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Hemodynamic prediction of carotid artery stenosis (CAS) is of great clinical

significance in the diagnosis, prevention, and treatment prognosis of ischemic

strokes. While computational fluid dynamics (CFD) is recognized as a useful

tool, it shows a crucial issue that the high computational costs are usually

required for real-time simulations of complex blood flows. Given the powerful

feature-extraction capabilities, the deep learning (DL) methodology has a high

potential to implement the mapping of anatomic geometries and CFD-driven

flow fields, which enables accomplishing fast and accurate hemodynamic

prediction for clinical applications. Based on a brain/neck CT angiography

database of 280 subjects, image based three-dimensional CFD models of

CAS were constructed through blood vessel extraction, computational

domain meshing and setting of the pulsatile flow boundary conditions; a

series of CFD simulations were undertaken. A DL strategy was proposed and

accomplished in terms of point cloud datasets and a DL network with dual

sampling-analysis channels. This enables multimode mapping to construct the

image-based geometries of CAS while predicting CFD-based hemodynamics

based on training and testing datasets. The CFD simulation was validated with

the mass flow rates at two outlets reasonably agreed with the published results.

Comprehensive analysis and error evaluation revealed that the DL strategy

enables uncovering the association between transient blood flow

characteristics and artery cavity geometric information before and after

surgical treatments of CAS. Compared with other methods, our DL-based

model trained with more clinical data can reduce the computational cost by

7,200 times, while still demonstrating good accuracy (error<12.5%) and flow

visualization in predicting the two hemodynamic parameters. In addition, the

DL-based predictions were in good agreement with CFD simulations in terms of

mean velocity in the stenotic region for both the preoperative and

postoperative datasets. This study points to the capability and significance of

the DL-based fast and accurate hemodynamic prediction of preoperative and

postoperative CAS. For accomplishing real-time monitoring of surgical

treatments, further improvements in the prediction accuracy and flexibility

may be conducted by utilizing larger datasets with specific real surgical
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events such as stent intervention, adopting personalized boundary conditions,

and optimizing the DL network.

KEYWORDS

carotid artery stenosis (CAS), stroke, hemodynamics, deep learning (DL),
computational fluid dynamics (CFD)

1 Introduction

Stroke is a high-risk medical condition that seriously

threatens human life. For the adverse consequences of stroke,

brain cells and tissues can degenerate or die within a few minutes

owing to insufficient oxygen and nutrient provision caused by the

interruption or reduction of the blood flow from the carotid

artery flow to the brain (Hachinski, 2015; Zhang et al., 2020).

Stroke can be of two types based on the causality: ischemic stroke

and hemorrhagic stroke, and according to clinical statistics,

ischemic stroke accounts for a large proportion (about 87%)

(Pan et al., 2016; Barthels and Das, 2020). The primary reason for

ischemic stroke is the blockage of the common carotid artery

(CCA) or internal carotid artery (ICA) induced by

atherosclerosis, also known as carotid artery stenosis (CAS),

which causes intracranial reduced blood supply (Alagöz et al.,

2016; Brinjikji et al., 2016; Kubota et al., 2021) and usually

requires revascularization surgery to prevent ischemic stroke

for the patients with severe CAS. Revascularization surgeries

for CAS mainly include carotid endarterectomy, carotid

angioplasty, and carotid stenting (Bonati et al., 2015; Moresoli

et al., 2017; Powers et al., 2019; Halliday et al., 2021). While the

operating procedures of these three surgeries are different, i.e., by

removing the plaque through surgery, temporarily expanding the

stenotic lumen with a balloon, and placing an adaptive vascular

stent after balloon dilation, respectively, the ultimate goal of the

three surgeries is to enlarge the flow cavity enabling blood

flowing through the stenosis to improve the insufficient blood

supply problem for preventing ischemic stroke (Bandyk, 2020;

Darwal et al., 2020; Doenges and Reed, 2020; Wang et al., 2021).

The clinical diagnosis and postoperative prognosis of these

surgeries often need to be guided by multiple hemodynamic

variables such as pressure, velocity and wall shear stress (Liang

et al., 2015; Wu et al., 2020), which are utilized to diagnose the

severity of CAS and evaluate the surgical effect.

