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Cardiovascular diseases (CVDs) are one of the major reasons for deaths globally. The
renin–angiotensin–aldosterone system (RAAS) regulates body hypertension and fluid
balance which causes CVD. Angiotensin-converting enzyme I (ACE I) is the central
Zn-metallopeptidase component of the RAAS playing a crucial role in maintaining
homeostasis of the cardiovascular system. The available drugs to treat CVD have
many side effects, and thus, there is a need to explore phytocompounds and peptides
to be utilized as alternative therapies. Soybean is a unique legume cum oilseed crop
with an enriched source of proteins. Soybean extracts serve as a primary ingredient in
many drug formulations against diabetes, obesity, and spinal cord-related disorders.
Soy proteins and their products act against ACE I whichmay provide a new scope for
the identification of potential scaffolds that can help in the design of safer and natural
cardiovascular therapies. In this study, the molecular basis for selective inhibition of
34 soy phytomolecules (especially of beta-sitosterol, soyasaponin I, soyasaponin II,
soyasaponin II methyl ester, dehydrosoyasaponin I, and phytic acid) was evaluated
using in silico molecular docking approaches and dynamic simulations. Our results
indicate that amongst the compounds, beta-sitosterol exhibited a potential inhibitory
action against ACE I.
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1 Introduction

The angiotensin-converting enzyme (ACE) (EC 3.4.15.1) is a
chloride-dependent and zinc-containing peptidyl-dipeptidase A
enzyme (Natesh et al., 2003; Sharma et al., 2016). It is a crucial
enzyme that regulates the formation of angiotensin I (Ang I) to
angiotensin II (Ang II) and, in turn, blood pressure (BP). This
enzyme is a part of the renin–angiotensin–aldosterone system
(RAAS). ACE inhibitors have a therapeutic role in regulating the
level of blood pressure and, thus, preventing cardiovascular diseases
(CVDs) (Zhao et al., 2019; Tahir et al., 2020; Kircheva et al., 2021; Li
et al., 2022). CVD is one of the major diseases and a leading cause of
mass mortality estimating around 17.9 million deaths each year (Roth
et al., 2020). Hypertension is one of the primary reasons for CVD
affecting the vital organs including the brain and kidneys. Several other
pathophysiological processes also occur simultaneously along with
hypertension which include the stiffening of large ducts (aorta and
carotid artery) and elastic artery, smooth muscle cell proliferation,
vasoconstriction, and dysfunction of the endothelium (Agrawal et al.,
2016; Margalef et al., 2017). The RAAS helps in the regulation of fluid
balance and plays a crucial part in maintaining homeostasis of the
cardiovascular system and normalizing BP. The inhibitors of ACE
competitively inhibit its conversion to Ang II which is formed by the
ACE I from Ang I. Thus, formed Ang II then stimulates the release of
aldosterone, which eventually elevates BP (Atlas, 2007; Shimakage et al.,
2012; Kircheva et al., 2021) and also simultaneously catalyzes the
degradation of bradykinin, a potent vasodilator (Margalef et al.,
2017). The process of controlling BP is a complex mechanism
involving a cascade of steps and different organs, involving the
autonomic nervous system (ANS), vasopressor and vasodepressor
hormones, the total volume of body fluid, renal function, and
vasculature. The endothelium is directly involved in controlling BP
by producing multiple vasodilators and vasoconstrictors such as nitric
oxide (NO), which is the most important endothelial vasodilator factor
(Margalef et al., 2017; Khan and Kumar, 2019; Chamata et al., 2020).

