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Periodontitis is a common inflammatory disease. It is characterized by destruction
of the supporting structures of the teeth and could lead to tooth loss and systemic
inflammation. Bacteria in inflamed gingival tissue and virulence factors are capable
of entering the bloodstream to induce systemic inflammatory response, thus
influencing the pathological process of many diseases, such as cardiovascular
diseases, diabetes, chronic kidney disease, as well as liver injury. An increasing
body of evidence show the complex interplay between oxidative stress and
inflammation in disease pathogenesis. When periodontitis occurs, increased
reactive oxygen species accumulation leads to oxidative stress. Oxidative stress
contributes to major cellular components damage, including DNA, proteins, and
lipids. In this article, the focus will be on oxidative stress in periodontal disease, the
relationship between periodontitis and systemic inflammation, and the impact of
periodontal therapy on oxidative stress parameters.
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1 Introduction

Periodontitis is a dysbiotic disease characterized by an imbalance of the microbial
community within the periodontal tissues, leading to chronic inflammation and destruction
of the tooth’s supporting structures (Eriksson et al., 2019; Inanc et al., 2021; Giannini et al.,
2022). As a common inflammatory disease, periodontitis affects 10%–15% of adults and can
eventually lead to tooth loss (Rajbhandari and Shrestha, 2018). It may have significant
implications on an individual’s oral and systemic health. The current understanding of
periodontitis has shifted from clinical parameters to the pathogenesis of the disease, and the
involvement of microbial composition, immune response, and genetic susceptibility.

The etiopathogenesis of periodontitis is complex, involving both host and microbial
factors (Maulani et al., 2021). Dysbiosis, or microbial imbalance, is thought to be the primary
driver of periodontitis and is characterized by an overabundance of pathogenic bacteria and a
reduction in symbiotic bacteria (Na et al., 2020). The virulence factors of periodontal bacteria
include lipopolysaccharides (LPS), proteases, and other enzymes that disrupt the host
immune response and promote tissue destruction (Wang H. Y. et al., 2017; Zhou et al.,
2023). LPS is highly immunogenic and has the ability to induce the production of pro-
inflammatory cytokines. Proteases are involved in the destruction of extracellular matrix and
host immune proteins (Blasco-Baque et al., 2017). Other bacterial virulence factors,
including fimbriae, capsules, and toxins, as well as host variables such as genetic
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susceptibility and systemic diseases like diabetes, also contribute to
the development of periodontitis (Xu et al., 2020).

Periodontitis is usually associated with activation of
polymorphonuclear leukocytes, which in turn may generate
reactive oxygen species (ROS) during inflammatory conditions
(Hatipoğlu et al., 2015). Oxidative stress is a complex biological
process characterized by the excessive production of ROS, which act
as destroyers to the redox balance in body and induce oxidative
damage (Rotariu et al., 2022). All the metabolisms are impaired in
oxidative stress and even nucleic acid balance is influenced. ROS
causes oxidative damage to the tissues via multiple mechanisms,
including DNA damage, protein oxidation and lipid peroxidation
(LPO) damage (Heinkele et al., 2021). Periodontitis is associated
epidemiologically with several chronic diseases, such as
cardiovascular disease, type 2 diabetes mellitus (T2DM) and
nonalcoholic fatty liver disease. Oxidative stress plays an
important role in the impact of periodontitis on systemic disease
(Ye et al., 2012). The following is an overview of research on the
relationship between oxidative stress, periodontitis, and systemic
disease.

2 Oxidative stress

Oxidative stress is an imbalance between the production of
ROS and the antioxidant capacity of cells, which damages
biological systems due to increased ROS production and
dysfunction of the antioxidant system (Ibrahim et al., 2020;
Kim et al., 2021). Under physiological conditions intracellular
ROS are normal components of signal transduction cascades.
And the levels of ROS are maintained by a complex antioxidants
systems participating in the in-vivo redox homeostasis (Obeng-
Gyasi, 2018). However, inflammatory responses can also be
stimulated by ROS through protein kinases, transcription
factors, and genomic expression of inflammatory factors
genomic expression (Besednova et al., 2022). Increased ROS
accumulation leads to oxidative stress, which contributes to
major cellular components damage, including DNA, proteins,
and lipids (Perera et al., 2020; Jia et al., 2021).