To accurately predict the hemodynamic characteristics for

the diagnosis of cardiovascular diseases and the prognostic

assessment of various revascularization surgeries,

computational fluid dynamics (CFD) has now been widely

used as an efficient method (Fu et al., 2010; Matsuura et al.,

2018; Xu et al., 2018; Kazantsev et al., 2020; Wu et al., 2020; Han

et al., 2021). CFD modeling is normally conducted in three-fold

(Liu et al., 2015): 1) pre-processing to construct three-

dimensional (3D) anatomic/geometric models based on

medical images of CT, MRI, etc. and to discretize

computational domain; 2) computation of flow fields in terms

of pressures and velocities by solving the Navier-Stokes equations

under certain boundary conditions (Yin et al., 2018; Driessen

et al., 2019; Han et al., 2021; Hou et al., 2022; Rizzini et al., 2022);

and 3) post-processing to visualize flow fields while calculating

hemodynamic parameters such as wall shear stresses. Thus, the

CFD-based simulations are of high computational cost due to the

requirements of mighty computing resources, large-scale

computing time, and highly skilled experts (Yamaguchi et al.,

2016; Fu et al., 2020). Moreover, the simulation is generally

performed in a patient-specific manner by using the image-based

geometric model for each individual under specific boundary

conditions, which needs to be conducted for all patients and is

usually highly time-consuming (Fu et al., 2010; Conti et al., 2016;

Bluestein, 2017; Polanczyk et al., 2018; Albadawi et al., 2021).

Thus, it is a crucial issue to pay the expensive computational costs

for real-time simulations of complex blood flows in association

with the realistic clinical applications of CFD methods for

surgical treatments such as CAS.

Given the powerful feature-extraction capabilities in

multidomain regression and pattern recognition, both machine

learning (ML) and deep learning (DL) methods have shown

successful applications in various fields, such as physiological

signal diagnosis, medical image separation, smart medical care,

etc (LeCun et al., 2015; Li et al., 2019; Mittal et al., 2019;

Noorbakhsh-Sabet et al., 2019; Bhandary et al., 2020; Li et al.,

2021b; Wang et al., 2022). The ML and DL-based methodology is

also considered as an alternative to the CFDmethod for blood flow

analysis (Taebi, 2022) because it is of high potential to implement

the mapping of anatomic geometries and CFD-driven flow fields,

which enables accomplishing fast and accurate hemodynamic

prediction for clinical applications. Recently, the ML/DL models

have been verified capable of predicting the reduced-order

simulation results in a computationally inexpensive way when

merely employing some limited flow information, i.e., the

velocities and pressures at the centerline or cross-section of a

vessel (Itu et al., 2016; Sklet, 2018; Sarabian et al., 2021). However,

from the viewpoint of clinical applications, an accurate prediction

of the detailed information on 3D and transient local flows before

and after surgical treatments is needed to provide sufficient clinical

references for surgery-decision making, which remains poorly

studied yet. With a high goal of the diagnosis of CAS disease

and the effect prognosis of surgical treatments, we applied the DL

methodology to the CAS disease to accomplish a fast and accurate

prediction of the hemodynamic characteristics in association with

carotid stenotic artery before and after the surgical operation due

to the flow cavity variation. With consideration of the intense
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vortical flow structures induced by the complex morphology of

carotid bifurcation and stenosed carotid arteries (Gallo et al., 2015;

Singh et al., 2016), a flexible data format is thus employed, which is

capable of accurately mapping both the carotid artery geometry

and the complicated flow field.

The data format utilized in DL and ML methods is usually

given in terms of pixels or voxels to deal with the irregular shape

and connectivity information, which has resolution limitations in

accurately representing the complex arterial geometry and hence

reasonably predicting the CAS hemodynamics via CFD

simulations (Guo et al., 2016; Liang et al., 2020). While there

still exists the accuracy issue in the boundary representation

(BRep) with smoothened boundaries, the point cloud dataset has

the advantage of being easily generated through converting and

transforming from a 3D scanned dataset by means of CAD

conversion software (e.g., Solidworks, United States) (Spatial

Team, 2019). The point-cloud data format enables the

characterization of both complex geometry of the vessel

model and the complicated flow fields with high resolution;

and the high-density point cloud capable of conducting

potential feature-extraction can be achieved with a small size

dataset (Qi et al., 2017; Kresslein et al., 2018; Li et al., 2021b;

2021a). Furthermore, a novel DL network can be employed using

dual input-sampling channels, which enables the high-

performance analysis and establishment of the correlation

between arterial geometries and velocity and pressure fields

through abstracting and incorporating global and local

characteristics of the point cloud dataset (Li et al., 2021b; 2021a).