The commercially available synthetic ACE inhibitors (enalapril,
lisinopril, etc.) cause side effects like nausea, hyperkalemia, headache,
swelling of the lower portion of the skin, cough, disturbances in taste,
and angioneurotic edema (Sharma et al., 2016). Various plants have
been reported to have potential ACE inhibition properties as reviewed
by Patten et al. (2016). The plant-based bioactive compounds are better
alternatives to synthetic drugs because they are non-toxic and easily
available and have no side effects (Patten et al., 2016; Khan and Kumar,
2019; Chamata et al., 2020; Zhang et al., 2022). Therefore, there is a need
to switch and find alternative natural sources (like medicinal crops)
having promising health-promoting benefits with no side effects
(Hermida et al., 2011; Sitanggang et al., 2021; Xu et al., 2021; Zhang
et al., 2022). One such medicinal crop is soybean.

Soybean [Glycine max (L.) Merr.] is a multifaceted nutritional and
golden legume crop containing proteins, minerals, and other
constituents (Rajendran & Lal, 2020; Ramlal et al., 2022a; Kumar
et al., 2022; Mandal et al., 2022; Rajendran et al., 2022). Soybean has
been widely associated with reducing BP and obesity. It shows an anti-
cholesterol activity by lowering both genic and non-genic origin-based
hypercholesterolemic and triglycerides, thus reducing the risk of CVD
and simultaneously reducing postmenopausal symptoms and the risk of
osteoporosis and antimutagenic effects (Chen et al., 2012; Handa et al.,
2020). Soy proteins help in the regulation of hypercholesterolemia and

improve lipid metabolism (Caponio et al., 2020). It also possesses
hypotensive activities like the inhibition of ACE I and anti-microbial
and anti-thrombotic activities (Arnoldi, 2013). Soybean acts as an ideal
source for the identification of bioactive peptides against hypertension
with other effects (Li et al., 2022). Soy proteins such as glycinin along
with other products, namely, tofu, soy protein isolates, soy hydrolysate,
and fermented products of soybean (douche and tofu), all have shown
the presence of an inhibitory activity against the ACE (Handa et al.,
2020; Xu et al., 2021; Ramlal et al., 2022c). Recently, soybean
isoflavonoids, especially genistein, were shown to be used against
ACE (Ramlal et al., 2022b). Inhibitory peptides involved in the
inhibition of ACE are summarized by Ramlal et al. (2022c).

To explore and identify the potential inhibitory compounds,
screening methods are most useful, such as molecular docking.
Here, in this article, with the use of molecular docking and dynamic
simulations, soybean compounds that could potentially be involved in
the inhibition of ACE are being reported and that eventually would be
helpful in the identification and development of novel functional food
additives and useful in the design of safer drugs for ACE inhibition.

2 Materials and methods

2.1 Structure retrieval

Protein Data Bank (PDB) coordinates of the C domain (cACE; PDB
ID: 1O8A) and the N domain (nACE; PDB ID: 4BZS) of ACE were
retrieved from the PDB (https://www.rcsb.org/). Soybean compounds
(Supplementary Figure S1) were retrieved from the PubChem (https://
pubchem.ncbi.nlm.nih.gov/) database, namely, beta-sitosterol (BS; ID:
222284), soyasaponin I (SSI; ID: 122097), soyasaponin II (SSII; ID:
443614), soyasaponin II methyl ester (SSIIME; ID: 101638318),
dehydrosoyasaponin I (DHSSI; ID: 656760), and phytic acid (PA; ID:
890) and other compounds (Supplementary Table S1).

2.2 Protein and ligand preparation

For docking experiments, the preparation of ligands was carried out
using the Chimera (V: 1.15; https://www.cgl.ucsf.edu/chimera/
download.html) and AutoDock Vina (V: 1.5.7) (http://vina.scripps.
edu/download.html) was used for the preparation of a receptor
(protein). Protein preparation was performed by using the AutoDock
suite. The energy minimizations for both proteins and ligands were
carried out (http://www.yasara.org/minimizationserver.htm) (Krieger
et al., 2009). Heteroatoms including water were deleted, polar
hydrogens were added, non-polar hydrogens were merged, and both
Kollman and Gasteiger charges were added. Ligands downloaded from
PubChem in an SDF format were converted into the PDB format using
Open Babel (http://openbabel.org/wiki/Main_Page). Charges of the
ligands were set to neutral, and Gasteiger charge was added. The
number of torsions was kept as default.

