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Background: Cigarette smoking is an important environmental risk factor for
cardiovascular events of hypertension (HTN). Existing studies have provided
evidence supporting altered gut microbiota by cigarette smoking, especially in
hypertensive patients. Metabolic biomarkers play a central role in the functional
potentials of the gut microbiome but are poorly characterized in hypertensive
smokers. To explore whether serum metabolomics signatures and compositions
of HTN patients were varied in smokers, and investigate their connecting
relationship to gut microbiota, the serum metabolites were examined in
untreated hypertensive patients using untargeted liquid chromatography-mass
spectrometry (LC/MS) analysis.

Results: A dramatic difference and clear separation in community features of
circulating metabolomics members were seen in smoking HTN patients
compared with the non-smoking controls, according to partial least squares
discrimination analysis (PLS-DA) and orthogonal partial least squares
discrimination analysis (OPLS-DA). Serum metabolic profiles and compositions
of smoking patients with HTN were significantly distinct from the controls, and
were characterized by enrichment of 12-HETE, 7-Ketodeoxycholic acid,
Serotonin, N-Stearoyl tyrosine and Deoxycholic acid glycine conjugate, and
the depletion of Tetradecanedioic acid, Hippuric acid, Glyceric acid, 20-
Hydroxyeicosatetraenoic acid, Phenylpyruvic acid and Capric acid. Additionally,
the metabolome displayed prominent functional signatures, with a majority
proportion of the metabolites identified to be discriminating between groups
distributed in Starch and sucrose metabolism, Caffeine metabolism, Pyruvate
metabolism, Glycine, serine and threonine metabolism, and Phenylalanine
metabolic pathways. Furthermore, the observation of alterations in metabolites
associated with intestinal microbial taxonomy indicated that these metabolic
members might mediate the effects of gut microbiome on the smoking host.
Indeed, the metabolites specific to smoking HTNs were strongly organized into
co-abundance networks, interactingwith an array of clinical parameters, including
uric acid (UA), low-denstiy lipoprotein cholesterol (LDLC) and smoking index.

Conclusions: In conclusion, we demonstrated disparate circulating blood
metabolome composition and functional potentials in hypertensive smokers,
showing a linkage between specificmetabolites in blood and the gut microbiome.
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1 Introduction

Overwhelming evidences regarding the consequences of
smoking have shown that cigarette smoking powerfully enhanced
the risks of all-cause mortality, cardiovascular mortality and major
adverse cardiovascular events (Chi et al., 2022; Thiravetyan and
Vathesatogkit, 2022). Tobacco smoking and even second-hand
exposure has been demonstrated to be associated with
cardiovascular risk as well as the development of hypertension
(HTN) (Dikalov et al., 2019; Bernabe-Ortiz and Carrillo-Larco,
2021). In fact, there has been a growing interest on investigating
the role of tobacco consumption on HTN. Hypertensive smokers
have been suggested to be more likely to develop malignant or
renovascular HTN than non-smokers (Virdis et al., 2010) Cigarette
smoking has been shown to raise the daytime and average 24-h
blood pressure (BP) and heart rate in treated hypertensive patients
(Ohta et al., 2016). Moreover, smokers with HTN were observed to
exhibit higher proportion of left ventricular hypertrophy and worse
BP control than non-smokers (Journath et al., 2005).

Gut microbiome has emerged as a research hotspot in
cardiovascular diseases during the recent years. Bacterial genera
and species were reported to be altered in smokers and HTN
patients, respectively (Aguilar, 2017; Lee et al., 2018; Nakai et al.,
2021). Aberrant microbial community and imbalanced composition
and function of gut microbes were indicated to be a consequence of
cigarette smoking (Shanahan et al., 2018; Bai et al., 2022), but also as
a crucial contributor to disrupting metabolic processes and leading
to hypertensive disorders (Li et al., 2017; Yan et al., 2020; Avery et al.,
2021). Notably, the metabolites transporting into bloodstream acted
as an important bridge for the linkage between gut microbiota and
host pathology and physiology (Guest et al., 2016). Past studies have
attempted potential alterations in gut microbial functionality in
HTN subjects related to smoking status. One important aspect was
to examine the varied metabolic functions of gut microbiome in
hypertensive cigarette smokers as compared with non-smokers
(Wang et al., 2021). It was found that the gut microbiota was
disordered among smoking HTN patients, with lower microbial
α-diversity and significant difference of β-diversity on axes. In
addition, dramatic shifts in the intestinal composition at genus
and species levels were found among smokers with HTN,
including reduced enrichment of Phycisphaera and Clostridium
asparagiforme (Wang et al., 2021). For another, studies have
shown that the smoke-induced gut microbiota dysbiosis impaired
gut metabolites directly (Bai et al., 2022). They showed increased bile
acid metabolites, especially taurodeoxycholic acid in the colon of
mice after smoke exposure (Bai et al., 2022). In addition, the serum
metabolome of smoking patients has been identified to differ from
that of non-smoking individuals (Xu et al., 2013; Zhang et al., 2022).
For instance, Xu et al. indicated that compared with former and
non-smokers, in male current smokers, the concentrations of four
unsaturated diacyl-phosphatidylcholines (PCs) and five amino acids
(arginine, aspartate, glutamate, ornithine and serine) were increased,
while three saturated diacyl-PCs, one lysoPC and four acyl-alkyl-
PCs, as well as kynurenine showed lower content. Furthermore,
higher levels of carnitine and PC aa C32:1, and a lower level of
hydroxysphingomyeline [SM (OH)] C22:2 were found in female
current smokers (Xu et al., 2013). However, due to the limited
number of studies, more investigations are essential to uncover the

interrelationship between altered metabolic features and gut
microbiota within smokers with HTN.