In this study, a total of four point-cloud datasets were

established and utilized to validate the CFD simulations and

perform the hemodynamic prediction of the CAS models before

and after surgical treatments in terms of the flow cavity variation.

Tomatch the CFD-based point cloud datasets, we employed a DL

network with dual input-sampling channels. After the DL

training, the optimal weight configurations were stored for the

DL-based hemodynamics prediction of the CAS in the testing

process. Compared with other methods, the evaluation of

prediction performance and the DL analyses indicated that

the DL strategy proposed here enables uncovering the

association between transient blood flow characteristics,

including velocity and pressure fields and artery cavity

geometric information before and after surgical treatments of

CAS. A remarkable reduction of 7,200 times is achieved in the

computational cost, and the DL-based predictions are well

consistent with the CFD simulations in terms of mean

velocity in the stenotic region for both the preoperative and

postoperative datasets. Our study thus points to the potential and

feasibility of the CFD-driven, DL-based methodology in

predicting the 3D and transient hemodynamics associated

with CAS before and after treatments, which may provide an

effective and useful tool for the diagnosis of ischemic stroke and

prognosis of surgical treatments.

2 Methods

2.1 Ethics approvals

This prospective study was conducted in compliance with the

principles of the Declaration of Helsinki and met the

requirements of medical ethics. The Ethical Review

Committees of Beijing Friendship Hospital approved this

research. All measurements and collection of the data were

carried out under relevant regulations and guidelines. We

obtained signed informed consent forms.

2.2 Clinical data collection

All clinical data used in this study were taken from Beijing

Friendship Hospital. The raw CTA data of the carotid arteries for

298 subjects who visited Beijing Friendship Hospital in 2021 and

2022 to examine the cerebral and carotid arteries were collected

and collated by professional clinicians with 128−ΔΔCT (Brilliance

iCT, Philips Health care, Netherlands). In addition, technicians

reconstructed 3D anatomic models by importing the CT images

into MIMICS 20.0 (MIMICS, Leuven, Belgium) for arterial

segmenting and repairing. Eventually, 280 3D geometric

models with no stenosis of carotid bifurcate arteries were built

up, and among them 18 heterogeneous cases were excluded due

to incomplete information.

2.3 Preoperative and postoperative CAS
models

It was difficult to perform accurate and efficient DL analyses

on the hemodynamic characteristics in association with

geometric features of carotid artery stenosis (CAS) by using

the mere 280 realistic carotid artery models. Moreover, most

patients were found not suffering from surgery treatment for

CAS. On the other hand, it has been recognized that the key

parameters significantly impacting the CAS hemodynamics

consist of the diameter of common carotid artery (CCA), the

diameter of internal carotid artery (ICA), the diameter of external

carotid artery (ECA), the bifurcation angle between ICA and

CCA, the stenosis location, the number of stenoses, the stenosis

severity, and the stenosis length (Smith et al., 1996; Goubergrits

et al., 2002; Thomas et al., 2005; Spanos et al., 2017). Therefore,

with the clinicians’ agreement and on the basis of the 280 CA

models, we reconstructed more models artificially through

adjusting these seven parameters as summarized in Table 1,

and substantially built up 1,000 geometric models. It is worth

noting that for the 1,000 geometric models, the CAS models were

then constructed by randomly changing the stenosis-related

parameters within a given range (Table 1) using the modeling
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software SolidWorks 14.5 (Solidworks, United States),

substantially resulting in a dataset of 1000 CAS models.

2.4 CFD simulation of CAS before and after
surgical treatments

After geometric model augmentation, we carried out a series

of CFD simulations to resolve the flow fields and make the

hemodynamic prediction for the 1000 CAS models (Figure 1A).

The blood flow was treated as an incompressible, laminar, and

Newtonian viscous fluid with the density of 1,060 kg/m3 and the

viscosity of 0.0035 Pa·s (Gharahi et al., 2016; Lopes et al., 2019).

