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Introduction: Studies have shown that exercise increases angiogenesis and
perfusion in the hippocampus, activates neurogenesis in the dentate gyrus and
increases synaptic plasticity, as well as increases the complexity and number of
dendritic spines, all of which promote memory function and protect against
cognitive decline. Flavonoids are gaining attention as antioxidants in health
promotion due to their rich phenolic content, particularly for their modulating
role in the treatment of neurodegenerative diseases. Despite this, there has been
no comprehensive reviewof cognitive improvement supplementedwith flavonoid
and prescribed with exercise or a combination of the two interventions has been
conducted. The purpose of this review is to determine whether a combined
intervention produces better results when given together than when given
separately.

Methods: Relevant articles assessing the effect of physical exercise, flavonoid or in
combination on cognitive related biomarkers and neurobehavioral assessments
within the timeline of January 2011 until June 2023 were searched using three
databases; PubMed, PROQUEST and SCOPUS.

Results: A total of 705 articles were retrieved and screened, resulting in 108 studies
which are in line with the objective of the current study were included in the
analysis.

Discussion: The selected studies have shown significant desired effect on the
chosen biomarkers and neurobehavioral assessments.

Systematic Review Registration: identifier: [CRD42021271001].
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1 Introduction

Cognitive decline, which is initially slow yet progressive, can be
exacerbated by various risk factors and events (Legdeur et al., 2018).
Among the reported cellular and molecular events that underlie
cognitive decline are oxidative stress, deposition of protein
aggregates, neuroinflammation, impaired mitochondrial function,
induction of apoptosis, and alteration of autophagy (Wang et al.,
2018). These impairments negatively impact the quality of life and
daily functions of affected individuals. Pharmacological treatments
or drugs used in clinical practice are often directed toward
alleviating disease symptoms rather than reversing or improving
neurodegeneration or reducing cognitive and functional declines.
Extensive studies have been conducted to prove that physical
activities have a neuroprotective effect by slowing the progression
of neurodegeneration and thus improving or enhancing cognitive
function. The protective effect of physical exercise increases the level
of brain-derived neurotrophic factor (BDNF) and catecholamines,
such as dopamine and epinephrine (Meis et al., 2017). In addition to
exercise, nutrition is an important means to reduce the incidence of
cognitive decline, Alzheimer’s disease (AD), and Parkinson’s disease
(PD). Therefore, polyphenols derived from plant food play an
important role in supporting the development and maintenance
of a healthy brain (Braga et al., 2018). Polyphenols principally
comprise flavonoids, and previous research indicates that regular
consumption of foods containing flavonoids may lower the risk of
neurodegenerative diseases (Jung and Kim, 2018). Because of their
ability to cross the blood–brain barrier (BBB), flavonoids are
considered a potential agent for slowing down cognitive decline
(Mansour et al., 2017). The current review aims to determine the
effect of physical exercise, flavonoid supplementation, and/or a
combination of both interventions on biomarkers and
neurobehavioral outcomes in rodent models with cognitive
impairment. Existing evidence has shown that physical exercise
and flavonoids have individual benefits. However, little is known
about the effectiveness of the intervention when administered
concurrently in an animal model. Animal models would provide
critical information and understanding of the synergistic effect of
flavonoids and exercise on cognition enhancement. A positive
outcome would help identify lifestyle alterations affecting
cognition and prevent cognitive impairment in the aging society
over time.

2 Methods

This systematic review was conducted in accordance with the
Preferred Reporting Items for Systematic Review andMeta-Analyses
(PRISMA) guidelines (Page et al., 2021). We only included studies
that examined cognitive decline with neurobehavioral and
biomarker evaluation after administration of any amount of
flavonoids, forced exercise, or both in male rodents. The meta-
analysis included works that reported similar or related outcomes
under similar or related experimental conditions. Other reports
describing different measures or sets of experiments were also
included in the review, but they were not included in the meta-
analysis. The detailed protocol for this review has been registered in
the PROSPERO database (Registration No: CRD42021271001).