In an attempt to fully explore the metabolite profiles, and
investigate the specific interactive links between metabolites in
circulation and the gut microbiome in hypertensive smokers, we
employed untargeted liquid chromatography-mass spectrometry
(LC/MS) analysis on un-medicated smoking or non-smoking
individuals within the clinical context of HTN.

2 Materials and methods

2.1 Study participants recruitment

The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of
Beijing Chaoyang Hospital. All applicable institutional regulations
regarding the ethical use of information and samples from human
participants were abided, and signed informed consent for the
survey have been received from each individual prior to data
collection.

The participants were enrolled from our previous study cohort in
China (Li et al., 2017) All the individuals wre ethnic Han from
employees of the Kailuan Group Corportion of Tangshan city, with
simial and stable life-time environment of residence as well as dietary
habit. Individuals were excluded if they had suffered from serious
cancer, heart or renal failure, stroke, peripheral artery disease or
immunodeficiency disorders. All the patients were newly diagnosed
hypertensive patients prior to antihypertensive treatment, and none of
them have been exposed to antibiotics, probiotics, statin, aspirin,
insulin, metformin or nifedipine, etc. Including medicinal herbs
during the last 2 months prior to sample collection.

HTN patients with complete information for smoking,
including duration and amount for tobacco consumption, as well
as smoking coefficient were included in the current research. HTN
was diagnosed as systolic BP ≥ 130 mm Hg and/or diastolic BP ≥
80 mm Hg according to the 2017 ACC/AHA guidelines (Whelton
et al., 2017). The measurement of BP was executed by professional
nurses or physicians with a random-zero mercury column
sphygmomanometer, and subjects were in a sitting position. At
every 5 minutes intervals, the BP readings were recorded repeatedly
three times, the average of which was regarded as the formal data.
Patients having consumed >1 cigarette/day for more than half a year
were considered to be smokers as we described previously (Wang
et al., 2021), and non-smokers were individuals without a history of
tobacco use.

There were 32 non-smokers with HTN (HTN-NS), and
30 cigarette smokers with HTN (HTN-S) in this study. Relevant
demographic and clinical profiles such as age, sex, height, weight,
body mass index (BMI), fasting blood glucose, total cholesterol,
triglyceride, etc. of participants were collected.

2.2 Serum sample collection and
preparations

Peripheral vein blood was collected from all recruited
participants under a fasting state with vacuous tubes, and then
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separated into serum through centrifugation at 3,000 rpm, 4°C for
10 min. Each aliquot of the obtained serum samples was placed
at −80°C and stored until further procedure. For sample
preparations before metabolomics determination, serum samples
were thawed under room temperature, mixed with 80% methanol
and 2.9 mg/mL DL-o-Chlorophenylalanine, vortexed for 30 s and
centrifuged at 12,000 rpm and 4°C for 15 min. The supernatant of
the solution was proceeded for ultrahigh-performance liquid
chromatography with LC/MS detection.

2.3 Untargeted metabolome profiling

LC/MS determination was conducted on the platform (Thermo,
Ultimate 3000LC, Orbitrap Elite) with Hypergod C18 Column. The
conditions for chromatographic separation was at 40°C, and 0.3 mL/
min for the flow rate, with water+0.1% formic acid, and
acetonitrile+0.1% formic acid, respectively. The temperature for
automatic injector was at 4°C. For ES + mode, the total ion
chromatograms of samples were obtained under 300°C for heater
temperature, 45 arb for sheath gas flow rate, 15 arb for aux gas flow
rate, one arb for sweep gas flow rate, 3.8 kV spray voltage, 350°C for
capillary temperature, and 30% S-Lens RF level. While ES- mode
was performed with spray voltage at 3.2 kV and S-Lens RF level at
60%. Peaks were extracted from the raw data and analysis was
preprocessed with SIEVE software (Thermo). The data of total ion
current was normalized and information for features, including
retention time, compound molecular weight, and peak intensity
were obtained (Dunn et al., 2011).

2.4 Multivariate analysis

Multivariate statistical analyses were conducted based on the
serum metabolome composition with SIMCA software (V14.1,
Sartorius Stedim Data Analytics AB, Umea, Sweden) to
discriminate HTN-S patients from HTN-NS individuals. Firstly,
principal component analysis (PCA) as an un-supervised analysis,
was carried out to produce new characteristic variables from
metabolite variables through linear combination according to
weights, and further classify distinct group of samples with the
obtained variables (Wiklund et al., 2008). Besides, partial least
squares discrimination analysis (PLS-DA) as a supervised analysis
has been the most frequently used method for classification in
metabonomics data analysis. Regression model was combined
with dimension reduction in PLS-DA and discriminant analysis
was performed based on regression results with discriminant
thresholds (Aggio et al., 2010). Orthogonal partial least squares
discriminant analysis (OPLS-DA) was performed to exclude the
metabolic orthogonal variables which are not related to classification
variables, and analyze the non-orthogonal variables and orthogonal
variables respectively (Trygg and Wold, 2002). For annotation
strategies, the m/z values and mass of compounds were matched
to the featured peaks in the METLIN database and the metabolites
were identified. METLIN database enhances accurate quantification
and facilitates it to more effectively use the data in metabolite
databases (Tautenhahn et al., 2012; Zhu et al., 2013; Alseekh
et al., 2021).