2.3 Protein–ligand docking

Molecular docking was performed using the AutoDock Vina tool
(Trott & Olson, 2010). Blind docking was performed initially followed
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by precision docking. The spacing angstrom was set to 1, and then, the
grid boxwas adjustedmanually to cover all the active-site residues of the
receptor. The dimensions of the grid box were set as X = 30, Y = 30, and
Z= 30, and the center grid boxwas set with the coordinates as center x =
49.257, center y = 37.37, and center z = 43.69 for cACE and center x =
28.259, center y = 13.045, and center z = 7.095 for nACE, and the grid
box dimensions were X = 30, Y = 30, and Z = 30. Exhaustiveness was set
to 8 for both proteins. All the dockings were performed in three
replicates (Morris et al., 2009; Cosconati et al., 2010; Forli & Olson,
2012). The molecular docking was also carried out using InstaDock
(Mohammad et al., 2020) (Supplementary Appendix S1).

2.4 Standard dynamic simulations

The dynamic simulation studies were performed using Discovery
Studio V.4.0 with the enzymes (nACE and cACE) in docked states with
reference captopril and BS. Standard dynamic cascades were applied
where the first minimization algorithm was set to the steepest descent
with maximum steps of 2000 and RMS gradient 1.0. The second
minimization algorithm was set to conjugate gradient with
maximum steps of 1,000 and RMS gradient 0.1. The heating phase
was adjusted to possess a simulation time of 4 ps and an interval of 2 ps.
The initial temperature was set to 50 and the target temperature to
300 with a maximum velocity of 2000. On the other hand, the
equilibration phase was set with a simulation time of 10 ps and an
interval of 2 ps. The target temperature was adjusted similar to the
heating phase at 300, with a maximum velocity of 1000. The implicit
solvent model was set to generalized born with a simple switching
(GBSW), and the dynamics integrator protocol used leapfrog–Verlet
(Huang and Leimkuhler, 1997; Im et al., 2003).

2.5 Visualization of poses

PyMoL (https://www.pymol.org/pymol.html) is used for the
visualization and analysis of the docked poses and protein
structures and for rendering the figures, while the LigPlot+ (V: 2.
2.5) and Discovery Studio Visualizer (https://discover.3ds.com/
discovery-studio-visualizer-download) were used to get the two-
dimensional protein–ligand interactions (Laskowski & Swindells,
2011; Schrodinger, 2021). Cartoons of protein–ligand interactions
were rendered in the complexes using Chimera (Pettersen et al.,
2004).

3 Results

3.1 Molecular modeling studies

The binding of six compounds of soybean, namely, beta-sitosterol,
soyasaponin I, soyasaponin II, soyasaponin II methyl ester,
dehydrosoyasaponin I, and phytic acid (thereon BS, SSI, SSII,
SSIIME, DHSSI, and PA, respectively), to the catalytic sites of both
cACE and nACEwas investigated using a molecular docking approach.
TheACE is the ellipsoidal structure, traversed by a long and deep active-
site cleft which is composed primarily of alpha-helices. The cavity is
formed at the binding site which contains a Zn2+ ion in its center with

four subsites designated as S2, S1, S1′, and S2′ flanking the central metal
ion of the protein (receptor) while similar P2, P1, P1′, and P2′ designate
the respective position of the inhibitor (ligand) (Figure 1). Figure 1
shows the different catalytic subsites based with respect to central zinc
ion for cACE and nACE. The selectivity of inhibitors against the
enzyme (ACE) could be correlated using the differences in the
interaction patterns with the amino acid residues at the active site
for the two domains, namely, C and N terminals. The catalytic pocket
contains the Zn2+ ion located centrally and surrounded by the key
amino acid residues involved in the catalysis process. The cACE
residues include His383, Glu384, and His387 while that of nACE
includes His361, Glu362, and His365. The cACE residues, namely,
Gln281 and Tyr520, interact with the P2′ terminal carboxylate. There
are many hydrophobic interactions with the P1′ and P2′ groups from
cACE residues Thr282, Ala354, Val379, Val380, His383, His387, and
Glu411, while the nACE residues, namely, Ala332, Ser333, Glu362, and
Tyr501, are found to be conserved (Cozier et al., 2018a; Cozier et al.,
2018b; Caballero, 2020). Both domains have similar active-site residues
but still possess differences in substrate specificities and chloride
activation profiles (Cozier et al., 2018a).

