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Threatening the global community is a wide variety of potential threats, most notably
invasive pest species. Invasive pest species are non-native organisms that humans
have either accidentally or intentionally spread to new regions. One of the most
effective and first lines of control strategies for controlling pests is the application of
insecticides. These toxic chemicals are employed to get rid of pests, but they pose
great risks to people, animals, and plants. Pesticides are heavily used in managing
invasive pests in the current era. Due to the overuse of synthetic chemicals,
numerous invasive species have already developed resistance. The resistance
development is the main reason for the failure to manage the invasive species.
Developing pesticide resistance management techniques necessitates a thorough
understanding of the mechanisms through which insects acquire insecticide
resistance. Insects use a variety of behavioral, biochemical, physiological, genetic,
and metabolic methods to deal with toxic chemicals, which can lead to resistance
through continuous overexpression of detoxifying enzymes. An overabundance of
enzymes causes metabolic resistance, detoxifying pesticides and rendering them
ineffective against pests. A key factor in the development of metabolic resistance is
the amplification of certain metabolic enzymes, specifically esterases, Glutathione
S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally,
insect guts offer unique habitats for microbial colonization, and gut bacteria may
serve their hosts a variety of useful services. Most importantly, the detoxification of
insecticides leads to resistance development. The complete knowledge of invasive
pest species and their mechanisms of resistance development could be very helpful
in coping with the challenges and effectively developing effective strategies for the
control of invasive species. Integrated Pest Management is particularly effective at
lowering the risk of chemical and environmental contaminants and the resulting
health issues, and it may also offer the most effective ways to control insect pests.
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1 Introduction

Invasive species pose risks to human health, food security, the
survival of endangered species, economic loss, and ecosystem stability
(Venette et al., 2021). Invasive pest species are also known by the
names non-native, exotic, non-indigenous, and introduced. The
human race is responsible for its introduction, whether on purpose,
by accident, or through trade. Besides the obvious danger to
biodiversity, these introduced species also pose a significant risk to
national biosecurity (Rao et al., 2018; Raghuteja et al., 2022). Species
can now be transported to new regions of the world at an
extraordinary pace due to the rapid expansion of the world’s
commercial and social networking. Awareness of the negative
effects of invasive species on local biodiversity and the resulting
economic loss in many nations has grown over the past
two decades (Pimentel et al., 2005; Zhang et al., 2022). Recent
research into the evolutionary genetics of invasive species has
found that the ability to adapt to natural selection may be more
important for the successful invasion of some introduced species than
widespread physiological plasticity or tolerance. Therefore, it can
unintentionally boost the invasive species’ evolutionary potential
and enable its quick growth and geographical distribution in the
area of introduction (Lavergne and Molofsky, 2007; Marbuah et al.,
2014; Siddiqui et al., 2021; Venette et al., 2021; Hafeez et al., 2022b).

As arthropods spread outside of their natural habitats, they meet
naïve animals and host plants as well as population-controlling
pathogens, parasitoids, and predators. Opportunities to dominate
and modify invaded areas arise when antagonistic and
coevolutionary relationships among invasive species are disrupted.
The first introduction of invasive species (Grape phylloxera pest,
Daktulosphaira vitifoliae) was reported in Europe about the middle
of the 19th century. At the same time, the emerald ash borer, Agrilus
planipennis, landed in North America and Europe in the early
twenties. The fall armyworm, Spodoptera frugiperda, devours maize
in Africa, causing a direct impact on food or the environment (Sileshi
et al., 2019), Darwin’s finches in the Galapagos were under attack by
invading flies (Philornis downsi) (Fessl and Tebbich, 2002; Koop et al.,
2021), or red turpentine beetle (Dendroctonus valens) has a
devastating effect on China’s pine forests (Sun et al., 2013).
Indirect effects can be more subtle, such as when the brown
marmorated stink bug (Halyomorpha halys) spreads an aflatoxin-
producing fungus in the United States (Opoku et al., 2019), or In South
America, dengue fever is spread by the Asian tiger mosquito (Aedes
albopictus) (Ricas Rezende et al., 2020), and Xylella fastidiosa, a non-
native bacteria, is spread via spittlebugs (Occhibove et al., 2020).
Indirect consequences on water, health, and the environment may
result from measures taken in response to arthropod invasions,
particularly if widespread use of pesticides is required (Milano and
Chèvre, 2019).

Each year, the world’s food supply faces a 10%–30% loss due to
insect pests (Oerke, 2006) and exotic species-related damages worth
$20 billion (Pimentel et al., 2000). That is why it is so important to
keep the pests that have affected our economy under control (Savary
et al., 2012). Insecticide use is thought to be the most effective pest
control technique. Pesticides are heavily used in managing the pest in

the current era. Consequently, one billion kilos of chemicals are used
annually to combat crop pests (Alavanja, 2009; Drees et al., 2013). In
several countries, pesticide usage has increased, i.e., Britain
(18,000 tons), Italy (62,000 tons), Germany (4,800 tons), Poland
(2,400 tons), and China (273,375 tons) (FAOSTAT Food and
Agriculture Organization of the United Nations, 2020). Despite
their effectiveness, synthetic pesticides have raised questions about
resistance to pests, environmental degradation, and potential health
impacts are all reasonable concerns (Du et al., 2020).

Insecticides are used to eliminate pests and disease-carrying
insects in farming. Several insecticides, including
organophosphates, pyrethroids, and neonicotinoids, play pivotal
roles in pest management (Abdulahi et al., 2011). One of the most
prominent examples of micro-evolution is the development of pest
resistance due to the widespread usage of insecticides. More than
500 distinct pest species have been documented as having developed
resistance to insecticides, according to previous research (Connor
et al., 2011). Numerous pests, like corn earthworms and others, feed on
a wide variety of crops around the world (cotton, peanuts, tobacco,
etc.) and have developed resistance to insecticides. Several elements,
biological, genetic, and operational, contribute to the emergence of
resistance, but genetic aspects are regarded as the most helpful
(Karaağaç, 2012). However, future populations showing increasing
insecticide resistance make pest control more difficult (Stratonovitch
et al., 2014). Insects have been found to use a variety of molecular
resistance mechanisms, including metabolic and target sites.

Understanding species-level worldwide patterns are also helpful
from a biosecurity aspect. Resistance-containing species pose a
significant concern as intruders as they can build new populations
that are already evolved to insecticidal stress. Invasive populations of
the Silverleaf white fly, Bemisia tabaci, are just one example of a
historical problem in Australia (Thia et al., 2021). Similarly, after the
introduction of western flower thrips, Franklieniella occidentalis, into
Australia, many of the chemical pesticides used were ineffective
against the insect (Reitz and Funderburk, 2012). However,
numerous urban pests are resistant to pesticides (e.g., cockroaches,
houseflies, mosquitoes, ants, wasps, and termites) (Acevedo et al.,
2009; Liu, 2015; Mahapatro, 2017; Fardisi et al., 2019). Even though
insects can negatively affect agriculture, public health, and the
environment, effective methods of controlling them are lacking
(Hardy, 2014).

Cumulative global knowledge of resistance mechanisms helps
develop hypotheses and expectations at more localized scales. The
current review literature beam spotlights available knowledge on
invasive species and broadly expands on the various species that
have been documented to develop a broad spectrum of resistance
against various classes of chemical insecticides. Moreover, possible
mechanisms of insecticide resistance in invasive species, their
management strategies, and future implication are also discussed.