2.5 Metabolite pathway identification

The differentially expressed compounds between groups were
annotated to be involved in metabolic pathways according to Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway database
(http://www.kegg.jp/kegg/pathway.html) (Kanehisa et al., 2016). By
both enrichment analysis and topological analysis of the pathways
matched with metabolites, key KEGG pathways mostly correlated
with the metabolites were detected.

2.6 Gut microbial genera and species
identification

The metagenomic sequencing, gene catalog construction,
taxonomic annotation and abundance profiling of gut microbes
at genus and species levels were performed as described in our
previous studies (Li et al., 2017; Wang et al., 2021). The whole
metagenome shotgun sequencing data of the specimens evaluated in
present study have been previously deposited in a public dataset at
the EMBL European Nucleotide Archive underthe BioProject
accession code PRJEB13870.

2.7 Statistical analysis

Subject characteristics were quantitatively described with mean
and SD. For continuous variables, range was shown and count and
percent prevalence were summarized for categorical variables. The
relative abundances of metabolic members from smoking individuals
with HTN were compared to non-smoking controls. Z-score was
calculated based on the mean and standard deviation of the data set.
Z-score=(x−μ)/σ, where x was a specific score, µ was the mean, and s
was the standard deviation (Sreekumar et al., 2009). For univariate
analysis, p < 0.05 was defined to reach statistical significance in two-
tailed Student’s t-test. Metabolic compounds with p < 0.05, and
variable importance in the projection (VIP) > 1 for the first
principal component of OPLS-DA model, were regarded as
statistically different between groups. The VIP and the t-tests are
two popular strategies for metabolic biomarker selection. The VIP
criterion is to infer biomarkers from the multivariate models and the
t-test aims at selecting them in a univariate mode. We used the
multivariate VIP (VIP >1) in conjunction with univariate t-test (p <
0.05) to identify discriminatory metabolite in the current work, as
other investigators performed previously (Chen et al., 2022; Han et al.,
2022). A significance threshold of one for the VIP was suggested to
lead to much improved enrichment of true positives in the selection
(Franceschi et al., 2012; Saccenti et al., 2014). A cutoff at p < 0.05 in
univariate t-test has been frequently adopted by researchers (Chen
et al., 2022; Han et al., 2022; Wang et al., 2022). Spearman’s
correlation analysis was performed to evaluate the interactions
among clinical measures, smoking-related serum metabolites, and
HTN-S-related gut microbial composition. The cutoff for correlation
coefficient was ≥0.3 or ≤ −0.3, and p values were <0.05. The
visualization of multiomics correlations was performed using the
OmicStudio tools (https://www.omicstudio.cn/tool) with igraph
package (version 1.2.6) in R (version 3.6.3). Partial least squares
structural equation modeling (PLS-SEM) (Nitzl et al., 2016) was
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performed with the Smart-PLS three software. The ratio of indirect-
to-total effect, variance accounted for (VAF) score, which determines
the proportion of the variance explained by the mediation process,
was used to examine the significance of mediation effect. Random
forest analysis was performed using the random forest package in R to
predict the individuals as HTN-NS or HTN-S based on their profiles
of genera, species and metabolites. Variable importance by mean
decrease in Gini index was calculated for the random forest models.
Furthermore, the receiver operation characteristic (ROC) curves for
genera, species and metabolites were applied to distinguish the
individuals with HTN-S from HTN-NS, statistical significance
determined by applying the method of DeLong et al. using
MedCalc version 11.4.2.0 (DeLong et al., 1988).

3 Results

3.1 Biochemical characterization of patients

The measurements of the anthropometric and biochemical data
of the study participants were presented in Table 1. The average age
of hypertensive smokers was 50.9, and non-smokers mainly aged at

53.7 years. As expected, the duration, amount and coefficient of
smoking were significantly higher in the HTN-S group as compared
with the non-smoking HTN group. Other baseline clinical
characteristics between HTN-NS and HTN-S in systolic blood
pressure (SBP), diastolic blood pressure (DBP), Fasting blood
glucose and blood lipid index, etc. were similar.

3.2 Characterization of the serum
metabolomic profiling

Serum metabolite assessment was performed with LC/MS, and
3,436 and 4,079 metabolic peaks were detected within ES+ and ES-
mode, respectively. Across over 7,000 distinct metabolic features
obtained, we identified 561 endogenous small-molecule compounds.
The overall discrepancy in the serum metabolome profiles between
HTN-S and non-smokers were assessed through multivariate
statistical analysis including PCA, PLS-DA and OPLS-DA in
Figure 1. In both positive and negative modes, the PCA score
plots showed that samples in HTN-S were mixed with those in
HTN-NS group (Figures 1A,B). It was noted that, marginal different
distributions of samples fromHTN-S and HTN-NS were detected in

TABLE 1 General characteristics of study participants.