2.1 Eligibility criteria

Studies using male rodents with the cognitive impairment model
assessing the effects of exercise, flavonoids, or a combination of both
were eligible for inclusion. The types of exercise searched were treadmill
exercise, swimming training, wheel running, and rotarod exercise.
Epigallocatechin-3-gallate (EGCG), grape seed proanthocyanidin
extract (GSPE), 7,8-dihydroxyflavone (DHF), silibinin, quercetin,
and spinosin were some of the commonly used flavonoids; they
were studied and included. Comparators that were considered
eligible were animals induced with aluminum chloride (AlCl3),
scopolamine, amyloid beta (Aβ), streptozotocin (STZ), and young
rats. Eligible studies were selected independent of the number of
animals in the experiment, exercise speed, duration and time of
training, and duration and dosage of flavonoids used. Only
experimental studies were included in the review. These
experimental studies must have used flavonoids, exercise, or a
combination or both as interventions, and the studies must have
conducted behavioral tests, biochemistry assessments, or both to
determine cognitive improvement. However, studies on humans,
female rodents, and non-rodent animals were excluded from this
systematic review, as well as studies lacking original data (e.g.,
letters, review articles, or editorials), articles on unrelated topics, and
non-specific exercise intervention. In this work, analysis and results
were separated according to three types of interventions: aerobic
exercise, flavonoids, and combined intervention. For the meta-
analysis, results that allowed a pool of data were selected. When
data were unavailable, the work was not included in the meta-analysis.

2.2 Data sources and search strategy

Comprehensive and systematic searches were conducted by an
independent author using electronic databases such as PubMed,
PROQUEST, and SCOPUS. The following MESH and search terms
were used: [Flavonoids] AND [aerobic exercise] AND [Cognition] OR
[Biomarkers]. Duplications were removed using Rayyan, a web application
for systematic reviews (Ouzzani et al., 2016). Manual searches were also
conducted and supplemented using reference lists from identified articles.
Electronic databases were searched from January 2011 to June 2023.

2.3 Study selection and data extraction

The titles and abstracts of every citation in the literature search were
independently screened by two (DK and AA) of the seven listed authors.
Titles and abstracts clearly dealing with a different subject were excluded.
All other data were extracted directly from the full-text articles, and those
with potential relevance were examined for eligibility criteria. According
to PRISMA recommendations, inclusion and exclusion criteria were
based on relevant study characteristics (animals, intervention,
comparator, outcome, and study design). Studies were included if 1)
experiments involved male rodents; 2) the intervention was any form of
supervised exercise; and 3) the comparator was exercise, flavonoids, or a
combination of both in animal models of cognitive impairment. Any
disagreement was resolved by consensus or a consultation with a third
reviewer (NACR). After applying the exclusion and inclusion criteria in
the selected articles, the following important data were extracted: author
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names, year of publication, study origin, animal model (species, age, and
weight), duration of intervention, exercise protocol description,
flavonoids, and dosage. The outcome data extracted comprised
neurobehaviors and biomarkers assessed in the included studies. All
authors involved were contacted to provide missing data or clarify if the
data provided were ambiguous.

There were studies evaluating the effects of physical exercise in
models of pregnancy, inflammation, ovariectomized animals, stress
model, neuropathic pain, amyotrophic lateral sclerosis, intracerebral
hemorrhage, smoking, encephalomyelitis, schizophrenia, and
cerebral ischemia. All these findings were outside the scope of
the current review and were thus excluded.

2.4 Risk of bias and calculations

All selected articles were evaluated according to the 10-item
checklist for risk of bias of the Systematic Review Centre for
Laboratory Animal Experimentation (SYRCLE). Possible biases
affecting the selected articles were evaluated using SYRCLE’s Risk
of Bias Tool, a screening instrument specifically developed for risk of
bias assessment in animal studies (Hooijmans et al., 2014).