All arterial walls were treated as rigid boundaries and the nonslip

condition was imposed. The commercial software ANSYS-

Meshing was utilized for discretizing the computational

domains in terms of the tetrahedral mesh with a minimum

size of 0.0455 mm. The mesh independency convergence

analysis was conducted in terms of the minimum mesh

spacing adjacent to the walls and the mesh number, and it

was verified that the results (see details in the Results section)

were well consistent with the previous studies (Lopes et al., 2019).

At the inlet of the CCA models, a pulsatile mass flow rate

profile (Figure 1B) with the waveform taken from the previous

studies (Gharahi et al., 2016; Lopes et al., 2019) was defined,

which was spatially uniform while pulsating with time. A

TABLE 1 Geometric parameters of carotid arteries and stenoses.

Parameter Description Range

Diameter of CCA Increased or decreased the diameters of the original artery uniformly 6.7–9.0 mm

Diameter of ICA Increased or decreased the diameters of the original branch artery (for brain) uniformly 4.6–6.3 mm

Diameter of external carotid artery (ECA) Increased or decreased the diameters of the branch artery (for face and ears) uniformly 3.8–5.2 mm

Bifurcation angle between ICA and CCA The angle formed by the two branches in the first 10 mm of their course was measured 20–120°

Stenosis location Random positions on ICA and CCA

Number of stenosis ICA and CCA 1–2

Stenosis severity Severity of stenosis 0%–80%

Stenosis length The length of the stenosis on the ICA or CCA 5–20 mm

FIGURE 1
Geometricmodel and boundary conditions of the carotid bifurcated artery. (A). Geometricmodel of carotid bifurcate artery with branches CCA,
ICA and ECA; (B). Unsteady boundary conditions comprising a mass flow rate profile at CCA inlet and a pressure waveform at ICA and ECA outlets
(Gharahi et al., 2016; Lopes et al., 2019).
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transient pressure waveform was simultaneously imposed at the

outlets of the ECA and ICA. Given the dimension of the CCA

part with a cross section area of 45.23 mm2 and a diameter of

7.318 mm, and the average flow velocity in a cardiac cycle

(Figure 1A), the Reynolds number was calculated to be

approximately 346. It is worth noting that a peak Reynolds

number based on the peak mass flow rate (0.182 kg/s) among

all our models was approximately 2,200. The numerical

simulations were performed with ANSYS-CFX 16.0 (ANSYS,

Canonsburg, United States) by solving the unsteady Navier-

Stokes equations and the continuity equation. The time step

was set as 0.01 s, and the maximum iteration number was set to

200 for each time step, which was confirmed capable of ensuring

a numerical convergence with the residuals less than 10–4. In

addition, all the simulations were performed up to four cardiac

cycles, when the flow field was confirmed to reach a stable and

converged state. The results of the fourth cycle were used for

further hemodynamic analysis.

2.5 Creation of DL datasets

This study is attributed to developing a DL strategy to

implement the mapping of anatomic geometries and CFD-

driven flow fields to achieve the hemodynamic prediction of

3D carotid artery stenosis (CAS) before and after surgical

treatments. Thus, both creations of the DL datasets and the

construction of a suitable DL network play crucial roles. The

point cloud data were employed herein to characterize the 3D

CAS models (mesh nodes). The point clouds of two types were

extracted from the CFD-based results, representing the geometric

features of the CAS cavity and the hemodynamic characteristics,

respectively. A suitable DL network with dual input and sampling

channels was then developed and employed for the DL analysis.

Because the flow field data comprising velocities and pressures

at each mesh obtained through ANSYS software can be directly

converted into a high-density point cloud data, we extracted all the

CFD results at the instant of 0.21 s, i.e., the systole peak of the fourth

cycle. We then established two types of point clouds, namely, the

cavity point cloud {N1*P1} extracted from the innermost layer of the

carotid artery wall (i.e., geometric information of flow cavity) and

the fluid point cloud {N2*P2} extracted from the inside of the CA

model. Here, N1 denotes the total number of grids in the lumen shell,

P1 denotes the coordinate information of the carotid lumen, N2

denotes the total number of grids of the internal fluid, and P2
denotes the comprehensive properties of the internal fluid, including

the information of spatial coordinates and flow fields of velocity and

pressure.

In general, any variations in the 3D CAS models would alter

their wall surface meshes and hence the mesh distributions in the

computational domain, substantially resulting in the change of

the spatial distribution of point cloud. The point cloud data thus

consists of both the geometric information of the spatial

coordinates (x, y, z) and the corresponding CFD-based flow

field information of velocities and pressures, which can be

collected and stored simultaneously at each discrete point of

the point cloud data (Raissi et al., 2020; Li et al., 2021b; 2021a).