2 Resistance in invasive insects

Pesticide-induced resistance is defined as a heritable modification
in a pest population’s sensitivity to pesticides, as evident in the
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repeated failure of the treated chemical products to achieve the
required control (Mahapatro, 2017). Resistance studies are essential
in developing strategies for resistancemitigation and reducing possible
insect pest outbreaks. A large number of invasive insect species have
been examined and found to exhibit resistance to various classes of
insecticides in China (Table 1), and in some other parts of the world
(Table 2).

2.1. Mechanism of insecticide resistance

There is various mechanism mediating insecticide resistance
development in insects. The major factors are behavioral resistance,
fitness cost, reduced penetration, target resistance, and metabolic
resistance. The mechanism underlying insecticide resistance in
insects can generally be categorized as follows.

1) Behavioral resistance
2) Fitness cost
3) Penetration resistance

4) Target-site resistance
5) Metabolic resistance
6) Resistance-inducing operational factors

2.1.1 Behavioral resistance
In the very first line of protection, organisms might develop

strategies to lessen their exposure to the uptake of a pesticide
(Dunlop et al., 2018; Lushchak et al., 2018). Insects can develop
resistance to chemicals through a number of different mechanisms,
but an early and important one is a behavior response (Nansen et al.,
2016) (Figure 1). When exposed to a lethal toxin, insects may often
cease feeding and may even leave the treated area by simply moving
from one field to another or into a deeper crop canopy (De Roode and
Lefèvre, 2012; IRAC, 2022).

Behavioral resistance was well defined in a previous study by Sparks
et al. (1989) as “evolved behavior that reduces an insect’s exposure to toxic
compounds or that allows an insect to survive in what would otherwise be a
toxic and fatal environment”. To survive, arthropod pests use behavioral
processes, which involve shifts in behavior and stay away from areas that
have been sprayed with insecticides (Sparks et al., 1989). Insect movement

TABLE 1 A list of insecticide-resistant invasive species of China.

Scientific name Common
names

Resistance against insecticide Country References

Aedes albopictus Asian tiger; mosquito Pyrethroid; Fenthion; Glyphosate; deltamethrin China Hou et al. (2020); Chen et al. (2018)

Bactrocera cucurbitae Dacus cucurbitae Organophosphorus; pyrethroid China Gu et al. (2015)

Bactrocera dorsalis Oriental fruit fly Malathion; Beta-cypermethrin, cyhalothrin China Wang et al. (2011); Chen et al. (2015)

Bemisia tabaci Cotton white fly Bifenthrin; thiamethoxam; acetamiprid; imidacloprid; chlorpyrifos China Qiu et al. (2009); Wang et al. (2011); Yang
et al. (2014)

Blattella germanica German cockroach Organophosphorus; DDVP; fenitrothion; diazinon;
pirimiphosmethyl; chlopyrifos; propoxur; bendiocarb

China Pai et al. (2005)

Cydia pomonella Codling moth Chlorpyrifos; carbaryl China

Eriosoma lanigerum Woolly apple aphid imidacloprid China Jing et al. (2016)

Frankliniella
occidentalis

Western flower
thrips

Cyhalothrin; spinosad China Wang et al. (2011); Wang et al. (2014)

Leptinotarsa
decemlineata

Potato beetle Neonicotinoid China Liu et al. (2011); Xiong et al. (2010)

Liriomyza sativae Vegetable leaf miner Chlorpyrifos China Yan et al. (1998)

Lissorhoptrus
oryzophilus

Rice water weevil Chlorphenamide China Liu et al. (2018)

Pectinophora
gossypiella

Pink bollworm Decamethrin China Li et al. (1995)

Periplaneta
americana

American cockroach Neonicotinoid China Zhang et al. (2018)

Solenopsis invicta Red imported fire ant Fipronil, beta-cypermethrin, indoxacarb China Siddiqui et al. (2022, 2022a)

Spodoptera
frugiperda

fall armyworm Indoxacarb China Hafeez et al. (2021, 2022a)

Trialeurodes
vaporariorum

Greenhouse whitefly Malathion; glyphosate; deltamethrin; neonicotinoid; pyrethroids China Zhang et al. (1980); Liu et al. (2005)

Thrips palmi Melon thrips Organochlorine; Organophosphorus; Pyrethroids China Zhao et al. (1995); Immaraju et al. (1992);
Broadbent and Pree (1997)

Trogoderma
granarium

khapra beetle Phosphine China Borah et al. (1981)
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can have a significant effect on the growth of insecticide resistance.
Movement characteristics of an insect cannot determine the extent of
insecticide exposure, impacting the selection pressure on the insect
population. It can also determine the degree to which insect populations
mix in the ecosystem, thus affecting the ability of resistant ales to increase in

resistance. For instance, the Colorado potato beetle (Leptinotarsa
decemlineata) has limited flight capabilities, so pockets of insecticide
resistance have developed in growing regions across North America
(Alyokhin et al., 2008). For instance, Plutella xylostella Linnaeus, an
invasive species, has developed behavioral resistance by using site

TABLE 2 A list of insecticide-resistant invasive species in the world.

Scientific name Common
names

Resistance against
insecticide

Country References

Bactrocera dorsalis Oriental fruit fly Organophosphorus Pakistan Khan and Akram (2018); Hsu et al. (2004); Vontas et al. (2011)

Carbamates Taiwan Khan and Akram (2018); Hsu et al. (2004); Vontas et al. (2011)

Pyrethroid,; spinosad; Trichlorfon unknown Khan and Akram (2018); Hsu et al. (2004); Vontas et al. (2011)

Bemisia tabaci Cotton white fly Parathion-methyl; endosulfan America Byrne and Devonshire (1993)

Imidacloprid Europe Wang et al. (2011)

Cydia pomonella Codling moth Arsenate; DDT; organophosphorus;
benzoyl urea

America Hough (1928); Cutright (1954); Moffit et al. (1988); Welter et al.
(1991)

Decamethrin; abamectin France Bouvier et al. (1998); Reyes and Sauphanor (2008)

Glutathion; Chlopyrifos; Phosalone Spanish Rodríguez et al. (2010)

Frankliniella
occidentalis

Western flower
thrips

Carbamates (Methiocarb,
Bendiocarb)

Australia Martin and Workman (1994); Espinosa et al. (2002); Herron and
James (2005); Götte and Rybak (2011)

Organochlorine New Zealand Martin and Workman (1994); Espinosa et al. (2002); Herron and
James (2005); Götte and Rybak (2011)

Organophosphorus Spain Martin and Workman (1994); Espinosa et al. (2002); Herron and
James (2005); Götte and Rybak (2011)

Pyrethroid (fenvalerate) United States of
America

Martin and Workman (1994); Espinosa et al. (2002); Herron and
James (2005); Götte and Rybak (2011)

Leptinotarsa
decemlineata

Potato beetle Carbofuran; pyrethroid Canada Harris and Svec (1981)

Periplaneta
americana

Americana
cockroach

Imidacloprid America Wang et al., 2004,2006; Ko et al., 2016

Blattella germanica German cockroach Fipronil America Wang et al., 2004,2006; Ko et al., 2016

Periplaneta
australasiae

Australian
cockroach

Abamectin America Wang et al., 2004,2006; Ko et al., 2016

Spodoptera
frugiperda

fall armyworm Cyhalothrin; flubendiamide;
chlorantraniliprole

America Gutiérrez-Moreno et al. (2019); Yu (1991)

Thrips palmi Melon thrips Organochlorine; Organophosphorus America Zhao et al. (1995); Immaraju et al. (1992); Broadbent and Pree (1997)

Pyrethroids Canada Zhao et al. (1995); Immaraju et al. (1992); Broadbent and Pree (1997)

TABLE 3 Insecticide classification based on target site.