A “yes” score indicates a low risk of bias, a “no” score indicates a
high risk of bias, and an “unclear” score indicates an unknown risk
of bias. The quality of the included studies was independently
evaluated by two reviewers (DK and AA). Any discrepancies
were resolved by discussion or by consulting a third reviewer
(NACR). A risk-of-bias summary table was created using Review
Manager, version 5.3, and included in the Supplement (Figure 2).

2.5 Data synthesis and statistical analysis

The demographic information and quality of the included
studies were described narratively and tabulated accordingly.
Where appropriate, meta-analyses were conducted for data that
were suitable to be pooled together using the RevMan 5.4 software.

The continuous data extracted from individual studies were
pooled together using their reported mean and standard deviation
(SD), with the mean difference (MD) and 95% confidence interval
(CI) used as effect estimates. The pooled effect estimates were
reported as MD together with its 95%CI. Heterogeneity across
the included studies in a meta-analysis was assessed using the
Chi-squared test and Higgin’s I2 test for heterogeneity.
Heterogeneity is considered to be low, moderate, or high if the I2

test is 30%, 50%, or 75%, correspondingly. A random effects (RE)
meta-analysis was performed considering the presence of
heterogeneity across the included studies, with a
p-value <0.05 indicating statistical significance. Sensitivity
analysis was performed by conducting a fixed-effect (FE) model
to test for result robustness. The limited number of studies available
for meta-analysis did not permit a subgroup analysis. Publication
bias was not evaluated because fewer than 10 studies were included
in the meta-analyses conducted. The Cochrane Review (Page et al.,
2019) recommended that publication bias is inappropriate when
fewer than 10 studies are synthesized.

3 Results

3.1 Study selection and data extraction

Initially, 705 articles were retrieved, of which, after thorough
scrutinization, 63 were duplicated; 62 focused on other populations;
285 described other diseases; 203 were either reviews, short
communication, conference abstracts, talks, or posters; 33 did not
analyze the effects of exercise and flavonoids on brain alterations
although cognitive impairment was reported, 44 focused on study
design not related to flavonoids, exercise, or both on cognitive
impairment; and 11 did not include neurobehavioral assessment
or biomarkers. Finally, 108 studies that involved aerobic exercise and
flavonoids and assessed neurophysiological effects on behavior and
brain alterations were selected. For the meta-analysis, 16 studies
with aggregate data for pooling were selected for meta-analysis on
neurobehavioral tests and biomarkers. Figure 1 shows the flowchart
of the data-gathering process. The included study characteristics are
summarized in SupplementaryTable 1.

3.2 Study characteristics

The included animal species were male rodents aged between
4 weeks and 20 months. The number of animals in each group
varied from 4 to 42.

3.2.1 Exercise
In the experimental models of exercise, exercise was in

various forms, including aerobic exercise, running wheel, swim
training, and rotarod device. The training time for voluntary and
forced exercise ranged from 7 days to 16 weeks. The treadmill
speed ranged from 8–13.2 m/min, and the duration was 30 min/
m. The exercise was continued in one study until fatigue. The
positive impact of exercise on cognition is through the molecular
process of improving the redox state and enhancing
inflammatory defenses (Benedetto et al., 2017). This would, in
turn, trigger angiogenesis and neurogenesis and improve synapse
formation (Chen et al., 2019). Exercise is considered as a safe and
economical approach to neuroprotection and neurorestorative in
cognitive impairment (Hsueh et al., 2018).

3.2.2 Flavonoids
Concerning flavonoids, the dosage ranged from 2 μg/kg to

1,650 mg/kg, and supplementation of flavonoids varied from
30 min to 9 months. The most common flavonoid
supplementation protocol was 14 days (2 weeks). Among the
common flavonoids found in the studies are catechin and
epigallocatechin gallate (EGCG). EGCG is known to induce
neurogenesis due to the ability of flavonoids and their
metabolites to penetrate the blood–brain barrier and reach the
brain (Unno et al., 2017). Moreover, EGCG eliminates ROS by
inducing the production of proinflammatory cytokines (Wu et al.,
2017). Conversely, catechin provides neuroprotection by reducing
oxidative stress and decreasing lipid peroxidation, thus improving
memory (Zamani et al., 2019).