Characteristics HTN-NS HTN-S p-value

Number 32 30 —

Age, years 53.7 ± 6.2 50.9 ± 4.8 0.053

Male/female sex 29/3 30/0 0.239

Smoking duration (year) 0 25.0 (10.0–32.0) <0.001

Smoking amount (cigarette/day) 0 10.0 (7.0–20.0) <0.001

Smoking coefficient (year cigarette/day) 0 270.0 (100.0–500.0) <0.001

Systolic BP, mmHg 140.0 ± 15.7 138.3 ± 18.3 0.698

Diastolic BP, mmHg 89.3 ± 9.4 89.6 ± 9.4 0.908

HR, bmp 72.4 ± 6.1 71.6 ± 9.5 0.691

Body mass index, kg/m2 25.4 ± 3.4 25.6 ± 2.6 0.756

Uric acid, μmol/L 368.00 (275.50–420.00) 360.50 (303.00–400.00) 0.688

Creatinine, μmol/L 71.50 (61.00–91.10) 70.00 (63.00–76.00) 0.356

Fasting blood glucose, mmol/L 5.57 ± 0.60 5.64 ± 0.96 0.765

Total cholesterol, mmol/L 5.39 ± 0.96 5.35 ± 0.74 0.880

Triglyceride, mmol/L 1.32 (0.95–2.06) 1.76 (1.17–2.35) 0.120

HDLC, mmol/L 1.35 ± 0.27 1.27 ± 0.27 0.248

LDLC, mmol/L 2.58 ± 0.79 2.47 ± 0.58 0.562

TBIL, μmol/L 13.95 (10.95–19.05) 13.95 (11.00–18.50) 0.933

Hemoglobin, g/L 157.50 (150.00–161.00) 161.00 (156.00–164.00) 0.058

Blood platelet, *10̂9/L 222.00 (190.00–251.50) 220.00 (185.00–255.00) 0.882

White blood cell, *10̂9/L 6.20 (5.35–6.85) 6.30 (6.00–7.20) 0.244

NS: non-smokers; S: smokers; HTN: hypertension; BP: blood pressure; HR: heart rate; LDLC: low-density lipoprotein cholesterol; HDLC: high-density lipoprotein cholesterol; TBIL: total

bilirubin.
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FIGURE 1
Smoking or not conduced to dissimilarity of serummetabolic community in hypertensive patients. (A, B), Changes of overall metabolic signatures in
hypertensive smokers as compared with non-smokers were identified with PCA score plots based on negative (ES−) and positive (ES+) mode,
respectively. Hotelling’s T-squared ellipse indicated 95% confidence interval. The distributions of samples in PC1 and PC2 coordinate axis were further
shown with box plots. The first and third quartile (25th and 75th percentile) was expressed with boxes, and median was represented with the inside
line.Whiskers extend 1.5 times the inter quartile range from the outer bounds. p values were derived from two-tailed Student’s t-test. (C, D), PLS-DA score
plots of both ES- and ES + mode serum metabolomic data from HTN-S patients and HTN-NS controls. Subjects from each group were completely
separated. (E, F), Score plot of the OPLS-DA showing disparate metabolic profiling in HTN patients smoking cigarette or not. OPLS-DA method is a
supervised multiple regression analysis for identifying discernible patterns between different groups. HTN-S, smokers with HTN; HTN-NS, non-smokers
with HTN.
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PC1 and PC2 axis under ES + mode. Discriminant analysis with
PLS-DA under positive and negative ionic mode revealed
significantly separated clustering of hypertensive smokers and
non-smoking controls, respectively (Figures 1C,D). And plots
obtained in the OPLS-DA models further validated the two
distinct clusters of subjects from disparate groups in ES− and
ES+ (Figures 1E,F).

3.3 Metabolite markers for discriminating
HTN-S from HTN-NS

To evaluate the detailed differences in metabolome between
groups, relative abundance of each metabolite was analyzed. A
Supplementary Table S1 reporting both nominal p-value and
FDR has been provided (Supplementary Table S1). The detailed
information for annotation levels of the annotated features has
been described in Supplementary Table S2. As shown in Figures
2A,B, all the metabolic features detected were depicted with fold
change of abundance between HTN-S and HTN-NS, VIP of
OPLS-DA model in the multivariate statistical analysis, and p

values in the univariate analysis. We observed 184 apparently
increased and 421 reduced metabolicfeatures based on univariate
analysis in HTN-S as compared with non-smoking patients, with
186 and 235 decreased under ES+ and ES- mode, 57 and
127 elevated under ES+ and ES- mode, respectively
(Figures 2A,B).

Among these compounds, features with VIP scores >1 were
considered as significant different in HTN-S, and those successfully
identified metabolites were labeled in the volcano plots. These serum
metabolites with large discrepancy between HTN-S patients and
non-smoking controls were further visualized in heat-map (Figures
2C,D). Z-score comparison for these differentially abundant
metabolites was performed in each individual (Supplementary
Figures S1A, B). Of note, compared with non-smoking subjects,
we found that most serum metabolites under ES- were depleted in
HTN-S, such as 20-Hydroxyeicosatetraenoic acid, 1-Stearoyl
lysophosphatidic acid, Hippuric acid, Glyceric acid and Glutaric
acid, and most serum metabolites in ES+ were less abundant in
hypertensive patients with tobacco consumption, e.g., N-Acetyl-L-
aspartic acid, L-Pipecolic acid, Phenylacetic acid and Capric
acid, etc.