Chemical group Insecticide Target site

Organochlorines chlordane, dieldrin, DDT, lindane, methoxychlor, kepone, toxaphene, mirex, and benzene hexachloride GABA- gated chloride channel blocker

Organophosphates Azinphos-methyl, azamethiphos, fenitrothion, diazinon, dichlorvos, phosmet, parathion, tetrachlorvinphos,
malathion, methyl parathion, chlorpyrifos, terbufos

Acetylcholinesterase (AchE) inhibitors

Carbamates Aldicarb, fenobucarb, oxamyl, carbofuran, ethienocarb, carbaryl, and methomyl Acetylcholinesterase (AchE) inhibitors

Pyrethroids alpha-cypermethrin, deltamethrin, and permethrin Sodium channel modulators (Nav)
Pyrethroids

See http://www.irac-online.org/modes-of-action/

Frontiers in Physiology frontiersin.org04

Siddiqui et al. 10.3389/fphys.2022.1112278

http://www.irac-online.org/modes-of-action/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1112278


selection for egg laying in adults and larval mobility variations to escape
lethal dosages of foliar-applied insecticides in the field (Sarfraz et al., 2005;
Zago et al., 2014). da Silva Nunes et al. (2020) found variation in the
locomotor activity of P. xylostella adults between laboratory and field-
collected samples. Insects collected from the field exhibited elevated activity
and decreased resting time compared to controls, suggesting that they were
motivated to escape from treated surfaces. Host plant evasion may have
resistance traits, such as producing more eggs or preferring to oviposit on
plants with less hairy and delicate cuticles, as evidenced by research
demonstrating these insects have evolved to avoid insecticides (Silva and
Furlong, 2012; Ang et al., 2014). Some other insects, such as female sheep
blowflies (Lucillia cuprina), developed the ability to delay ovulation in the
presence of a pesticide intended for their larvae (Mariath et al., 1990).

Red Imported Fire Ants (RIFA) are the best example of
behavioral resistance because their excellent social system
benefits their success (Dhami and Booth, 2008; Bertelsmeier
et al., 2017; Jones and Robinson, 2018; Giraldo et al., 2021).
Various behaviors play a role in developing resistance in RIFA,
such as antibiotic secretions and adaptive immunological responses
of colony members (Wilson-Rich et al., 2009), self- and mutual
grooming by ant nestmates can restrict or accelerate infection and

toxin transmission (Theis et al., 2015). Moreover, the effective waste
removal of unhealthy materials (including dead ants). The ants
regularly clean and disinfect each other and the infected ants they
come into contact with (Pull et al., 2018). Examples of behavioral
resistance occurred in recent studies, Wen et al. (2020) reported that
invasive fire ant (Solenopsis invicta) deposited soil particles on the
ant replant to avoid contact. To minimize pesticide contact, another
study found that RIFA carried debris particles to cover the
pesticide-treated region (Wen et al., 2021). When social ants
come into touch with previously immunized nestmates, their
ability to resist infection significantly improves (Konrad et al.,
2018). This social transfer of infection resistance could explain
how colony members’ survival rates are raised due to group life,
despite the higher risks of transmission of alien agents (pesticides)
that occur (Traniello et al., 2002). Pesticide resistance has been
recently found in RIFA, which might be the reason for the inability
to manage urban invasive ant species (Allen et al., 2018). The
ineffectiveness of numerous biological and chemical control
programs to control the invasive species could be attributed to a
lack of understanding of ant behavior and the habits mentioned
above, among several other factors.

FIGURE 1
Schematic diagram of the biological and behavioral mechanisms of insecticide resistance in invasive insects.
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2.1.2 Fitness cost
2.1.2.1 Biological resistance

The biological and ecological factors discussed here constantly
interact to impact the risk of resistance development. Life cycle and
population factors are important biological parameters.

Life cycle: An overriding aspect of insect biology that impacts an
insect’s ecological interactions and the development of pesticide
resistance is the insect’s life cycle (Sudo et al., 2018). Through a
pest’s life cycle, there are changing interactions with its host and
environment. Optimal resistance management practices rely on an
understanding of these interactions. The life cycle of the insect pest is
the primary factor affecting the development of insecticide resistance;
in particular, the long life processes in bugs (Saulich, 2010) and short
life cycle with the abundant progeny of mosquitoes which has all the
properties suitable to swiftly developing resistance (Karunamoorthi
and Sabesan, 2013).

The insects have different reproductive phases that influence
resistance development through behavioral and genetic effects.
Moreover, some ecological factors, such as environmental or host
quality, will affect the reproduction phase (Helps et al., 2017). Most
insects undergo sexual reproduction, involving a male and female
union, and the resulting genetic recombination increases the genetic
variability in a population. For example, sexual reproduction in two-
spotted spider mites (Tetranychus urticae) enhanced the genetic
variability in its population. It allowed for an increased potential
for the development of resistance (Sun J. et al., 2022). On the other
hand, asexual reproduction involves no male-female union, with the
best example found in aphids (Stöck et al., 2021) (Figure 1). This will
increase the reproduction rate, but it will also limit the genetic
variability in a population. Multiple generations of asexually
reproducing aphids, such as the green peach aphid (Myzus persicae
Sulzer), are produced each year. Still, only a single sexual generation is
likely to occur (Guillemaud et al., 2003). Among these reproductive
phases, the insects undergo the development phase, which is a
maturation process. Organisms vary a great deal in how these
occur. Selection pressure can often occur throughout this life cycle
phase. For example, the Housefly goes through distinct development
stages (e.g., egg, pupa, adult fly) as it grows (de Jonge et al., 2020).
Moreover, the sweet potato white fly, B. tabaci, has been shown to be
resistant to neonicotinoids. The effects of thiamethoxam resistance
selection on the life histories of B. tabaci B-biotype strains were
studied by comparing those of selected and non-selected strains
over multiple generations (Feng et al., 2009). The resistant
individuals had shorter life spans and lower fecundity than the
susceptible unselected strain. On the other hand, the nymphal
stages took longer to mature in the resistant strain. Further
phenotypic changes were seen in the resistant strain, with reduced
body size across all instars and pupal stages compared to the
susceptible strain (Feng et al., 2009). So, the life span of the insect
pest, its reproductive capacity, and its surrounding habitat are crucial
elements in the evolution of resistance (Naqqash et al., 2016). An
insect’s lifecycle and developmental period play a crucial part in the
growth of insecticide resistance (Figure 1).