Frontiers in Physiology frontiersin.org03

Joseph et al. 10.3389/fphys.2023.1216948

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1216948


3.3 Quality evaluation of the included
studies

Studies included in this meta-analysis did not specifically
describe sample-size calculation, allocation concealment, blinded
assessment of outcomes, or reported animals excluded from the
analysis, as is common in animal studies. Within each study, six
domains were evaluated, and each was given a high, unclear, or low-
risk rating. Across all the studies combined, high, unclear, or low risk
was determined by the majority. All studies revealed a low risk
of bias.

3.4 Results of individual studies

The Morris water maze (MWM) test (n = 71) was the most
frequently used outcome measurement for neurobehavioral
assessment, followed by the passive avoidance (n = 25), open-
field (n = 17), Y-maze (n = 17), and novel object recognition (n =
15) test. Meanwhile, the two most commonly measured
biomarkers of interest were acetylcholinesterase (AChE) (n =
24) and BDNF (n = 17), whereas malondialdehyde (MDA) (n =
25), SOD (n = 26), and CAT (n = 19) were the most commonly
measured oxidative stress indicators in the selected studies.

Studies have reported that factors related to response to stress
and neurogenesis were 24 on AChE. Reports on cerebral oxidative
stress were 25 on MDA, whereas studies investigating spatial
learning and memory in laboratory rats using the most common
method (MWM) were 71. Regions frequently evaluated were the
hippocampus, followed by the cerebral cortex. The included articles
also reported the other means of assessing cognitive function, such
as immunohistochemistry of vascular endothelial growth factor
(VEGF)/platelet-derived growth factor (PDGF), neurological
function of mice by Zea Longa scores, image analysis using light
microscopy, electroencephalograph (EEG), circadian locomotor
rhythm, and TUNEL assay for detecting apoptosis of
hippocampal neurons. However, these methods are not within
the scope of this review.

3.4.1 Morris water maze
Studies reported on various neurobehavioral tests, such as the

radial maze test, Barnes hole-board maze, novel object recognition
test, T-maze, open-field test (OFT), Y-maze test, and MWM test.
TheMWM test is employed to estimate memory and spatial learning
in rodents, which assesses animals on time spent in the target
quadrant, escape latency, and mean swimming speed. Fifty-nine
studies reported on MWM, suggesting it is one of the most used
neurobehavioral tests. Gibbons et al. (2014) administered a

FIGURE 1
Flowchart of the publication search and selection process.
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combined intervention of both flavonoids and exercise (epicatechin
and β-alanine and voluntary wheel running). However, they did not
observe any independent or additive/synergistic effects of the
EGCG/β-ala diet on the performance in the MWM, whereas
exercise improved age-related reductions in behavioral
performance. This is because the dosages of EGCG and β-ala
used in the study may have been too low. Conversely, Zhang
et al. (2016) used combined intervention (epicatechin and
treadmill exercise), indicating that treadmill exercise only
improved spatial learning deficits rather than memory
impairment. However, the combination therapy was able to
improve both spatial learning and memory activity. Concerning
flavonoid intervention, 75 studies reported its effect on learning and
memory, of which only one study (Giacomini et al., 2019) showed
that 40 days of 7,8-dihydroxyflavone had no sign of improvement in
spatial learning and memory. It must be noted that the tests used to
evaluate cognitive performance, such as contextual fear
conditioning, novel object recognition, and MWM tests, may
exhibit different sensitivity to treatment. Nevertheless, all other
74 studies using flavonoids reported a significant reduction in the
MDA levels. These results indicated that flavonoids reduced the
concentration of MDA to protect the antioxidant system.