FIGURE 2
Identification of the differential metabolites associated with smoking and non-smoking HTN. (A, B), Volcano plots showing the important
metabolites concluded from theOPLS-DAmodel using a threshold of variable importance for the projection (VIP) > 1. A is based onmetabolomics data in
ES- mode, and B is in ES- mode. Comparison of the relative abundance of each metabolite in groups was further validated using the p values from two-
tailed Student’s t-test. Each dot represented a metabolite, blue denoted downregulated ones, and pink represented those upregulated in smoking
HTN. The value of VIP was expressed as the dot size. Among the varied metabolites between groups, those successfully identified were further labeled
with names. (C, D), Hierarchical cluster analysis heat-maps of identified metabolites with significant disparate levels between smoking HTN patients and
non-smoking controls. The relative abundance of each metabolite in each individual is depicted.
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FIGURE 3
Association analysis of differential metabolites between HTN-S patients and HTN-NS controls by Spearman correlation. (A), Co-abundance
correlation of the distinct metabolites identified in HTN-S as compared with HTN-NS based on ES- mode. (B), Heat map depicting the potential
relationship between differentmetabolic compositions in ES+. Negative correlation is described in orange and positive correlation is labeled in blue. *, p <
0.05; **, p < 0.01; ***, p < 0.001; Spearman’s correlation.
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Additionally, dramatic co-abundance correlations were revealed
among these discriminative metabolites (Figures 3A,B). For
instance, Glutaric acid was positively related with Pyridoxine 5′-
phosphate, Glyceric acid, Orotic acid and 2-Hydroxyadipic acid.
Especially, more profound association between metabolites was
observed for those under negative mode. Thus altogether, these
findings suggest that HTN patients with smoking behavior exhibit
significantly different metabolic profiles compared with those of
non-smoking subjects.

3.4 Pathway enrichment analysis of
discrepant metabolites

Concerning the main metabolic pathways and signaling
pathways that the differential metabolites participated in, KEGG
enrichment analysis was performed, and potential functions wer

determined. In order to more comprehensively describe the
functional capacities of metabolites and the pathways they
participate in, we conducted analysis to explore the crucial
pathways these metabolites involved in. The distinct metabolites
between groups are labeled and visualized in KEGG pathway map,
where enhanced metabolites were in red and depressed ones in blue
(Supplementary Figure S2). Each metabolite was assigned to the
corresponding KEGG pathway it acts in. The detailed information
for pathways those discrepant metabolites matched to, including
pathway name, the total number of all metabolites within each
pathway, the number and name of differential metabolites matched
in each pathway, p values and impact was shown in Supplementary
Table S3. Within KEGG database, the distinct metabolites between
groups were identified to be involved inmultiple pathways regarding
Glycine, serine and threonine metabolism, Neomycin, kanamycin
and gentamicin biosynthesis, Pyruvate metabolism, Phenylalanine
metabolism and Alanine, aspartate and glutamate metabolism, etc.
(Figures 4A,B). There were 10 differential metabolites enriched in
Phenylalanine metabolism, and 33 metabolites in Glycine, serine
and threonine metabolism, which matched with more differential
metabolites than the other pathways. Moreover, the pathways of
Starch and sucrose metabolism and Phenylalanine metabolism
exhibited higher impact in the analysis under ES- and ES+,
respectively. Phenylalanine metabolism and Glycine, serine and
threonine metabolism were the most significant metabolic
pathways these metabolites functioned on.

3.5 Associations among serum metabolites
and intestinal microbiota and clinical
indicators

In order to assess the relationships and explore the potential
interaction of altered serummetabolites, gut microbiota profiles and
clinical parameters in participants, Spearman’s correlation analysis
was conducted subsequently. Discriminative genera and species
between hypertensive smokers and HTN-NS (Wang et al., 2021)
were reanalyzed and evaluated in the present study. The association
of top 40 differential with the top 40 distinct intestinal genera and
species, respectively were shown in heat-maps (Figure 5).

These metabolites were detected to be strongly related to the
abundance of gut microbiota. For instance, Pyridoxine 5′-phosphate
and Hippuric acid exhibited a significantly positive correlation with
Natronorubrum, Microcoleus, Thermaerobacter, Halorhabdus and
Oscillatoria, etc. Serotonin and Palmitoylcarnitine were prominently
negatively associated with Ruminiclostridium, Chloroflexus, and
Oscillatoria, etc. It was interesting that, Pyridoxine 5′-phosphate,
Hippuric acid and T etradecanedioic acid showed a significant
correlation with most discriminative genera and species. Co-
abundance network in Figures 5B,D,F,H further showed that
Pyridoxine 5′-phosphate and Hippuric acid were positively linked
to a large cluster of fecal bacteria, such as Thermococcus sp. ES1,
Clostridium sp. CAG:557, Bacillus clausii, Caldatribacterium
saccharofermentans, Lactobacillus fuchuensi and so on, indicating
Pyridoxine 5′-phosphate and Hippuric acid might be potential gut
microbiome relevant small-molecule products.

Analogously, as shown in Figure 6, most of clinical features were
significantly correlated with altered serum metabolome in HTN-S.

FIGURE 4
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of the differentially expressed compounds for group HTN-S
vs. HTN-NS. (A, B), Bubble plots in ES− and ES + showing the enriched
metabolic pathways of varied metabolic compounds between
groups, respectively. The color and Y-axis of dots are based on the
-lnP-value, and the enrichment degree is more significant when the
color is darker. The size and X-axis of dots represent the impact factor
of the pathway in the analysis.
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Particularly, smoking index were dramatically positively associated
with Ubiquinone 6, 8,9−DiHETrE and Serotonin, but negatively
related with Glyceric acid, Orotic acid, Pyridoxine 5′-phosphate,
Capric acid, Octadecanamide and N-Acetyl-L-aspartic acid (Figures
6A,C). Co-variation between the altered serum metabolites and
clinical parameters exhibited significant and complicated
association (Figures 6B,D). LDLC was positively linked to
Pyridoxine 5’−phosphate, Dihydrouracil and L−Serine, Fasting
blood glucose with L−Lactic acid and Glutaric acid, and
conversely smoke showed negative association with Pyridoxine
5′-phosphate, 1-Methylxanthine and Octadecanamide, implying a
possible contribution of metabolites to the host.