Population growth: The growth of insect populations influences
resistance development by determining the most successful
individuals. Intense selection pressures from insecticide use, short
generation time, and readily available host crops have resulted in
diamondback moth (P. xylostella) resistance to almost all groups of
insecticides (Taha, 2022; Venkatesan et al., 2022). The intrinsic rate of

increase is the rate that an insect population will increase without
external constraints. When populations are affected by biological or
environmental constraints, the growth rate slows as it approaches a
carrying capacity (large population size that is sustainable) (Holt,
2009). Insect populations are regulated by multiple factors, e.g.,
environmental conditions, host quality, and natural enemies. In the
example shown, insect predator populations lag behind prey
populations, but prey population decline after predator populations
build up (Culshaw-Maurer et al., 2020). The invasive insects invade a
new place where they do not have a natural enemy, and the
environmental condition is suitable for their survival, consequently,
reasons for their success. For example, Solenopsis invicta invades many
countries, can increase their population, and dominates the local fauna
(Morrison et al., 2004; Siddiqui et al., 2021) (Figure 1).

Generation time is also important in the time required for
individuals to complete their life cycle. This ranges from multiple
years per life cycle, as in the case of large pine weevil (Hylobius abietis)
(Inward et al., 2012), to numerous life cycles per year in Mosquitoes
(Mendoza, 2016). This allows for more genetic recombination,
increasing genetic diversity and the probability of selecting resistant
alleles. The population with multiple generations per year would more
likely develop resistance to a pesticide because there would be more
selection cycles (chances) to select for or to raise the percentage of
resistant ones in the final population. For example, mosquitoes have
multiple generations in short periods, which increases the possibility
of the transfer of resistance alleles to the next generations and
increases their genetic diversity, leading to the resistant generation
(Mendoza, 2016). Another invasive species, Diamondback moths, can
undergo multiple generations annually, increasing the potential for
selection pressure across the population (Kliot and Ghanim, 2012)
(Figure 1).

2.1.3 Penetration resistance
The insect cuticle comprises two major layers of polysaccharide

chitin, lipids, and proteins. The chitin is in the inner procuticle, but
there is no chitin in the thin outer epicuticles (Bass and Jones,
2016). By coating cuticular hydrocarbons (CHCs) generated in
particular secretory cells in the epidermis called oenocytes on their
epicuticle, insects are able to protect themselves from drying out
(Falcon et al., 2019). Penetration resistance occurs when insects
slow down the engagement of xenobiotics within their bodies.
Insects create barriers against the product using their outer
cuticle, which protects them against a wide spectrum of
insecticides (Figure 2) (Tangtrakulwanich and Reddy, 2014;
Balabanidou et al., 2016). Because of this slowing process,
insecticides may take significantly longer to reach their protein
targets in neuronal cells (Fang et al., 2015). Scanning electron
microscopy indicated that resistant mosquitos have significantly
increased cuticle thickness, with the outer epicuticle accounting for
much of the entire difference in whole cuticle thickness
(Balabanidou et al., 2016). Some adaptations known as
penetration mechanisms slow the rate at which a pesticide is
absorbed through the cuticle (Gunning et al., 1991; Ahmad
et al., 2006). Evidence of penetration experimentation is
frequently used to infer resistance (Ahmad et al., 2006; Puinean
et al., 2010); however, in order to distinguish expression differences
in cuticle-related genes between resistant and susceptible strains,
transcriptomics has also been applied (Thia et al., 2021). However,
minimal studies on cuticular resistance in invasive insects such as
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P. xylostella revealed a significant difference in cuticular
microRNAs between the chlorantraniliprole resistance
population and the susceptible population. They give insight
into cuticular alteration during the development of resistance
(Zhu et al., 2017; Shabbir et al., 2021). There is evidence of
cuticular resistance in H. armigera, which successfully prevented
deltamethrin adsorption in the body by generating thicker cuticles
in resistant individuals compared to susceptible individuals, where
insecticide percolation was substantially higher (Ahmad et al.,
2006). According to one study on Amyelois transitella
(Lepidoptera: Pyralidae), when an insect is repeatedly subjected
to pesticide pressure, the hydrocarbon profile in the cuticle tends to
change, which may help to build cuticular resistance (Ngumbi
et al., 2020).

Thickening or altering the chemical makeup of the insect cuticle
reduces toxicant uptake. A similar mechanism was observed in OP-
resistant strains of Culex tarsalis (Whyard et al., 1994) and C.
quinquefasciatus (Gong et al., 2022). The variation in pesticide
transport across the cuticle of houseflies (Musca domestica
Linnaeus) was also demonstrated (Malik et al., 2007). Similarly,
organophosphates, methyl carbamates, pyrethroids, and
neonicotinoids resistance in Tribolium castaneum (Rösner et al.,
2020), OP resistance in Colorado potato beetle (Lepinotarsa
decemilineata) (Yoon et al., 2022), and fenvalerate resistance in P.
xylostella (Mubashir and Seram, 2022), have all been confirmed to be
partly due to reduced penetration (Figure 2). This mechanism confers
low levels (less than 5 - fold) of resistance and only becomes important
when combined with other resistant mechanisms. On the other hand,
it appears to shield several different classes of pesticides (Venkatesan

et al., 2022). Comparing the amount of pesticide taken over time by
resistant and susceptible types of insects is the simplest technique to
calculate the penetration rate. Although, even a slight reduction in
penetration might contribute significantly to the invasive insect
developing resistance to the insecticide (Venkatesan et al., 2022).

2.1.4 Target-site resistance
Insecticides are chemicals (synthetic compounds or direct biological

materials) used to control insect pests (Wojciechowska et al., 2016).
However, the most successful synthetic insecticides are neuro-inhibitors
(Figure 2). Despite the increasing cost and the risk of environmental
contamination, these are the world’s most widely used agents of insect
pest control today (Yadav et al., 2022). Our study mainly discussed
commonly used four classes of organic or synthetic pesticides, and they
are as follows: organochlorines, organophosphates (OPs), carbamates,
and pyrethroids (Table 3). All of these pesticides target the insect’s central
nervous system. For organochlorines, the neurological system is the
primary target. The inhibitory neurotransmitter gamma-aminobutyric
acid (GABA) attaches to a specific type of chloride channel called a
GABA-gated chloride channel, and blocking these channels leads to
increased excitability in neurons (Al-Kuraishy et al., 2022). The
enzyme that breaks down acetylcholine, a neurotransmitter, is the
target of carbamates and OPs. Other organochlorines and pyrethroids
inhibit nerve impulse transmission by binding to and blocking the
function of Nat channel proteins in the neuron membrane (Lopez-
Suarez et al., 2022). Pyrethroids affect the sodium channels and lead
to paralysis of the organism. When they attach to sodium channels, they
trigger excitatory paralysis and eventually death in insects (Davies et al.,
2007).

FIGURE 2
A schematic diagram represents the role of enzymes and gut microbiota in pesticide detoxification in invasive ants.
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Biologically modified insects may be resistant to insecticides
because they have been altered genetically to inhibit the insecticide
from binding or interacting at its site of action (Fenibo et al., 2022).
The second most researched resistance mechanism in a wide variety of
insects is target site insensitivity. As a result of changes in the target
site’s structure or accessibility, toxicants may no longer form stable
bonds with them, a phenomenon known as target-site insensitivity
(Venkatesan et al., 2022). Aphids have developed a resistance to
pyrethroids by developing resistance at the target site (knockdown
resistance-kdr) (Valmorbida et al., 2022).