3.4.2 Malondialdehyde
Thirty-eight studies reported several factors and variables

related to oxidative stress; for example, superoxide dismutase
(SOD) activity, catalase and glutathione (GSH) activity, nitric
oxide synthase (iNOS), and lipid peroxidation (MDA) were
evaluated. Nineteen studies reported on MDA. The combined
study of flavonoids with treadmill exercise by Zhang et al. (2016)
reported that impaired antioxidant enzymes were restored with
epicatechin treatment alone. The possible explanation is that
treadmill exercise may have elevated serum corticosterone levels
similar to mild stress, which might offset the anti-oxidative effect of
epicatechin in the combination group. However, the combined
study of flavonoids with aerobic exercise by Abhijit et al. (2018)
showed that adult rats benefited more from a combination of
exercise and flavonoid supplementation than a single
intervention. Similarly, all 24 studies with the intervention of
flavonoids alone showed that the MDA level decreased in
animals. Chronic stress can stimulate oxidative stress and the
increased production of free radicals, which may contribute to
cognition impairment. The outcomes of the studies show that
flavonoids may inhibit neurological damage by suppression of
oxidative stress and further protect against learning and memory
impairments.

3.4.3 Acetylcholinesterase
Of 24 studies, 23 evaluated the content of AChE in rodents

treated with flavonoids and one evaluated that content with a
combination of flavonoids and exercise. The study using the
combination of flavonoids and exercise (n = 44) reported that
single interventions failed to show any significant decreases in
AChE activity, unlike the combined interventions that resulted in
a significant decrease. Among the 23 studies involving flavonoids,
Mundugaru et al. (2017) reported no statistically significant changes
(n = 24). However, they revealed a reduction, although the changes
were not statistically significant compared to the AlCl3-alone

group. All other studies showed a significant reduction in the
level of AChE with the duration of flavonoid administration
ranging from 30 min before sacrifice for AChE activity assay to
60 days. AChE is essential in maintaining the normal function of the
nervous system, and an increased AChE level causes cognitive
dysfunction. In the studies examined, it can be concluded that
both administration of flavonoids alone and in combination with
exercise could ameliorate learning and memory impairments by
inhibiting AChE activity and elevating the level of neurotransmitter
ACh in the cortex and hippocampus.

3.5 Meta-analysis

3.5.1 Morris water maze
Five studies were included in the meta-analysis on the effect of

flavonoid treatment on the neurobehavioral study of MWM
(rodents, n = 41) (Figure 2). One subgroup analysis was
performed with flavonoid intervention between 2 and 8 weeks.
Hippocampal spatial perception and learning are commonly
assessed using MWM through escape latency and time spent in
the target quadrant. Among the studies, a 2-week intervention of
Morin and Vitis vinifera (Ma et al., 2018; Thangarajan et al., 2018)
and a 15-day intervention of Ageratum conyzoides (Biradar and
Joshi, 2011) favors experimental/intervention group shortened
escape latency and stronger learning ability, but they did not
reach significance.

While 8-week intervention of EGCG (Nan et al., 2021) shows
that studies conducted by Nan et al. (2013), Biradar and Joshi
(2011), Thangarajan et al. (2018), and Ismail et al. (2023) favor
control significantly for time spent at the target quadrant, implying
memory was not improved (four studies, MD = 16.29, 95%CI 13.79,
18.78) with a heterogenicity of 78% between studies.