3.6 Random forest classifier identifying
HTN-S with metabolic and microbial
biomarkers

To further explore the potential biomarker signatures of
microbiome and metabolome for distinguishing smoking
hypertensive patients, we conducted random forest disease

classifier using the relative genera, species and metabolites
abundances as variables, respectively. On the basis of the
feature importance for the random forest model, as measured
with the mean decrease Gini, we obtained ranked lists of metabolic
and microbial features crucial for HTN-S. The top 30 most
discriminatory microbial biomarkers were primarily from genus
Oscillatoria, Pseudobutyrivibrio, Anaeroarcus, Kyrpidia,
Parvimonas, and species Pseudomonas stutzeri, Actinomyces
sp. ph3, Nocardioides insulae, Lachnospiraceae bacterium.28.4,
Clostridium. sp. etc. (Figures 7A,B). And serum metabolites
such as Serotonin, Ubiquinone 6, Octadecanamide, N-Acetyl-L-
aspartic acid, Pyridoxine-5-phosphate and L-Pipecolic acid
contributed the most to discriminate HTN-S from HTN-NS
(Figure 7C). We implemented receiver operating characteristic
(ROC) curves to evaluate the discriminative values of variables
including top30 gut genera, species and serum metabolites. It
showed an area under the curve (AUC) of species = 0.70 (p =
0.006), genera = 0.79 (p < 0.001), metabolites = 0.65 (p = 0.046),
species + metabolites = 0.71 (p = 0.004), and genera + metabolites
revealed an AUC of 0.82 (p < 0.001) (Figure 7D). Comparing to the
other variables, the variable of genera + metabolites was more

FIGURE 5
(Contiuned).
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effective to classify HTN-S samples from HTN-NS. For metabolite
and microbial biomarkers identified in the present study, we have
performed a validation in the form of out-of-bag error for the
random forest predictive model. Out-of-bag error rate of the
random forest model with variables of the top 30 most distinct
genera, species and metabolites to distinguish smoking HTN
patients from non-smoking individuals is 0.258, 0.194 and
0.113, respectively (Supplementary Figures S3A–C).

Based on the crosstalk among smoking, gut microbiome and
metabolites in HTN, we employed PLS-SEM to test the mediation
effects of gut genera and species (indirect effect) on the total
effect of smoking on metabolites (Figure 7E). The VAF score was
used to estimate the proportion of indirect effect to total effects,
and a VAF score at 20%–80% suggests a partial indirect effect.
The mediation model evaluating the strength of the indirect
effects, identified that the direct relationship between smoking

and metabolites was statistically significant, and for indirect
effect, the effect of species was statistically significant. The
VAF for genera and species between smoking and metabolites
was 20.3% while that of the species was 40.1% (Figure 7E). Thus,
the contribution of smoking to serum metabolome was partially
mediated by influencing the gut microbiome composition.

4 Discussion

In the current study, we identified profound association between
cigarette smoking status and serum metabolomic profiles among
hypertensive patients. Both PLS-DA and OPLS-DA models derived
from untargeted metabolomics analysis showed significant
discriminations in metabolic profiles and characteristics between
smoking HTN patients and the non-smoking controls. Interestingly,

FIGURE 5
(Contiuned). Smoking HTN-associated serum metabolites correlated with gut microbial genera and species differentiating HTN-S vs HTN-NS
individuals. (A, C, E, G), The association of gut microbial genera and species with top 40 serum metabolites in the study cohort was described with
heatmap. The genera, species and metabolites included were those identified as significantly disparate between HTN-S vs. HTN-NS samples. A is for
correlation of genera and metabolites, and C is association of species with metabolites, respectively. Positive associations are in red, and negative
associations are in blue. *p < 0.05, **p < 0.01, and ***p < 0.001, Spearman’s rank correlation. (B, D, F, H), Correlation network was produced based on
integration of microbiome and metabolome datasets. Differential microbial variances were highly linked with differential metabolites. The correlation
coeffcient is ≥ 0.4 or ≤ −0.4, and p < 0.05, calculated from Spearman correlation. Color of the nodes has been updated to represent log2FC, and different
data type formetabolite/clinical/microbes is denotedwith the node shape. Log10 p-values is describedwith node size to highlight themajor correlations,
and spearman Rho was displayed using continuous scaling of coloring of the edges. The datatype was used for attribute circular layout to group each
category.
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it was noted that the majority of discrepant serum metabolites
obtained, such as L-serine, Pipecolic acid, L-Lactic acid, were
significantly deficient in cigarette smokers subjected to HTN.
Furthermore, a classifier based on intestinal microbiota at genus
level and core metabolites was established to accurately distinguish
smokers from non-smokers among hypertensive patients.