There are four major types of target sites such as 1) The
insensitivity of acetylcholine esterase (AChE) has been identified as
an essential mechanism for pesticide resistance in numerous
agricultural insect pests to carbamates and organophosphates
(Renault et al., 2022). Esterases are a diverse family of enzymes
responsible for breaking down a wide range of ester bonds in both
endogenous and exogenous substrates (Memarizadeh et al., 2011) and
play important roles in the insect’s ability to eliminate the toxic effects
of insecticides. The enzyme acetylcholinesterase (AChE) is the target
of both organophosphate and carbamate insecticides because of its
central role in the nervous system in hydrolyzing cholinergic
neurotransmitters and terminating nerve impulses (Devrnja et al.,
2022). Neonicotinoids, organophosphates, and methyl carbamates act
as acetylcholinesterase inhibitors or as nicotinic acetylcholine receptor
agonists (Devrnja et al., 2022). Prior to inhibiting acetylcholinesterase
(AChE), organophosphorus insecticides must be transformed into
their oxon analogs by monooxygenases (Lorke and Petroianu, 2019)
(Figure 2). 2) Sodium channel blocker insecticides (SCBIs) are a
relatively new group of pesticides exemplified by metaflumizone
and indoxacarb, which are commercially registered chemicals. It is
well-known that SCBIs like pyrethroids and DDT intoxicate insects by
blocking their access to voltage-gated sodium channels (VGSCs)
(Cens et al., 2022). The sodium channel in nerve cells is disrupted
by KDR (knockdown resistance). This mechanism is widely exploited
in pyrethroid and DDT resistance. Kdr and super kdr are the results of
a number of different mutations (Sun H. et al., 2022). 3) For insects,
the nicotinic acetylcholine receptors (nAChRs) play a crucial role in
learning and memory due to their participation in fast
neurotransmission (Taillebois and Thany, 2022). Resistance to
imidacloprid has been widely investigated in B. tabaci, Aphis
gossypii, and M. persicae, due to modifications in and subunit of
nAChR (Xu et al., 2022; Zhou et al., 2022). Synthetic insecticides like
neonicotinoids and spinosad aim to target nAChRs because of their
essential role in insect neurotransmission (Kaleem Ullah et al., 2022).
d) The GABA receptor is primarily a Cl—channel, and GABA receptor
molecules are essential to target locations for multiple chemically
diverse kinds of pesticide-active chemicals, resulting in fipronil,
cyclodienes, and avermectins resistance (Burman et al., 2022;
Venkatesan et al., 2022).

2.1.5 Metabolic resistance
Metabolic resistance is a type of resistance inferred by metabolic

activities in insects that help them detoxify or break down
contaminants or the ability to eliminate toxic compounds from
their bodies more quickly (Venkatesan et al., 2022). Insect
metabolism is critical in the development of pesticide resistance
against various groups of chemical pesticides, including carbamates,
organophosphates, and synthetic pyrethroids. Insects metabolize
insecticides to less toxic or non-toxic forms via a mechanism called

“detoxification” (Jaffar et al., 2022). Metabolic resistance is of huge
importance and is also one of the most studied mechanisms in insects.
Insects use their enzymatic systems to digest pesticides, and resistant
populations may have more of these enzymes or enzymes with
improved detoxifying capabilities (Karunaratne and Surendran,
2022). Furthermore, to become more effective, these enzyme
systems may also be able to break down many different types of
pesticides (Vyas et al., 2022). Detoxifying enzymes enhance and
accelerate the drug resistance caused by the metabolism of
insecticides (Siddiqui et al., 2022c; Siddiqui et al., 2022b). The
over-produced enzymes in pests can develop protection against
insecticides (Figure 2) (Rane et al., 2016; Khan et al., 2020).

2.1.5.1 Carboxylesterases (CarEs)
Carboxylesterases (CarEs) are an adaptable class of lipolytic

enzymes that catalyze the hydrolysis of esters into alcohol and acid
molecules. Widespread biocatalysis, drug metabolism, and endobiotic
and xenobiotic degradation rely on these enzymes (Sood et al., 2016).
CarEs enzymes also detoxify environmental toxicants such as
pyrethroids, a major insecticide class used worldwide (Staudinger
et al., 2010). Recent studies on invasive species indicated that a
greater AChE and CarE esterase activity was seen in resistant
populations compared to vulnerable ones such as S. invicta
(Siddiqui et al., 2022b; 2022c), H. armigera (Young et al., 2005;
Wu et al., 2011), C. tarsalis (Whyard et al., 1994), and Aonidiella
aurantia (Grafton-Cardwell et al., 2004) (Figure 2).

Biochemical methods using S. litura resistant strains from Korea
and India have shown the role of acetylcholinesterases in pesticide
resistance (Yonggyun et al., 1998; Kranthi et al., 2002; Muthusamy
et al., 2011). In the same way, a carbamate-resistant strain of S. exigua
from California had an AChE enzyme that was about 30 times less
sensitive to methomyl than the enzyme from a sensitive laboratory
strain (Byrne and Toscano, 2001). However, molecular information
on the AChE point mutation exists for a number of species of
Spodoptera, while it is mostly available for S. frugiperda. When
comparing two strains of this species, Yu et al. (2003) found that
acetylcholinesterase from a field strain taken from Florida corn fields
was up to 85-fold less responsive to inhibition by CBs and Ops
(Hilliou et al., 2021).

The CarE activity reported by various studies, such as alpha and
beta esterase production, when exposed to fipronil, was greater in a
resistant strain of the mosquito (Culex quinquefasciatus) than in a
susceptible strain (Sarkar et al., 2009). Increased activity of CarE was
detected in beta-cypermethrin-resistantM. domestica when compared
to beta-cypermethrin-susceptible ones (Zhang et al., 2007). Moreover,
elevated esterases activity was reported after insecticides exposure to
the peach potato aphid (M. persicae) (Bass and Field, 2011;
Venkatesan et al., 2022) and the brown planthopper (Nilaparvata
lugens) (Tang et al., 2022). This means that elevated esterases can
detoxify the insecticides. Gene amplification is the cause of the
increased production of these enzymes (Şengül Demirak and
Canpolat, 2022). In mosquitoes, amplified esterase molecules are
more reactive with insecticides than non-amplified esterases (Gan
et al., 2021).

Insecticide detoxification by CarE has also been reported in other
insect species. For example, some previous studies have indicated an
increase in the activity of CarE in honeybees following exposure to
fipronil (Carvalho et al., 2013; Roat et al., 2017). Similarly, the
grassland locust, Epacromius coerulipes Ivanov (Orthoptera:
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Acrididae), showed a significantly higher CarE activity in a strain that
had evolved resistance against fipronil than in a susceptible strain (Jin
et al., 2020). Insecticide metabolism studies indicated that esterases are
involved in resistancemechanisms. Increased accumulation of esterase
hydrolytic products in insecticide-resistant insects compared to
susceptible gives evidence for the involvement of these enzymes
(Jensen, 2000; Silva et al., 2012; Khan et al., 2021b; Siddiqui et al.,
2022b).