Oxidative DNA lesions can be formed through two distinct
pathways, including: 1) direct oxidation of a base (purine/
pyrimidine) in DNA; 2) misincorporation of oxidized deoxy
nucleoside triphosphates into DNA by DNA polymerase. All four
bases of the DNA can undergo direct oxidation, forming various
oxidized purines. Among the various forms of oxidative DNA
damage, 8-oxoDG and 8-hydroxy-2′deoxyguanosine (8-OHdG)
are the most studied and recognized markers of oxidative DNA
alterations (Caliri et al., 2021).

Oxidative damage to proteins is divided in two categories,
including the reversible and irreversible protein modifications
(Caliri et al., 2021; Fu et al., 2022). Protein carbonylation is an
irreversible protein modification, resulting from oxidative damage,
that often leads to loss of protein function (Matsuo et al., 2021). The
specificity of multiple amino acids to undergo carbonylation has
made this modification a widely used biomarker for assessing
oxidative damage to proteins (Caliri et al., 2021). Reversible
oxidation of proteins with adjacent cysteine residues, possibly
including protein kinases and phosphatases, can regulate protein

function and redox signaling pathways in various stress responses
(Caliri et al., 2021; Sologova et al., 2022).

ROS can induce degradation of polyunsaturated fatty acids
resulting in the formation of a variety of products (Caliri et al.,
2021; Emanuelli et al., 2022). Lipid peroxidation can directly damage
phospholipids to form oxidized phospholipids, which induces cell
death through apoptosis, necrosis, pyroptosis, or ferroptosis, and
involved in a variety of inflammatory responses (Zhu et al., 2022).
Biomembranes are prone to undergo lipid peroxidation, and it is
possibly via two pathways: non-enzymatic and enzymatic (Su et al.,
2019; Ruan et al., 2021). The non-enzymatic pathway is an iron-
dependent lipid peroxidation (Chen et al., 2022). The enzymatic
pathway involves a highly organized oxygenation center, wherein
oxidation occurs on only one class of phospholipids (Su et al., 2019).

3 Oxidative stress and periodontitis

After host defense responses are triggered by periodontal
pathogenic bacteria in biofilm, neutrophils become the most
common inflammatory cells that accumulate in periodontal tissue
and gingival sulcus (Chu et al., 2021). Neutrophils are believed to be
the predominant sources of ROS in periodontitis (Wang Y. et al.,
2017). During phagocytosis of periodontal pathobionts, neutrophils
can release excess ROS via the NADPH oxidase pathway (Sui et al.,
2020). However, ROS has a very short half-life, and it is not easy to
be detected. Therefore, ROS-related degradants and enzymatic and
non-enzymatic antioxidant activity are ideal candidates for assessing
the impact of oxidative stress-related events on the pathological
process of periodontitis (Monmeesil et al., 2019). Changes in local
concentrations of oxidative stress biomarkers are closely associated
with the progression of periodontitis. It suggested that the oxidative
stress biomarker level can be used for periodontitis diagnosis and
therapeutic efficacy evaluation (Wang Y. et al., 2017).

Various explanations have been offered for the relationship
between the concentration of local markers of oxidative stress
and the progression of periodontitis. For example, higher levels
of malondialdehyde (MDA), hydrogen peroxide, and oxidative
DNA damage have been reported in patients with periodontitis
(Wu et al., 2016). Several studies have shown that decreased activity
of enzymatic antioxidants such as superoxide dismutase (SOD) and
catalase (CAT) is associated with periodontitis (Almerich-Silla et al.,
2015). The study also showed significant differences in the levels of
oxidative stress biomarkers (total antioxidant capacity, MDA,
glutathione peroxidase, nitric oxide, total oxidative status, and 8-
hydroxydeoxyguanosine) at the site between patients with
periodontitis and healthy controls (Almerich-Silla et al., 2015).

The pathogenesis of periodontal tissue destruction is believed to
involve oxidative stress (Zhang et al., 2022). Almerich-Silla et al.
(2015) raised that oxidative stress levels in periodontium were
significantly higher in the periodontal disease groups than in the
gingivitis groups and healthy groups, the oxidative stress showed a
linear trend associated with periodontal worsening as well as
bleeding on probing (BOP). Patients with periodontitis had
elevated levels of biomarkers of ROS-induced tissue damage and
elevated levels of antioxidant enzymes corresponding to oxidative
stress in inflamed periodontal tissue and gingival fluid (De Angelis
et al., 2022).
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Recent studies have focused on the involvement of ROS in the
pathogenesis of periodontitis, focusing on apoptosis of human
periodontal ligament stem cells (hPDLSCs), migration of
periodontal ligament fibroblasts (PDLFs), and alveolar bone loss
(Sui et al., 2020). At the right concentration, ROS plays a key role in
cell proliferation, migration, apoptosis, and wound healing (Tottoli
et al., 2020; Cordani et al., 2021). ROS can increase the expression of
dynamin-related protein 1 (Drp1), a key regulator of mitochondrial
fission, leading to mitochondrial dysfunction, including abnormal
mitochondrial membrane potential and reduced ATP levels,
ultimately leading to hPDLSC apoptosis (Sui et al., 2020). In
addition, at low concentrations, ROS may stimulate proliferation
and differentiation of PDLF in culture. While ROS at high
concentrations may have cytotoxic effects on periodontal tissue
(Liu et al., 2017).