It has been widely recognized that smoking and HTN are both
crucial risk factors for cardiovascular diseases (Hopkins and

Williams, 1986). Previous studies demonstrated that the
combination of HTN and current smoking would extert an
additive effect on the risk of developing cardiovascular and
cerebrovascular diseases (Huangfu et al., 2017; Hara et al., 2019).
Specifically, Huangfu et al. have shown that the cumulative
incidence rate of ischemic stroke was 0.85%, 2.05%, 3.19% and
8.14% among non-HTN/non-smokers, non-HTN/smokers, HTN/
non-smokers, and HTN/smokers, respectively. In addition,

FIGURE 6
Correlation between clinical indexes of subjects and the important serummetabolites altered specifically in smoking HTNs. (A, C), Heat map of the
Spearman’s rank correlation coefficient of differential serum metabolic compounds and clinical indexes. Red squares indicate positive associations
between metabolites and clinical indexes; blue squares indicate negative associations. The statistical significance was labeled with *p < 0.05, **p < 0.01,
respectively. (B, D), Correlation network describing the significant linkage between metabolites and clinical parameters. The correlation coefficient
is ≥ 0.3 or ≤ −0.3, and p < 0.05, tested by Spearman correlation. Color of the nodes has been updated to represent log2FC, and different data type for
metabolite/clinical/microbes is denoted with the node shape. Log10 p-values is described with node size to highlight the major correlations, and
spearman Rho was displayed using continuous scaling of coloring of the edges. The datatype was used for attribute circular layout to group each
category. SmokeN: smoking amount (cigarette/day); smokey: smoking duration (year); smokey*N: smoking coefficient (year cigarette/day).
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FIGURE 7
Random forest classification based on gut microbiome and metabolites to identify HTN-S patients from HTN-NS controls. (A–C), Random forest
models were conducted respectively to evaluate the potential of fecal genera/species and serummetabolites to discriminate between HTN-S and HTN-
NS. The top 30 most distinguishing genera/species and metabolites between HTN-S and HTN-NS in the random forest analysis. Mean decrease Gini
shown on the x-axis indicates the importance of each variable (genera, species or metabolites) for the classification. (D), Receiver operating
characteristic (ROC) curves showed the sensitivity, specificity and area under the curve (AUC) with explanatory variables of the top 30most distinguishing
genera, species or metabolites to distinguish smoking HTN patients from non-smoking individuals. (E), The mediation effects of top 30 most
distinguishing gut genera/species (indirect effect) on the total effect of smoking on top 30 metabolites. Path coefficients (beta) are labeled beside each
path and indirect effect (VAF score) are denoted below each mediator variables. TE, total effect; ADE, average direct effect; ACME, average causal
mediation effect.
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participants with coexistence of cigarette smoking and HTN were
suggested to be at the highest risk for ischemic stroke disorders
(Huangfu et al., 2017). Investigators reported that HTN and current
smoking had a synergistic effect on the risk of progressing from
moderate to severe cerebral small vessel diseases with OR: 10.59,
95% CI: 3.97–28.3, and synergy index: 4.03, 95% CI: 1.17–28.3)
(Hara et al., 2019).

The gut microbiome is known to exert a vital impact on host
physiology, and emerging evidence have successively confirmed that
gut microbiota dysregulation is closely implicated in the occurrence
and development of cardiovascular diseases and metabolic disorders
(Tilg and Kaser, 2011; Tang et al., 2017). Previously, researchers
have described the intestinal microbial dysibosis in smoking
hypertensive patients, which is mainly manifested with decreased
α-diversity and inclined to Provotella-dominant type (Wang et al.,
2021). Simultaneously, in cigarette smokers suffering HTN,
dramatic alterations of intestinal genus and species composition
were detected, such as reduced enrichment of physphaera and
Clostridium asparagiformme, etc. The fecal microbial metabolites
are believed to induce host responses in the intestine and even at the
distant organs (Liu et al., 2022). The metabolite profiles facilitates us
to explain a high proportion of the varied functions for gut
microbiome and thus have been regarded as intermediates that
mediate the host-microbiota crosstalk (Zierer et al., 2018; Visconti
et al., 2019). To the best of our knowledge, here we for the first time
examined the serummetabolome of smokers with HTN, and further
explored the correlation with gut microbiome.

L-pipecolic acid is known as a cyclic amino acid derived from
L-lysine (Pérez-García et al., 2019). Previous studies indicated that
the excessive accumulation of pipecolic acid is associated with host
disorders of Zellweger syndrome, chronic liver diseases and
pyridoxine-dependent epilepsy, etc. (Yu et al., 2020). Moreover,
Yuan X and colleagues showed that, when compared to ulcerative
colitis patients without depression/anxiety, those with ulcerative
colitis and depression/anxiety subjects exhibited much lower
abundance of L-pipecolic acid. It was most attractive that,
prophylactic administration of L-pipecolic acid was identified to
significantly reduce depressive-like behaviors in mice with colitis
and prominently alleviate inflammatory cytokine levels in their
colon, blood and brain (Yuan et al., 2021). Similarly, in the
present work, we also observed apparent decrease in the
abundance of L-pipecolic acid among smoking HTN patients.
Further we revealed that L-pipecolic acid was positively
interacted with butyrate-producing bacteria such as Clostridim
spp. (Clostridium sp. CAG:470; Clostridium sp. CAG:557),
Ruminococcus spp. (Ruminococcus sp CAG:382) and Bacillus
clausii. Butyrate-producing bacteria are considered as a group of
beneficial bacteria that produce butytric acids through fermenting
dietary fiber (Nylund et al., 2015). For example, the Gram-positive
gut bacteria Ruminococcus, has been demonstrated to be quite
enriched under health status but markedly depleted in numerous
diseases including human motor neuron disease (Rowin et al., 2017;
Saad et al., 2021). Besides, Bacillus clausii was verified to possess
immunomodulatory activity, and play important role in regulating
cell growth and differentiation, cell adhesion, signal transcription
and transduction, vitamin production and protection of the intestine
from genotoxic agents. Therefore, in recent years, preparations
containing Bacillus clausii have been frequently applied in the

treatment or prevention of gut barrier impairment (Lopetuso
et al., 2016).