2.1.5.2 Glutathione S-transferases (GST)
Glutathione transferases (GSTs) are a broad and diversified

family of enzymes that are present in almost all organisms. GST
is a class of multifunctional proteins that are extremely important in
the biological transformation of exogenous compounds, drug
metabolism, and protection from peroxidation (Hollman et al.,
2016; Dasari et al., 2018). It was discovered that the house fly M.
domestica contains DDT-dehydrochlorinase as a glutathione
S-transferase (Clark, 1989). They are crucial for the detoxification
of both internal and external substances, intracellular movement, the
generation of hormones, and the prevention of oxidative stress
(Hassan et al., 2019). GST is one of the foremost detoxifying
enzymes of insecticides in insects. Insecticides can be metabolized
either by reductive dehydrochlorination, which is facilitated by
GSTs, or by conjugation reactions with reduced glutathione,
which result in water-soluble metabolites that are more easily
eliminated. Additionally, they help to remove dangerous oxygen-
free radical species that are formed as a result of the use of
insecticides (Panini et al., 2016). Neonicotinoid resistance in the
B. tabaci is correlated with constitutive overexpression of several
ESTs, GSTs, UGTs, CYPs, and ABC transporters (Vassiliou et al.,
2011) (Figure 2).

Several major insecticide types, such as boric acid, carbamates,
organophosphorus, organochlorine, and pyrethrin-resistant in
German cockroaches, have increased their GST expression levels to
varying degrees (Gentz and Grace, 2006; Nasirian, 2010; Rinkevich
et al., 2013). Studies on invasive fire ants show that exposure to
indoxacarb, beta-cypermethrin, and fipronil causes a substantial
alteration in GST activity. Additionally, the outcomes demonstrate
that population resistance and sublethal concentrations substantially
impact enzyme activity (Siddiqui et al., 2022c; Siddiqui et al., 2022b).
OP and DDT resistance mechanisms were reported in houseflies
(Ranganathan et al., 2022). In a resistant strain of M. domestica,
Zhang et al. (2007) discovered that GST activity was also markedly
elevated. According to Sarkar et al. (2009), the GST activity of all
populations tested was greater than that of a susceptible laboratory
strain. Studying orthopterans, researchers found that a particular
strain of E. coerulipes had much higher GST activity than
susceptible insects (Jin et al., 2020). Insecticide treatments for
maize rootworms have already been linked to an increase in GST
activity, according to a recent study (Souza et al., 2020). Pest resistance
has already been reported in different insects against DDT and OP.

2.1.5.3 Cytochrome P450 monooxygenases (CYP or
cytochrome P450)

An essential supergene family, cytochrome P450 (P450 or CYP), is
responsible for the metabolism or attenuation of toxicity of numerous
potentially harmful substances (Zhu et al., 2017; Hafeez et al., 2022b)
(Figure 2). There are four clades in insects where the CYP gene can be
placed, including CYP2, CYP3, CYP4, and the mitochondrial CYP

clade (Nelson, 2011; Zhang et al., 2018). Numerous insect cytochrome
P450s (CYPs) have been split into eleven families (Hafeez et al.,
2022b). Numerous insect CYPs make up the CYP3 clan of
cytochrome P450s, which is further divided into numerous
CYP9 family members known to take part in detoxifying processes
linked to pesticide resistance (Schuler, 2011; Hafeez et al., 2019).
P450 enzymes play an important part in the phase I process of
detoxification of many different types of hazardous chemicals,
including insecticides, due to their genetic diversity, broad substrate
specialization, and catalytic adaptability (Kim et al., 2022). For
herbivorous insects, the main mechanism of pesticide resistance is
the overexpression of cytochrome P450 detoxifying enzymes (Hafeez
et al., 2020b; Wu et al., 2021).

Different P450 enzymes serve different purposes in insects, such as
hormone synthesis and regulation, growth and development control,
or the digestion of xenobiotic substances (Zhou et al., 2010; Nelson
et al., 2013). Due to their central function in pesticide metabolism,
cytochrome P450s are frequently implicated in the development of
insect resistance to these chemicals (Guo et al., 2012; Panini et al.,
2016). One of the most prevalent processes by which insect pests
develop resistance to synthetic insecticides is the upregulation of
certain detoxifying P450 enzymes within the insect (Nelson, 2011;
Hafeez et al., 2022a; Luo et al., 2022). Because of this, insecticide
resistance may develop as a result of changes in the activity of
detoxifying enzymes in insects in response to exposure to
pesticides. Many insect orders, including Coleoptera, Diptera,
Hemiptera, Hymenoptera, and Lepidoptera, have shown evidence
of P450 overexpression leading to increased resistance to pesticides
(Bass et al., 2011; Johnson et al., 2012; Liang et al., 2015; Wang et al.,
2015; Chen et al., 2017; Khan et al., 2021a; Khan et al., 2021c; Hafeez
et al., 2022a; Siddiqui et al., 2022b).

Invasive species, including B. tabaci, S. exigua, S. invicta, P. xylostella,
etc., have been demonstrated to exhibit extremely high levels of resistance
to several kinds of insecticides, and this resistance has been linked to CYP
detoxifying enzymes (Lai and Su, 2011; Yu et al., 2015; Chen and Zhou,
2017; Ahmad et al., 2018;Wang et al., 2018b; Xie et al., 2018; Hafeez et al.,
2019; 2020a; 2020b; 2022c; Siddiqui et al., 2022b). Increased
transcriptional levels of CYP6AE97, CYP321A9, CYP9A105,
CYP321A16, and CYP459 in the midgut of S. exigua larvae treated
with different insecticides are just some examples of how S. exigua has
developed a high level of resistance against several types of insecticides
(Wang et al., 2018a; Hu et al., 2019). Moreover, the detoxification
mechanism by P450 was reported in various studies. For instance, in
S. invicta belonging to the order Hymenoptera, CYP was involved in the
detoxification of fluralaner (Xiong et al., 2022) (Xiong et al., 2022), fipronil
and beta cypermethrin (Siddiqui et al., 2022b). Similarly, in the order
Diptera, D. melanogaster, C. quinquefasciatus and Anopheles funestus
(Giles) (Daborn et al., 2002; Wondji et al., 2009; Itokawa et al., 2010), in
the order Hemiptera,M. persicaewere all reported for the amplification of
P450 and insecticide resistance (Puinean et al., 2010). The lambda-
cyhalothrin detoxification studies reported the overexpression of
P450 in H. zae and H. armigera (order Lepidoptera) (Li et al., 2000a;
2000b; Chen et al., 2017; Hafeez et al., 2020b). Based on these results, it
appears that invasive insects rely heavily on the overexpression of
P450 genes in order to detoxify xenobiotics from their bodies.

2.1.5.4 Microbial resistance
Insects host a diverse microbial population that responds to

environmental stresses in a dynamic way (Zhang J. et al., 2022).
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Similar to the insect, the associated microbiota are shaped by the
process of natural selection. Changes in food scarcity and diet
chemical exposure can all affect its makeup (Adair and Douglas,
2017; Akami et al., 2022). Host microbiota may help the host
metabolise pesticides if the host is subjected to selection pressure
from these chemicals. It is possible that this mutation is what makes
the host less vulnerable to pesticides (Akami et al., 2019a; 2019b).
Bacteria capable of breaking down pesticides have been found in
numerous natural environments and in several insect orders,
including Coleoptera (Akami et al., 2019b), Hemiptera (Kikuchi
et al., 2012), Diptera (Cheng et al., 2017; Hassan et al., 2020), and
Lepidoptera (Ramya et al., 2016; Almeida et al., 2017). There has been
evidence that resistant strains of bacteria from the gut of P. xylostella
(Xia et al., 2018) and S. frugiperda (Almeida et al., 2017) can break
down many pesticides (Gomes et al., 2020). Strains of S. frugiperda
were chosen because of their ability to degrade pesticides; however,
these bacteria were lacking in the microbiota of susceptible, unselected
larvae (Almeida et al., 2017) (Figure 2).