Periodontitis is triggered by a shift in the oral microbiome
towards a community enriched in anaerobic Gram-negative
bacteria (Munteanu et al., 2022). These microorganisms are
equipped with intrinsic virulence factors, including endotoxin
and LPS, which is the main constituent of the Gram-negative
bacterial outer membrane. Upon its release, LPS triggers a
complex immune response mediated by a variety of host-derived
factors that perpetuate the inflammatory processes (Jia et al., 2019;
Sidhu et al., 2020). Additionally, LPS may activate immune cells,
supplementing the generation of bioactive molecules such as ROS,
leading to oxidative stress and further destruction of periodontal
tissues (Vo et al., 2020). The contributions of LPS and oxidative
stress are crucial in the pathogenesis of periodontitis. LPS can
stimulate the generation of proinflammatory cytokines, which
provoke and sustain immune cell recruitment and activation as
well as tissue damage in periodontal tissues (Han et al., 2022).
Concurrently, oxidative stress causes direct harm to cells and tissues,
leading to further tissue damage, as well as inflammatory responses
that increase the microbial dysbiosis (Liu et al., 2023). Cumulatively,
the shift towards an anaerobic Gram-negative bacterial community,
along with the presence of LPS and oxidative stress, act
synergistically to promote chronic inflammation and to foster the
exacerbation of periodontal diseases (Willmann et al., 2018). Liang
et al. found that treatment of PDLF with LPS overproduces ROS and
induces the binding of thioredoxin (TXNIP) and NOD-like receptor
protein 3 (NLRP3) to form NLRP3 inflammasomes (Sui et al., 2020).
As intracellular signaling transduction molecules, ROS also promote
osteoclast formation, leading to alveolar bone resorption and
periodontal tissue damage (Sui et al., 2020).

Experiments have shown that antioxidants can mitigate the
irreversible teeth-supporting tissues damage caused by excess
ROS. Local vitamin C (an important water-soluble vitamin with
antioxidant and immunomodulatory properties) inhibits
inflammatory resorption by the alveolar bone and reduces
oxidative stress and tissue destruction induced by inflammation
(Toraman et al., 2020). Local vitamin C may be a therapeutic agent
that can be used in the treatment of periodontitis (Toraman et al.,
2020). Proanthocyanin, a potent grape seed antioxidant, has been
reported to reduce inflammation and alveolar bone loss due to
periodontitis by decreasing HIF-1α and MMP-8 levels and
increasing osteoblast activity in diabetic rats periodontitis (Toker
et al., 2018). In a study of rats with ligamentous periodontitis,
melatonin treatment appeared to suppress the production of

inflammatory cytokines and relieve gingival inflammation
(Permuy et al., 2017; Li L. et al., 2021). The authors concluded
that melatonin could reduce oxidative stress and periodontal
inflammation by decreasing the levels of inflammatory cytokines
and restoring antioxidant levels in the tissues (Permuy et al., 2017; Li
L. et al., 2021). Results of a murine periodontitis model clearly
demonstrated that polydopamine nanoparticles could remove ROS
and decrease the periodontal inflammation as robust antioxidants
(Li Q. et al., 2021).

The above studies show a close relationship between
periodontitis and oxidative stress, with periodontitis triggering
the mechanism of oxidative damage and oxidative stress
influencing the development of periodontitis and further
aggravating the damage to periodontal tissues.

4 Periodontitis and systemic diseases
interrelationships: role of oxidative
stress

Periodontitis causes systemic inflammation and oxidative stress,
which can lead to a number of diseases (Kurek-Gorecka et al., 2022;
Xu et al., 2022; Yeh et al., 2022). Bacteria in inflamed gingival tissue
and virulence factors are capable of entering the bloodstream to
induce systemic inflammatory response, thus influencing the
pathological process of many diseases, such as cardiovascular
diseases, diabetes, chronic kidney disease, as well as liver injury.