L-serine is generally regarded as non-essential amino acid, but
the term “conditionally non-essential amino acid” might be more
appropriate for it, since under some circumstances, vertebrates are
unable to produce it with sufficient quantities to meet the necessary
cellular requirements (Metcalf et al., 2018). It was reported that
compared with the mice that compromised from Klebsiella
pneumonia lung infection, enrichment of L-serine was detected
in mice that survived during the infection and L-serine was
indicated to be associated with the host surviving. Furthermore,
L-serine was able to facilitate macrophage phagocytosis, and
participate in a natural way to promote host clearance of lung
pathogens (Liu et al., 2018). In addition, it was shown that the level
of L-serine was also significantly reduced in murine lungs infected
with Pasteurella multocida. Exogenous supplementation of L-serine
would significantly enhance the survival rate of infected mice and
suppress the colonization of Pasteurella multocida in mice lungs (He
et al., 2019). Our findings that the abundance of serum metabolite
L-serine, was depleted in smokers with HTN, is in agreement with
the changes previously observed in other lung diseases (Liu et al.,
2018; He et al., 2019).

Actually, several pervious studies have reported the serum
metabolomic profiles between essential hypertension and healthy
controls (Dołegowska et al., 2009; Shi et al., 2022; Sun et al., 2022).
Metabolites such as 2-methylbutyrylcarnitine (Shi et al., 2022) and 12-
HETE (Dołegowska et al., 2009) have been demonstrated to be
dramatically enriched, while L-Serine (Shi et al., 2022; Sun et al.,
2022) was depleted in hypertensive patients in comparison with
normotensive controls. It is worth noting that our findings in the
current work confirm that the abundance of these serum metabolites
discrepant between normal individuals and hypertensive patients,
including enhanced 2-methylbutyrylcarnitine and Tetranor 12-HETE,
and suppressed L-Serine were further more severely altered in
hypertensive smokers.

Cotinine is the utmost important nicotine metabolite (Rolle-
Kampczyk et al., 2016). Benowitz and his colleagues indicated that
cotinine has been proved to be a suitable marker to differentiate smoke
burdened from unburdened persons (Benowitz, 1996; Benowitz et al.,
2009). Furthermore, Rolle-Kampczyk UE et al. found that urine
cotinine levels were significantly higher among mothers who
smoked during pregnancy in comparison with non-smokers (Rolle-
Kampczyk et al., 2016). The metabolite cotinine was not detected in the
present study, which might be due to the different study population,
sample collection site and metabolome detection methods. In addition,
Gu F et al. reported that both cotinine and serotonin were positively
correlated with current smoking status in a cohort from the
Environment And Genetics in Lung Cancer Etiology study (Gu
et al., 2016). Although metabolite cotinine was not detected to be
discrepant in the present study, we identified higher level of serotonin in
smoking HTN patients, which confirmed previous study to a certain
extent (Gu et al., 2016).

Previous studies have elucidated the potential capacity of gut
microbiome combined with metabolites as biomarkers for
distinguishing various diseases, such as thyroid carcinoma,
spontaneous preterm birth, Alzheimer’s disease, etc (Feng
et al., 2019; Flaviani et al., 2021; Xi et al., 2021). Previously, a
discriminate predictive model based on eight metabolites as well
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as five genera displayed excellent distinguishing effect between
thyroid carcinoma patients and healthy controls (Feng et al.,
2019). In the present study, we constructed a random forest
classifier with the combination of 30 gut bacterial genera and
30 metabolites, which was able to discriminate HTN-S from
HTN-NS with an AUC of 0.82. These results illustrated that
biomarker signatures according to the gut microbiome and
metabolome exert strong reliability in identifying smokers
with HTN from non-smokers, which emphasized the
significance of gut microbiota and metabolome. On the basis
of the previous results, we also conducted mediation analysis,
showing that the contribution of smoking status to the serum
metabolome was partially mediated by affecting the composition
of the intestinal microbiome.

Nevertheless, several limitations have to be acknowledged in
the present study. Firstly, the number of participants was
relatively small which might restrict the generalization of our
results. Since population used to identify the biomarkers did not
show any clinical, anthropometrical, or biochemical difference,
further studies are still needed to validate these biomarkers in
other hypertensive population with cardiovascular diseases, and
a direct causal relationship among cigarette smoking, fecal
microbiota, serum metabolites during HTN development is
warranted to be elucidated in a cell/animal model thoroughly.
Secondly, untargeted LC-MS was conducted when analyzing
metabolite compositions in smoking and non-smoking HTN
patients. Target mass spectrometry, which is more sensitive
and more quantitative would also be necessary to further
confirm the present findings. Lastly, we admit that the
information regarding mode of birth and alcoholic drinking is
lacking for the participants.

5 Conclusion

In summary, the findings based on this study demonstrated
significant discrepancy in circulating blood metabolome profiles
in HTN-S when compared with HTN-NS. A combination of gut
bacterial genera and serum metabolites was capable to
discriminate HTN-S from HTN-NS with good performance. In
addition, the contribution of smoking to host metabolome was
identified to be mediated at least partially by affecting the gut
microbiome. Taken together, it is proposed that smoking
cessation is extremely essential for hypertensive patients,
which might be helpful to improve metabolic homeostasis and
avoid future cardiovascular events by regulating gut microbiome
and metabolites.
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