Insects have a complex defense system built into their digestive
tracts, and this system is most likely the driving force behind the
organization of gut microbiota (Siddiqui et al., 2022a). Various
processes in this defense system influence the host’s tolerance and
resistance to bacteria in the insect gut. Though tolerance refers to the
capacity to mitigate the detrimental effects of a particular bacterial
burden on the host’s health, resistance refers to the capability to lower
the bacterial burden to the point where it is no longer a threat to the
host’s vigor (Schneider and Ayres, 2008). Insects harboring more
bacteria in their digestive systems are more tolerant to other foreign
microbes and have less resistance to them than those with less diverse
bacterial communities. Because of this, the systems governing gut
immunity in various insects might be personalized to the host’s
individual needs. Little is known about the systems that mediate
tolerance, despite the fact that resistance mechanisms have been
the primary focus of immunology studies (Figure 2) (Engel and
Moran, 2013). However, digestive tract microbe-host interactions
are frequently mutualistic or commensalism in nature. These may
be of special importance to the host in terms of minimizing any
harmful effects of the resident microbiota on the host.

The insects have a symbiotic microbiome in their guts that aids
detoxification (Jing et al., 2020). The enzymatic detoxification method,
used by invading insects and the intestinal microbiota responsible for
secreting such digestive enzymes, may be used to establish a viable
resistance development strategy (Figure 2). Developing resistance in a
collection of organisms at the same time is undoubtedly difficult (Barbosa
and Levy, 2000). Mutualistic symbiosis plays a significant role in this
process because of its synergy and combined powers; the mutualistic
alliance formed by two ormore species adjusts to adverse conditions (such
as pesticide exposure) more quickly than the individual partners of the
mutualistic partnership do (Nobre and Aanen, 2012). Accordingly, any
beneficial directional flow of resistance development in the system is
mitigated or reversed by this adaptability.

The generation turnover of symbiotic microorganisms may
overcome the barrier of invasive ants’ extended generation time,
allowing for more favorable mutations or gene regulation/
alteration, which could lead to pesticide resistance development.
Few studies on invasive ants have provided evidence of the ants’
ability to metabolize xenobiotic compounds such as lignin, plant allele
chemicals, and pesticides (Engel and Moran, 2013; Siddiqui et al.,
2022b; c). Three partiti-like viruses isolated from the African

armyworm (Spodoptera exempta) have been shown to increase
resistance to nucleopolyhedrovirus, while the polydnavirus from
parasitoid wasps can disrupt the host insect’s immune system to
make sure the survivability of wasp progeny (Strand and Burke,
2013; Xu et al., 2020). Lower termites, which feed primarily on
wood, require symbiotic flagellates to break down lignocelluloses
and methanogenic archaea to produce methane (Ohkuma, 2008;
Shi et al., 2015).

Insect microorganisms can modulate insect resistance to synthetic
insecticides through direct breakdown and by stimulating the host’s
detoxifying enzymes or immune system (Liu and Guo, 2019; Zhao
et al., 2022). For example, the 16S rRNA gene sequencing data
demonstrated a decrease in the number of the genera Enterococcus
and Stenotrophomonas following polymyxin B therapy, which
affected the survival rate of Bombyx mori subjected to chlorpyrifos.
The host tolerance to chlorpyrifos was improved when germ-free
silkworms were given S. maltophilia. This bacteria increases host
acetylcholinesterase activity but cannot directly break down
chlorpyrifos in the stomach (Du et al., 2020). Aeromonas
hydrophila, an intestine bacteria, was found in substantially greater
abundance in deltamethrin-resistant individuals of Culex pipiens.
After antibiotics were used to clear the stomach of the resistant
strains, the resistance level dropped by 66%, and the host’s
cytochrome P450 monooxygenase (CYP450) enzyme function
dropped by 58%. The resistance and CYP450 enzyme activities
were recovered when A. hydrophila was supplied, suggesting that
A. hydrophila promotes host resistance to deltamethrin by boosting
CYP450 activity (Xing et al., 2021). Further, P. xylostella intestinal
Enterococcus sp. Upregulates the appearance of an antimicrobial
peptide called gloverin, which contributes to the insect’s resistance
to the pesticide chlorpyrifos (Xia et al., 2018). Wolbachia proliferated
in N. lugens after treatment with imidacloprid, and their removal
decreased CYP450 enzyme activities and NlCYP4CE1 transcript
levels. This finding supported the hypothesis that Wolbachia
increases host resistance to imidacloprid by increasing the
expression of the gene encoding the enzyme responsible for its
metabolism, NlCYP4CE1 (Cai et al., 2021). The gut microbiome of
pollinators like the honeybee (Apis mellifera) increases tolerance to
pesticides like thiacloprid, tau-fluvalinate, and flumethrin by
promoting the expression of genes involved in immunity and
detoxification (Wu et al., 2020; Yu et al., 2021). When creating
novel pest control methods or reducing pests’ vector competence, it
is important to keep an eye on the role of the pests’microbial partners.
Bioremediation and the reduction of xenobiotic toxicity may be greatly
aided by the discovery of insect-associated microorganisms capable of
detoxifying hazardous chemicals (Mahapatro, 2017).

2.1.6 Resistance-inducing operational factors
The resistance arises from operational factors, including the

increased frequency of pesticide applications, the intensive use of
insecticides with increased dosage, decreased yields because of pests,
and environmental damages (Georghiou and Taylor, 1986). In
addition, these factors include a low economic threshold, the
repetition of the same insecticide use across multiple generations,
the treatment of a large geographical area, the absence of a place of
refuge, the use of long-lasting, slow-release formulations of the same
insecticide, and the use of insecticides that are chemically similar to
those previously used (Sarwar and Salman, 2015; Subramanyam and
Hagstrum, 2018).
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3 Challenges in control of invasive
species

Increased global commerce and tourism, climate change,
difficulties in protecting borders, Internet commerce, as well as
other ways, and invading insects are among global concerns that
impose a high economic cost with no apparent remedies in sight
(Mooney and Hofgaard, 1999; Lester and Keall, 2005; Venette et al.,
2021).