3.5.2 Malondialdehyde
The meta-analysis focused on assessing the effect of flavonoid

treatment on the oxidative stress marker of MDA (rodents, n = 80)
(Figure 3). The nine studies included in this meta-analysis examined
the effect of flavonoids on the MDA level. Brain cells are most
susceptible to lipid peroxidation, which is indicated by the presence
of MDA in tissues. A lower level of MDA indicates reduced oxidative
stress and an improved antioxidant system in the brain tissue. This
reflects on better cognitive function. The statistical results
demonstrated that flavonoid administration [nine studies; mean
difference (MD), −1.98 nmol/mg protein; 95%CI (−3.20, −0.77)] has
a significant effect in reducing MDA level among the animals with
cognitive impairment as the effect favors experimental/intervention
group, with a heterogenicity of 87% between studies. The nine studies
included are as follows: Wu et al. (2012) administered green tea extract
(GTex), epigallocatechin gallate (EGCG), for 7 days; Jia et al. (2016)
administered liquiritin for 2 weeks; Mansour et al. (2017) administered
5, 7-dihydroxyflavone for 3 weeks; Peter AN and Rehab AA
2021 administered hesperidin for 8 weeks; Kwon et al. (2022)
administered Rhodiola sachalinensis for 3 weeks; Hawash et al.
(2023) administered jambolan fruit ethanolic extract for 28 days;
Jadhav and Kulkarni (2023) administered baicalein for 21 days and
quercetin for 42 days, respectively; and finally, Kim et al. (2023)
administered Sesamum indicum L. for 4 weeks.
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3.5.3 Acetylcholinesterase
Finally, the meta-analysis studied the effect of flavonoids on AChE

secretion (rodents, n = 57) (Figure 4). The forest plot of the pooled level
of AChE for each study comparison is presented in Figure 4. Compared
with the control group, Convolvulus pluricaulis was administered for
7 days (Bihaqi et al., 2011), 5, 7-dihydroxyflavone and Rhodiola
sachalinensis were administered for 3 weeks, respectively (Mansour
et al., 2017; Kwon et al., 2022) favors experimental/intervention
group, which had positive effects on cognitive-enhancing activities
from the inhibition of the AChE activity. Administration of
flavonoids resulted in the improvement of the AchE activity, which
invariably enhanced the neuromuscular activity. This showed that
flavonoids have AChE restoration properties. However, other studies
[i.e., Thangarajan et al. (2018) administering Morin for 2 weeks; Akpa
et al. (2020) and Hawash et al. (2023) administering fisetin for 7 weeks
and Convolvulus pluricaulis 1 week, respectively] showed a negative

effect, favoring control. In addition, six studies [mean difference
(MD), −3.95 U/mg protein; 95%CI (−11.76, 3.87)] found a trend in
flavonoids improving cognition through AChE but did not reach
significance, with a heterogenicity of 99% between studies.

95%CI values are presented for individual studies as squares and
lines and meta-analysis results as diamonds.

4 Discussion

Physical exercise and flavonoids as a non-conventional approach/
intervention for medical disease have proven beneficial in reducing the
risk for many diseases, including stroke, high blood pressure, and
mental disorders, such as chronic stress and depression (da Silva et al.,
2012; Singh et al., 2014). Although the impact of physical exercise and
flavonoid supplementation on cognition is well understood, the

FIGURE 2
Forest plot of flavonoid treatment on MWM.

FIGURE 3
Forest plot of flavonoid treatment on MDA.
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combined effect of the two interventions is still in its infancy (Wang
et al., 2022). Neurodegeneration in the brain is progressive in nature and
is an irreversible process. There is no effective treatment for age-related
memory impairment, emphasizing the importance of developing
preventive strategies before or during aging (Souza et al., 2015).
Exercise has been shown to decrease the levels of circulating
inflammatory cytokines, whereas flavonoids have been shown to
exert beneficial effects in a variety of bodily functions and organs,
including the brain (El-Kader and Al-Shreef, 2018; Nkpaa and Onyeso,
2018). The mechanisms by which flavonoids exert their effects depend
largely on their antioxidant properties. Flavonoids may also interact
with neuronal receptors and kinase signaling pathways, thereby
modulating certain cellular processes.