3.2 Inhibitor-binding sites and their
interactions

The distribution of interacting amino acid residues with the
ligands (PA and BS) is shown in Table 1. The docking results for the
PA–cACE complex reveal that it formed 11 direct hydrogen bonds
with the Asn66 (3.14 �A), Ser355 (3.29 �A), Ala356 (3.66�A, 3.09 �A,
3.06 �A, and 2.95 �A), Tyr394 (3.33 �A), His410 (3.34 �A), and Arg522
(3.87�A and 2.98�A) along with the catalytic zinc ion (3.77�A), which
in turn coordinates with the catalytic residues His383 (2.02 �A) and
His387 (2.06) and Glu411 (1.97 �A) via hydrogen bonds for the
cACE. PA binding to cACE is further strengthened by many
hydrophobic interactions with the catalytic subsite residues,
namely, Tyr62, Tyr357, Phe391, and Glu403.

For cACE, the amino acid residues His410 and Ala354 are
positioned in the S2 subsite pocket and forming hydrogen bonds
with the oxygen 11 (O11) of the inhibitor, while the S1 subsite
contains residue Arg522 which is associated with oxygen 7 (O7)
forming two hydrogen bonds with the inhibitor, respectively
(Figure 2A).

The nACE–PA binding involves fifteen hydrogen bonds with the
Gln259 (3.11 �A and 3.35 �A), Ser260 (3.91 �A and 2.77 �A), Glu262
(3.00 �A), His331 (2.8 �A), Ala332 (2.95 �A), Arg350 (3.85 �A), Glu362
(3.00 �A), Lys489 (2.92 �A), His491 (3.00 �A, 3.76 �A, and 3.68 �A), and
Tyr498 (2.74 �A), and binding of amino acid residues with the
catalytic zinc ion includes His361 (2.22 �A), His365 (2.20 �A), and
Glu389 (1.92 �A). There are several hydrophobic interactions with
the Asp35, Thr358, Phe435, Tyr501, and Phe505 residues of nACE
which is further stabilized by the binding of the ligand (Figure 2B).
For nACE, the S2′ subsite has Ser357 bound with the O21. Therefore,
it can be anticipated from the phytic acid-binding mode that it could
act as one of the potential candidates which can work against both
the C and N domains of ACE based on the binding affinities with the
selective subsite residues of the residues of the catalytic pocket.

In the case of BS, the binding with cACE involves only one
hydrogen bond at the site other than catalytic subsites, namely,
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Ala356 (2.94�A), while only a weak interaction (4.48�A)with the zinc
ion was observed (Figure 2C). While there were catalytic site
residues coordinated with the zinc ion, 16 hydrophobic residues
involved in stabilization with the bound ligand are shown in Table 1.

For the nACE–BS binding, the ligand formed only one hydrogen
bond with a catalytic residue His361 with a 3.61 �A hydrogen bond
with strong chelation of the zinc ion (2.26 �A), while spanning the
subsite pockets of the protein through coordinated bonds with Zn.
His361, His365, and Glu389 coordinated with the catalytic zinc with
bonding distances of 2.22, 2.20, and 1.92 �A, respectively, while
His361 also forms a hydrogen bond with Asp393 with a 2.84 �A
bonding distance. The BS binding is stabilized by various
hydrophobic contacts with Val36, Ser39, Glu54, and other
residues, as shown in Table 1; Figure 2D. The nACE–BS binding
is stabilized by two hydrogen bonds with His361 and Glu389 at the
S2′ and S1′ pockets, respectively. The predicted binding affinity of
beta-sitosterol seems to be comparatively less potent to inhibit the
cACE, but it can also be used for the inhibition of the nACE as well.