4.1 Periodontitis and cardiovascular diseases

The impact of oxidative stress on cardiovascular disease is a hot
topic of research. Oxidative stress may be one of the factors that
explain the pathophysiological mechanisms of inflammatory
conditions in cardiovascular disease and periodontitis (Liu et al.,
2017). Persistent systemic inflammation due to periodontitis can
lead to vascular endothelial dysfunction and increase inflammation
in existing atherosclerotic lesions, which increases the risk of
cardiovascular diseases and related events (Stanescu et al., 2020).
Oxidative stress is associated with the development of coronary
atherosclerotic complications and various risk factors (Corredor
et al., 2022). It is reported that ROS can triggers immune responses
through redox-sensitive gene transcription factors, such as nuclear
factor-κB (NF-κB), leading to the expression of inflammatory
cytokines (Liu et al., 2017). Studies have shown that periodontitis
is associated with excessive ROS production in periodontal tissue,
gingival crevicular fluid (GCF) or gingival blood (Corredor et al.,
2022). The systemic effects of periodontitis are due to the diffusion
of ROS produced in periodontal lesions into the blood stream.

Study suggests that periodontitis is a potential risk factor for
acute myocardial infarction (AMI) (Turgut Cankaya et al., 2018;
Kregielczak et al., 2022). Circulating lipid peroxides related to
periodontitis were found in both AMI and control subjects (Diaz
et al., 2020; Toczewska et al., 2020). The study also suggests that
oxidative stress could be the main pathogenic link between AMI and
periodontitis (Diaz et al., 2020). In patients who are affected by
cardiovascular disease or periodontitis, the condition of low
Coenzyme Q10 (CoQ10) levels has been reported (Ferlazzo et al.,
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2021). This compound is a cofactor, that is, involved in the
production of ATP in the mitochondrial respiratory chain. It
takes part in redox reactions and plays a role as an antioxidant
by reducing ROS (Ferlazzo et al., 2021). Subjects with periodontitis
and coronary heart disease showed a significant increase in
asymmetric dimethylarginine levels (Toczewska et al., 2020;
Giannini et al., 2022). In periodontitis and coronary heart disease
subjects, the author observed an increased concentration of
nitrotyrosine, associated with lower levels of CoQ10 in
comparison to controls (Ferlazzo et al., 2021).

In an animal experiment, the effects of caffeic acid phenethyl
ester on alveolar bone resorption, cytokine levels, and oxidative
status were assessed by using a rat model of periodontitis, and
suggests that periodontal infection may affect the heart by increasing
inflammatory and oxidative responses (Otan Ozden et al., 2021).
Study reveals that periodontitis may cause oxidative damage in
cardiac tissue, and crocin improves periodontitis-induced
degenerative changes in heart tissue, which is associated with its
antioxidant properties (Kocaman et al., 2021).

In addition, periodontitis and T2DM are characterized by
increased mitochondrial oxidative stress production, which has
been associated with a greater risk of cardiovascular diseases
(Masi et al., 2019). Reduced ROS is associated with improved
endothelial function and accompanied by better metabolic
control in patients with T2DM and periodontitis (Masi et al.,
2019). ROS could represent a novel therapeutic target to prevent
cardiovascular disease in T2DM (Masi et al., 2019; Lee et al., 2020).

4.2 Periodontitis and diabetes mellitus

Diabetes mellitus is a metabolic disorder caused by an increased
need for insulin. It is characterized by a relative or absolute under
secretion of insulin, or insulin resistance, which results in decreased
metabolism of carbohydrates, fat and protein, and higher than
normal blood glucose levels in patients (Kurtalic et al., 2020; Sun
et al., 2022). Oxidative stress is a common feature of both T1DM and
T2DM, and elevated biomarkers of oxidative stress can be detected
in blood, urine and tissues, including pancreas of patients with DM
(Miki et al., 2018). T2DM is the most common subtype of diabetes,
being present in 85%–90% of patients with a diagnosis of diabetes
(Miki et al., 2018; Magiera et al., 2022). T2DM and periodontitis are
two biologically linked diseases that often coexist in complex
interaction (Luong et al., 2021). Most importantly, both diseases
have similar mechanistic themes, such as chronic inflammation and
oxidative stress (Luong et al., 2021). Alteration in the oral
microbiome composition, which may activate the host
inflammatory response and lead to irreversible oxidative stress, is
a common finding in both diseases (Luong et al., 2021).