The objective of the current study was to conduct a systematic
review and meta-analysis to identify and evaluate the scientific
literature published on the effect of exercise and flavonoid
intervention on cognitive impairment, either alone or in
combination. A total of 83 studies (n = 3,658–3,823)
investigated the effect of flavonoid treatment on cognitive
impairment. Five studies (Mundugaru et al., 2017; da Silveira
et al., 2016; Peter and Rehab, 2021; Giacomini et al., 2019; Mallien
et al., 2019) that administered flavonoids to rodents with
cognitive impairment found no significant effect. A non-
significant effect was observed in behavioral studies, which is
the hallmark of learning, memory, and motor function. This
could result from tests used to evaluate cognitive performance
with different sensitivity to treatment in terms of dosage and
duration. One study showed no difference in oxidative stress
markers of SOD and CAT activities. This is most likely because
the antioxidant activities of flavonoids may involve enzymatic
and non-enzymatic pathways, such as GSH. However, the results
of the remaining studies predominantly showed cognitive
improvement. Elevated MDA means elevated lipid
peroxidation and increased oxidative stress. Increase in lipid
peroxidation of nueronal membrane leads to neuronal damage
and apoptosis (Park et al., 2018). Dietary antioxidants enhance
antioxidative systems and administration of phenolic-rich
compounds, inhibiting MDA production (You et al., 2020).
Thus, biomarker selection is critical to accurately reflect the
actual scenario. Acetylcholine is one of the most important
neurotransmitters involved in cognitive function regulation,
and flavonoids appear to improve learning/acquisition and
memory retention by lowering AChE levels. Acetylcholine
modulates synaptic plasticity via BDNF. BDNF is crucial in

supporting the survival and function of existing nerve cells
while promoting the growth and differentiation of new
neurons and synapses. As a result, BDNF is critical in
learning, memory, and motor function.

Although improved behavioral performance is interpreted as
improved cognition in terms of learning and memory, Chen et al.
(2019) investigated the effect of treadmill exercise on cognitive
impairment. The neurobehavioral radial maze test revealed that
treadmill exercise for 7 or 14 days improves motor and cognitive
functions. This demonstrates that exercise can improve
cerebrovascular and neuronal plasticity, thereby protecting the
brain from cognitive dysfunction and neurodegenerative diseases.
Enhanced BDNF levels were also observed from treadmill training
because BDNF is involved in the brain plasticity processes associated
with cognitive recovery. Finally, six studies reported combined
interventions of flavonoids and exercise. However, Bhattacharya
et al. (2015) found no significant influence on learning and memory
measures when the interventions were combined. Two studies
(Abhijit et al., 2017; Abhijit et al., 2018) examining the combined
effect showed that flavonoids alone improved the neurobehavioral
test or biomarker. However, the combined intervention did not
show further improvement. Two other studies (Gibbons et al., 2014;
Zhang et al., 2016) found that exercise alone improved the results.
Nevertheless, Ramis et al. (2021) reported that the combined action
of exercise and a polyphenol-enriched diet could be very useful as a
therapy to delay or ameliorate the cognitive and motor decline
associated with aging by improving monoaminergic
neurotransmitters. In summary, the outcomes of the studies that
combine physical exercise and dietary flavonoids are varied.
Additionally, the number of studies with combined intervention
is limited in this review. Thus, further studies are required to
properly deduce whether a physically active lifestyle in
combination with the intake of antioxidants can be the most
effective management strategy to alleviate the cognitive and
motor deterioration associated with aging.

5 Strength and limitations

Although our search was comprehensive, we may have
overlooked potentially relevant studies published in a language
other than English. Moreover, the studies available for the meta-
analysis were few. However, the strength of this study lies in its
comprehensive assessment of this topic.

FIGURE 4
Forest plot of flavonoid treatment on AChE.
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6 Conclusion

Considering the findings of this study, as well as the limitations, it
can be concluded that combined intervention of exercise and
flavonoids suggests a positive effect on cognitive function
compared to flavonoids and exercise alone. Nevertheless, the
results yielded from this review should be interpreted with
caution due to the high heterogeneity observed across the
included studies. Therefore, further research is necessary to define
more specific recommendations on these interventions, in terms of
quantity and type of polyphenol, as well as exercise strategies, to
recommend these interventions as part of a healthy lifestyle regime in
humans.
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