All 34 compounds and three reference compounds were
subjected to docking analysis using InstaDock and presented a
binding affinity within the range of −5.4 kcal/mol (Cap)
to −15.1 kcal/mol (Urs) toward cACE and for nACE ranged
from −5.3 kcal/mol (Cap) to −15.5 kcal/mol (Urs). The binding
affinities and other docking parameters of each compound used
in this study are shown in Supplementary Tables S2, S3. Both the
dockings revealed that the binding affinities of the reference
compounds, namely, quinapril, lisinopril, and captopril, with
cACE and nACE were −9.5, −8.6, and −5.4 kcal/mol
and −8.7, −7.5, and −5.3 kcal/mol, respectively.

3.3 Standard dynamic simulations

To investigate further, standard dynamic simulations (DSs) and
analyzed trajectory studies were performed using the Discovery
Studio 4.0 to confirm the nature of the stability of both cACE
and nACE and the produced conformations after docking with the

most active promising compound compared to reference captopril
and their free states. The stability could be reflected via total energy
calculations versus time and root mean square deviation (RMSD)
versus conformations. The total energy decreases with time in the
case of BS–cACE, while against the same time frame docked with the
enzyme and captopril, the total energy decreases as well (Figure 3).
Similarly, for nACE, the simulation studies showed a decrease in the
total energy versus time with both BS and captopril and a slight
increase after 22 ps in BS vs. nACE while there is a steep increase
with captopril vs. nACE (Figure 3) (features of the run are shown in
Supplementary Tables S4, S5).

3.4 RMSD analysis

The value of RMSD is an indicator of the stability of the
receptor–ligand complex. The RMSD versus conformation results
showed that in both BS and captopril with cACE, the RMSD
increased (Figure 4). Similarly, in the simulations with the nACE,
studies showed an increase in the RMSD with both BS and captopril
(Figure 4).

4 Discussion

Despite the availability of commercial drugs for ACE inhibition, the
lower success rates of drugs and prolonged treatment procedures with
persistent side effects (angioedema and cough) and with no one-time
remedy (Sharma et al., 2016) necessitate the search for natural solutions
against it. Moreover, since the outbreak of the pandemic and even before
its occurrence, herbal medicines were the preferred choice over synthetic
drugs due to their side effects (Karimi et al., 2015; Farooq and Ngaini,
2021). Therefore, phytocompounds are being searched for their
inhibitory activity against ACE as an alternative therapy. In the
current study, different compounds of soybean were used to
investigate and study the interactions in the search of the inhibitory
activity for selected compounds and predicting binding affinities with

FIGURE 1
Active-site and other conserved residues are represented as sticks, enclosing the catalytic pocket and conserved HEXXH motif depicted as green
and pink ribbons, and the catalytic Zn is depicted as the red and black spheres along with the subsites for (A) cACE and (B) nACE, respectively.
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TABLE 1 Amino acid residues involved in ACE interactions with soy compounds forming direct hydrogen bonds and hydrophobic interactions (a—active-site residues).

Soy compound Hydrogen bond (2.0–4.0 Angstrom) Hydrophobic interaction (within 4 Angstrom)