Managing invasive species is challenging because they are often
hard to find, and the damage they do may not be noticed for a while.
Another challenge is developing new strategies to detect or manage
invasive species. Frequently traditional management practices are
being used to manage new species, but our ability to control a new
invasive species often requires developing novel tools. The last
challenge is funding for invasive species control, where there is less
support for interdiction activities and extremely high expenditures
to launch large-scale actions against established species. Most
efforts to control and study invasive species fall into two phases.
The initial phases of an invasion (forecast and prevention) give way
to later phases (early detection, fast response, mitigation, and
management) as the invasion moves forward through the
arrival, settlement, and spreading phases (Venette et al., 2021).
Cost-benefit evaluations show that focusing on prevention and
containment rather than damage control and ecosystem
restoration is the best way to deal with invasive species (Leung
et al., 2002; Lampert and Liebhold, 2021). Sociologists term the
spread of alien invasive species a “wicked” problem because of the
complex interplay between its many root causes (such as
globalization, climate change, public ignorance, and inadequate
biosecurity measures) (McNeely, 2013; Venette and Morey, 2020).
Researchers may do their part to control invasive species by
focusing on objectives that have widespread support and can be
measured quantitatively. The costs and advantages of a proposed
solution (such as a new sample plan or control system) should be
clearly stated and compared to the status quo. Multiple reasons
have led to an increase in the number of invasive species that have
migrated over political and natural boundaries, necessitating a
multifaceted approach to eradicating them.

4 Management strategies

The best strategy for combating exotic species is based on
prediction and prevention. The goal is straightforward: predict
which species or pathways provide unacceptable dangers and
prevent them from entering a target area. Such a plan necessitates
a defined indicator of success. As the number of alien arthropods keeps
rising, every new invasion could be seen as a breach in biosecurity
(Finch et al., 2021). However, international trade has expanded faster
than new species have been introduced. This pattern implies
biosecurity measures have been relatively effective (Venette and
Morey, 2020) but are distant from an accurate degree of success
(Saccaggi et al., 2016).

To determine whether or not a product can be legally imported,
how surveillance programs should be set up, and what actions should
be taken after an invasive species has been discovered in a sensitive
area, biosecurity professionals will continue to rely on spatially-
explicit pest risk assessments (Venette et al., 2010). Locations

where an invasive species is most likely to cause damage, are
described, emphasizing the environmental factors that must be
present for a pest to establish. However, methods for creating these
evaluations that are credible, expandable, and cost-effective are
required.

Particularly in machine learning and other statistical models, the
difficulty in creating models that can be successfully transferred to new
space and time is becoming more widely acknowledged as a
conceptual barrier (Morey and Venette, 2020). While process-based
models appear promising, the sheer volume of information needed to
apply them to the hundreds or even thousands of species of
importance makes them impractical (Venette, 2017). Improvements
in the ability to record shifts in insect population abundance,
distribution, and phenology directly result from the
democratization of data collecting made possible by the rise of
mobile apps and open-access databases. To strengthen predictions,
advances in phylogeography will allow for a more thorough
accounting of invasions, the identification of invasive phenotypes,
and the explicit consideration of genotype x environment
relationships (Estoup and Guillemaud, 2010; Roe et al., 2019).

Early detection surveys can be more efficiently planned with the
help of pest risk maps, which identify probable invasion or damage
regions. Our current capacity for surveying the endangered area may
be inadequate (Venette et al., 2010). More study is required, in our
opinion, to determine the likelihood of finding low concentrations of
invasive arthropods using a given sample strategy (Sandercock et al.,
2022). Experts devised a “risk-based monitoring” method that
concentrates its sampling efforts in areas with the greatest density
of the invasive pest preferred and most economically valuable host
plants (Prattley, 2009). As a result, we can lower the expense of
detecting invasive species, while additional studies are needed to
determine whether or not this method is effective for invading
insects. It can be computationally challenging to utilize the
strategies pioneered by Yemshanov et al. (2017, Yemshanov et al.
2019) to optimize the spatial distribution of sampling efforts.

When combined with conventional taxonomical knowledge, the
recent advancements in genomes provide a method for quick
validation of species identification. Additionally, genomic
techniques allow for the differentiation of strains, haplotypes, or
biotypes within a species (Venette et al., 2021). To better depict the
geographic origins of an invading population, specific haplotype data
can be used, as shown for the S. frugiperda (Goergen et al., 2016), H.
halys (Xu et al., 2014), and walnut twig beetle (Pityophthorus
juglandis) (Rugman-Jones et al., 2015). Precise pest origin
information allows for early country selection in the search for
natural enemies, typically species-specific parasitoids, which may
then be released in invaded nations after being evaluated for safety
and efficacy (Wyckhuys et al., 2020; Venette et al., 2021).

Following the initial settlement and expansion of invasive species,
it is prudent to invest immediately in R&D to promote integrated pest
management (IPM) strategies. IPM is “an ecosystem-based strategy
that focuses on long-term prevention of pests or their damage through
a combination of techniques such as biological control, habitat
manipulation, modification of cultural practices, and use of
resistant varieties (Sujatha et al., 2022). Pesticides are used only
after monitoring indicates they are needed according to established
guidelines, and treatments are made to remove only the target
organism (Singh et al., 2018). Pest control materials are selected
and applied to minimize risks to human health, beneficial and
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non-target organisms, and the environment” (IPM, 1996). These
decision-making guidelines are applied to pest management on a
regional scale rather than just on a farm or a piece of land. Ironically,
many cropping systems already have IPM in place for indigenous
pests. In the case of H. halys in the U.S. apple crop, for
example, >$37 million was wasted related to destruction and
elevated insecticide application costs because of the advent of the
pest (Leskey and Nielsen, 2018). IPM solutions for invasive species
often involve short- and long-term plans, just as they do when dealing
with endemic pests. Pesticidal treatment is frequently prioritized first
since it is effective at maintaining growers’ capital, although
agreements to fund research into biocontrol, pest-resistant
cultivars, and cultural measures (Radcliffe et al., 2009), physical
exclusions (Rogers et al., 2016), and “attract and kill” behavior-
based insect traps (Gregg et al., 2018). Developing resistance to
invasive pests is becoming increasingly crucial for trees and
perennial crops. Innovative technologies, such as transgenic
insecticidal plants or genetic biocontrol agents facilitated by gene
drives, have the potential to either complement or replace IPM
programs, depending on whether or not they are granted the
necessary regulatory permissions (Hutchison et al., 2010) (Maselko
et al., 2017; Sudweeks et al., 2019).

5 Future implications

Insect invasions caused by globalization have posed a severe
danger to native plant and animal life, with some species becoming
extinct. Because of increased international trade, more seeds and
other planting materials are being transported worldwide,
increasing the risk of invasive pests being introduced into new
habitats and countries.

As a matter of biosecurity, it is recommended that invasive species
be identified as soon as possible to control them from invading new
regions. However, many underdeveloped nations are particularly
lagging in early detection. Without natural predators and parasites,
invasive species in their new environment can quickly spread and
cause severe damage to economically important plant species and
biodiversity.

Strategies to prevent or lessen the impact of future incursions
should be part of any future approach to managing invasive species. It
is possible to reduce the likelihood of introducing new pest species into
an area if people have a general knowledge of invasive species and
work together globally by sharing data about these organisms and the
predators and parasites that threaten them. The increased science-
based knowledge, innovation, and expertise in managing invasive
species helped control them more efficiently.

The local flora and fauna, agriculture, horticulture, and the
environment severely impact the harmful impacts of invasive pest
species. These species negatively impact biodiversity and may also

affect the nation’s economy. Scientists must work together across areas
in order to detect invasive pests and analyze their ecological problems,
environmental risks in different habitats, financial damage, and
management alternatives. This can be done by creating generic,
particular, and context-dependent action plans. This highlights the
significance of the quarantine in preventing the spread of destructive
alien pests.
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