and expression profile were also analyzed

according to bioinformatics data.Moreover, our results of
RNAi and behavioral bioassays demonstrated that RpedOrco
is essential for R. pedestris detecting aggregation pheromones.

Genome and transcriptome were the mainstream method
for identification and exploration of chemoreceptor genes.
Previously, transcriptome annotation was the exclusive
channel for identifying chemoreceptors in non-model species,
mainly due to the lack of their genomic information. With the
progress of sequencing technology, increasing numbers of
insect genome data are unveiled and available, enabling the
genome-wide identification of chemosensory genes. Generally,
more ORs could be identified from the genome than
transcriptome data because some insect ORs are highly
diverse sequences and have low expression in specific issues
(Tian et al., 2022). In Ap. lucorum, for instance, 155 ORs could
be annotated from genome data (Tian et al., 2022), while only
110 ORs were reported in the antennal transcriptome (An et al.,
2016). Similar to ORs, much more Rhynchophorus ferrugineus
GRs were identified from the genome (65) than antennal
transcriptome (16) (Engsontia and Satasook, 2021). These
results indicate that genome-wide identification of
chemosensory genes is more feasible and reliable compared
with the transcriptome-based method (Tian et al., 2022). For R.
pedestris, we also identified significantly more chemoreceptors
than the previous report by Song et al. (2017), in which 188 ORs,
6 GRs, and two IRs are annotated from the antennal
transcriptome.

The number of ORs is higher diverse among insects, ranging
from as few as ten in Pediculus humanus to more than 400 in a

FIGURE 8
Silencing RpedOrco impaired the response of Riptortus pedestris to aggregation pheromone. (A) Silence efficiency of RpedOrco gene in male
antennae after dsRNA injection; (B) Silence efficiency of RpedOrco gene in female antennae after dsRNA injection; (C) Behavioral response of dsOrco and
dsGFP-injected Riptortus pedestris to aggregation pheromone lure. The asterisk represents significant difference (p < 0.05).
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social ant Camponotus foridanus (Zube and Rossler, 2008;
Kirkness et al., 2010; Fan et al., 2022). In hemipteran species,
the number of ORs also varies enormously. Tian et al. (2022)
reannotated 887 OR from 11 species in nine hemipteran families
and found that the OR numbers vary from 9 to 13 (Bemisia
tabaci) to 155 (Ap. lucorum). Based on the whole-genome data,
we found R. pedestris has a much larger odorant reception
system than other hemipterans, with identification of up to
237 RpedORs. More RpedORs seemingly betoken that R.
pedestris would have a broad host recipe because the number
of ORs is reported to associate with the host breadth in many
insects (Mitchell et al., 2019). In Hemiptera, however, Tian et al.
(2022) demonstrated that OR number is not directly parallel to
the diversity of the host. Thus, it is reasonable that R. pedestris
has a considerably larger number of ORs (237) than
polyphagous Aphis gossypii (47 from the genome data),
which feeds on over 700 host plants worldwide (Cao et al.,
2014; Tian et al., 2022).

The diversity of OR numbers among species is attributed to
gain (via tandem duplication) and loss (via pseudogenization
and deletion) events, which were considered as a consequence of
random genomic drift or adaption to environment (Dong et al.,
2009; Mendivil and Ferrier, 2012; Andersson et al., 2019; Tian
et al., 2022; Zhang et al., 2023). The discovery of some tandem
replications of the ORs of both ants and bees suggested the
tandem replication in Hymenoptera is the main mechanism of
OR amplification (Robertson and Wanner, 2006; Zhang et al.,
2023). Moreover, the OR gene family in hemipteran insects has
undergone rapid expansion, with the existence of gene
replication as well (Nei et al., 2008; Tian et al., 2022). For
instance, Acyrthosiphon pisum ORs form two large lineage-
specific subfamily expansions which include some tandem
arrays (ApOR20-22 on SCAFFOLD42, ApOR23-24 on
SCAFFOLD6001, ApOR40-41 on SCAFFOLD150003), and
most of the genes in two main clades have apparently
undergone relatively recent duplications of genes (Smadja
et al., 2009). In the present study, we found some RpedOR
genes exist as genomic clusters, mostly concentrating on
chr3 and chr4 (Figure 4). This result suggested that gene
duplication also existed in R. pedestris that led to the
increase of RpedORs number.The insect OR genes are mainly
expressed in the antennae and other olfactory-related
accessories, where volatile semiochemcials are recognized and
subsequently trigger various olfactory-driving behaviors (Leal
et al., 2013; Lombardo et al., 2017). To further explore the roles
of ORs in olfactory recognition, we evaluated the RpedORs’
expression in antennae at different development stages of R.
pedestris. Along with the development of nymphs, the majority
RpedORs positively expressed in antennae of an increasing
instar (Figure 5), suggesting that these RpedORs may
constantly play roles in olfactory recognition during R.
pedestris development. However, a few RpedORs (e.g.,
RpedOR30 and RpedOR33) are significantly expressed in the
antennae of younger nymphs than adults, indicating that
different RpedORs participate in specific olfactory responses,
such as foraging or avoiding predators. In addition, many
RpedORs showed significant expression differences between
adults and nymphs (Figure 5), presumably because the adults