nACE cACE nACE cACE

Beta-sitosterol His361a Ala356 Val36 Glu384

Ser39 His387

Glu54

Ala332 Gln123

Ala334 Met223

Trp335 Ser355

Ser353 Tyr360

Asn494 Phe391

Thr496 Tyr394

Tyr501 Glu403

Gly404

Asn406

Phe407

His410

Glu411

Arg522

Phe570

Phytic acid Gln259 Asn66 Asp35 Tyr62

Ser260 Ser355 Thr358 Trp357

Glu262 Ala356 Phe435 Phe391

His331 Tyr394 Tyr501 Glu403

Ala332 His410 Phe505

Arg350 Arg522

Ser357

Glu362

Lys489

His491

Tyr498
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both the ACE domains, namely, cACE and nACE, through the in silico
approach. The compounds studied, namely, beta-sitosterol, soyasaponin
I, soyasaponin II, soyasaponin II methyl ester, dehydrosoyasaponin I,
and phytic acid, were found to be effective in controlling hypertension
and cardiovascular diseases (Isanga and Zhang, 2008; Swallah et al.,
2022). The compounds presented in this study are a small subset and
were randomly chosen from the bioactive compounds (Supplementary
Figure S1) of soybean known to be involved in controlling CVDs.

Among the docked compounds, phytic acid was found to be more
potent as compared to the rest of the compounds in terms of more
hydrogen bonds (10 and 17 with cACE and nACE, respectively) than BS
(two each) interactions with residues at ACE catalytic subsites ensuring a

stronger binding with respect to molecular docking. It is observed that
phytic acid is a moderate cACE and nACE inhibitor, while the other
beta-sitosterol exhibited selective inhibition profiles for the N domain of
ACE. However, BS is observed to be stable with the DS analysis and
formed 83 new hydrogen bonds ranging from 1.413–1.09 �A. The
dockings of BS: cACE and BS: nACE showed that the binding
energies are −9.2 and −9.8 kcal/mol, respectively. The molecular
interactions between these compounds and the C and N domains of
the enzyme were predicted and analyzed through molecular docking.
The potential of the identified ligand was further confirmed by MD
simulation. Therefore, it is hypothesized that soybean phytocompounds
may act as good and potential inhibitors against the enzymes. To our best

FIGURE 2
LigPlot representations of phytocompound interactions with catalytic site residues of PA-cACE (A), PA-nACE (B), BS-cACE (C), and BS-nACE (D)
(H-bond/electrostatic interactions are shown in green, and the residues which are involved only in hydrophobic interactions are represented by red
semicircles).

Frontiers in Physiology frontiersin.org06

Ramlal et al. 10.3389/fphys.2023.1172684

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1172684


FIGURE 3
Standard dynamic simulation depicting the total energy versus time in the production step using beta-sitosterol. (A) BS vs. cACE, (B) captopril vs.
cACE, (C) BS vs. nACE, and (D) captopril vs. nACE.

FIGURE 4
Standard dynamic simulation depicting the RMSD versus time in the production step using beta-sitosterol. (A) BS vs. cACE, (B) captopril vs. cACE, (C)
BS vs. nACE, and (D) captopril vs. nACE.
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knowledge, this work sheds light on the potential candidates to inhibit
the action of the soy compounds on binding to c- and n-ACEs.

5 Conclusion and future prospects

ACE is a key enzyme in the RAAS which helps in the regulation
of hypertension. The overproduction of angiotensin by the activity
of ACE leads to a medical condition known as hypertension, and
consumption of synthetic drugs causes many side effects and
sometimes even death. Therefore, it becomes very important to
control and inhibit hypertension and ACE using natural compounds
such as phytocompounds like saponins, terpenes, and isoflavonoids.
In the current study, the molecular basis of the selectivity of some
soy compounds as candidate ACE inhibitors was determined
through in silico molecular-docking approaches. The rest of the
compounds (Supplementary Table S1) need to be evaluated in detail.
Overall, among the interactions studied using the in silico and MD
approaches, the BS confirmed the stability and indicated its potential
to be developed as an ACE drug to combat hypertension and
cardiovascular diseases. The results obtained in this study need to
be confirmed and validated through experiments and in vivo studies,
and also, they must go through proper preclinical and clinical trials
for further scientific validation. Moreover, natural compounds and
other phytoconstituents should be searched for their inhibitory
activity against ACE for a safer alternative and future drug
design, and this study will serve as a starting point in this direction.
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