Studies on rats provided substantial evidence that both local and
systemic oxidative damage and nuclear factor-E2-related factor 2 (Nrf2)
downregulation are involved in the aggravation of periodontitis by DM
(Li et al., 2018). Gene and protein expression of Nrf2 was significantly
downregulated in diabetic periodontitis (Li et al., 2018). Compared to
controls, periodontitis significantly increased local oxidative damage
(increased expression of 3-nitrotyrosine, 4-hydroxy-2-nonenal, and 8-
hydroxydeoxyguanosine). On the other hand, diabetes significantly
increased systemic oxidative damage and suppressed antioxidant

capacity (increased expression of MAD, decreased superoxide
dismutase activity) (Li et al., 2018; Nishikawa et al., 2020). The
concurrent development of periodontitis and diabetes was found to
synergistically exacerbate local and systemic oxidative damage. This
result correlates closely with greater periodontal destruction in diabetic
periodontitis (Bogdan et al., 2020).

Some studies also suggest that increased systemic oxidative
stress due to periodontitis activates systemic inflammatory
signaling pathways that may influence the development of
diabetes (Allen et al., 2011). Oral administration of curcumin and
rutin, alone or in combination, can reduce oxidative stress and
improve antioxidant status in rats with hyperglycemic periodontitis
(Iova et al., 2021). Furthermore, MDA concentrations in blood and
gum tissue have been shown to correlate with catalase activity (Iova
et al., 2021).

4.3 Periodontitis and chronic kidney disease

Periodontitis and chronic kidney disease share many
common risk factors, including obesity, smoking, and age (Li
L. et al., 2021). There is growing evidence of a strong link between
periodontitis and kidney disease. The oxidative stress induced by
periodontitis can have a negative impact on the kidneys
(Palathingal et al., 2022). It has been reported that induced
periodontitis causes histomorphological changes in renal
tissues, brush border disruption in the renal tubules, and
changes associated with increased oxidative stress in the
kidneys (França et al., 2017).

Antioxidants showed a protective effect against impaired liver
and kidney function caused by experimental periodontitis (Li L.
et al., 2021; Kose et al., 2021). In a mouse model of gingival sulcus,
local induction of periodontitis with LPS and proteases increased
hexanoyl-lysine (HEL) expression in the gingiva, leading to
increased levels of HEL in serum and 8-OHdG in kidney tissue
(Li L. et al., 2021). Compared with animals without periodontitis, the
MDA content in the kidneys of the group with periodontitis was
significantly increased and the glutathione concentration was
significantly reduced (Li L. et al., 2021).

Another study showed that resveratrol therapy improves the
local redox balance of the gingiva in periodontitis and reduces
circulating oxidative stress (Li et al., 2023). Meanwhile, reduction
of oxidative stress may alleviate renal damage (Jiang et al., 2020).
Thus, periodontitis may increase the concentration of circulating
oxidative stress, which in turn may cause kidney damage.

4.4 Periodontitis and liver injury

Growing evidence suggests that oxidative stress can cause lipid
peroxidation, protein oxidation, DNA damage and mitochondrial
dysfunction, and play a central role in liver injury (Huo et al., 2017).
The antioxidant compound has been shown to decrease levels of
damage marker enzymes such as aryl hydroxylase, gamma-glutamyl
transferase, and adenosine deaminase in rat liver tissue, and ROS-
induced lipid peroxidation in primary rat hepatocytes (Butnariu
et al., 2022). These findings indicate that oxidative stress plays an
important role in liver injury.
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Recently, both animal and clinical studies have shown that
periodontitis is associated with elevated levels of ROS in the blood,
a condition that may be detrimental to liver health (Manjeu et al.,
2022). According to previous study, the oxidative stress observed in
periodontitis could induce a decrease in hepatic GSH, increasing
oxidative imbalance and causing liver damage (Pessoa et al., 2018).
The combination of ethanol and ligature-induced periodontitis was
found to cause higher concentrations of HEL and 8-OHdG in the rat
liver in comparison with ethanol exposure alone (Zieba et al., 2021).
Supporting the notion, another rat model of periodontitis, the
ligature-induced model, showed a decrease in glutathione in the
liver antioxidant, and increase in circulating level of HEL, which
suggests a possible link between periodontitis-generated oxidants and
liver damage (Kumar et al., 2017).

5 Conclusion

In summary, periodontitis causes an imbalance between oxidants
and antioxidants, triggering a mechanism of oxidative stress
pathological damage that not only damages periodontal tissues but
also affects the development of systemic diseases. The study of the
relationship between periodontitis and systemic diseases is of great
significance in the prevention and treatment of many systemic diseases.
It is expected to provide new therapeutic approaches to raise awareness
of oral hygiene and thus help to provide new treatment options to
reduce the risk of periodontitis-related comorbidities.
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