shoulder more olfactory-related responsibilities, such as host
shift, migration, finding mates, and location of optimal
oviposition sites. These are the main reasons for the
difference in OR expression in different insect stages
(Harwood et al., 2009; Vaello al., 2017). For R. pedestris,
additionally, nymphs and adults display conspicuous
polymorphism in chemical production and emission,
indicating they also smell different from conspecific volatiles
(Xu et al., 2021). The identification and function of RpedORs
associated with the recognition of conspecific secretions would
be our further study focus.

Among all olfactory receptors, Orco is the most special and
obligate one. Abundant literature has documented that insect
Orcos are highly conserved among species, while specific ORs
are relatively diverse with low similarity (Jones et al., 2005; Sun
et al., 2020b). In this study, RpedOrco also shows high
homology with Orcos from other hemipterans, with the
highest similarity to HhalOrco (93.26%) in H. halys
(Figure 7), which is consistent with previous findings in
other insects (Hansen et al., 2014; Franco et al., 2016). In
addition, the highly-conserved C-terminal region of Orco
suggests that this region may associate with the functional
interaction between ORx and Orco proteins (Butterwick
et al., 2018; Zufall and Domingos, 2018; Sun et al., 2023). As
an obligate unit of olfactory signal transmission in insect ORNs,
Orco is predicted to assist specific ORs in recognizing chemical
stimuli by forming a heteromeric ORx-Orco rather than singly
responding to odorants (Stengl and Funk, 2013). Once Orco
does not function properly, the insect olfactory transduction
process is interrupted, impairing subsequent odorant detection.
In light of its necessity in olfactory recognition, Orco attracts
increasing focus as a target for developing pest control agents
(Fan et al., 2022). To date, mutants of many insect species have
been generated to characterize and investigate the function of
Orco through gene silencing with RNA interference (RNAi) or
gene editing with CRISPR-Cas9 (Tateishi et al., 2022; Wang
et al., 2022). For example, RNAi-based silencing of the Orco
gene in Protaetia brevitarsis adults significantly impaired their
location of aggregation pheromones and food sources (Zhang
et al., 2021). Knocking out of the Orco gene through CRISPR-
Cas9 seriously affects the olfactory-related behaviors as well,
which has been confirmed in Anopheles coluzzii (Sun Y. et al.,
2020), A. sinensis (Wang et al., 2022), Bactrocera dorsalis (Xu
et al., 2022), B. mori (Liu et al., 2017), Harpegnathos saltator
(Yan et al., 2017), Helicoverpa armigera (Fan et al., 2022),
Locusta migratoria (Li et al., 2016), Spodoptera frugiperda
(Sun et al., 2023) and S. littoralis (Koutroumpa et al., 2016).
Our results of silencing RpedOrco in R. pedestris reached the
similar conclusion. The dsOrco-injected bugs, which showed a
high knockdown rate of RpedOrco, lost the location activity to
specific aggregation pheromones (Figure 8). We also tested the
silencing efficiency of RpedOrco in nymphs, the results showed
that it did not reach 85% within 3 days after injection. Based on
the fact that the inter-age period lasts only about 3 days (Kim
and Lim, 2010; Rahman and Lim, 2017), it cannot accurately
define the instar during the behavioral bioassays. Nevertheless,
the results that both RNA-seq and qRT-PCR showed the
relatively high expression of RpedOrco in antennae of R.
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pedestris at different development stages (Figures 5, 6) also
indicated its constant role in olfactory recognition.
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