We built up four datasets of the CAS models in terms of

either velocity field data or pressure field data, with two

preoperative datasets for before surgical treatment and two

postoperative datasets for after surgical treatment with the

cavity geometry changed, which are summarized in Table 2.

All samples in the four datasets contain both fluid point clouds

and cavity point clouds. After the establishment of the four

datasets, we randomly divided each dataset into a training set and

a testing set with a ratio of 9:1 for DL analysis. Thus, each training

set includes 900-point cloud sets from CFD simulation results,

and each testing set includes 100-point cloud cases. These four

datasets were used for training and testing in four independent

DL networks.

2.6 DL network

According to the characteristics of the established point cloud

datasets, we employed a matching dual-input-sampling channel DL

network. As shown in Figure 2, the network has two inputs and

sampling channels that receive and process the overall outer cavity

and inner fluid point clouds of the carotid arterymodel, respectively.

For the sampling module, to enhance the correlation between the

point clouds of the two channels while improving the network

prediction performance, the first two feed-forward fully connected

layers, i.e., FC1 and FC2 (Figure 2) are utilized to share the weights,

i.e., the same preliminary feature extractionmethod. After the step of

FC2, the two types of point clouds enter their respective independent

feed-forward fully connected layers, i.e., FC3 and FC4 (Figure 2).

They are used to extract the overall features from the outer cavity

point cloud and to characterize the flow field information from the

inner fluid point cloud. After being processed by the sampling

module, the characteristics of both outer cavity geometry and the

inner fluid flow are extracted as 512-dimensional {N1 * 512} and

128-dimensional {N2 * 128}-dimensional vectors, respectively,

which are first encoded in the feature stitching module as a {N3

* (512 + 128) = 640} dimensional vector. Then, the dimensional

vector {N3* (512 + 128) = 640} containing the two characteristics in

the output module (FC5 and FC6) is decoded into {N2, P2}, i.e., the

flow field information of the internal fluid, which functions as a

convolutional neural network decoding operation. By employing the

network with the two matched point clouds to bridge the fluid’s

overall cavity and spatial coordinates, the flow field data of velocity

and pressure at each point, can be substantially determined.

With the utilization of a dual-channel rather than a single-

channel and sharing weights in the fully connected layers instead of

nonshared weights, Li (Li et al., 2021b) investigated the prediction

performance through testing with control variables in previous

work. Here, we focused on the feature extraction and processing
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point clouds over the network. We added a max pooling part in the

sampling module as a symmetric function (Figure 2) to resolve the

disorder issue of the input point clouds (Qi et al., 2017; Ghahremani

et al., 2020). In addition, the mean absolute error (MSE) was chosen

as the loss function; the Adam optimizer was utilized as a learning

rate = 0.001, ε = 0.001, ρ1 = 0.9, ρ2 = 0.999, and δ = 1E−8 (Kingma

and Ba, 2014; Li et al., 2019).

2.7 Network training and testing

Four DL datasets were trained separately using independent

networks in the environment of TensorFlow (v2.0.0rc,

Python3.7) on an Nvidia GeForce GTX 1660 Ti GPU with a

batch size of 1 and epoch of 1,000. In the training phase, we

stored the optimal weight configuration by optimizing the loss

function to the minimum value, which resulted in four trained

networks for the DL prediction at the testing stage. For the testing

phase, the hemodynamic results of fluid points in P2 were

predicted by only importing the spatial coordinated

information of the cavity point cloud in P1 and the spatial

coordinate information of the fluid point cloud in P2 using

the stored optimal configuration.

2.8 Evaluation of prediction performance

To quantitatively evaluate the difference between the DL-

predicted results and the CFD simulation results, we drew on

previous studies to employ the mean radial error (MRE) and the

normalized mean absolute error (NAME) to determine the error

at each mesh point (Liang et al., 2020; Li et al., 2021b; 2021a).

MRE can characterize the error of the DL prediction value

relative to the actual value at all query points of the model.

The NMAE can characterize the error of the DL-based result

relative to the actual value of the overall flow field (CFD result).

The definitions of MRE and NAME are given in Eqs 1, 2:

MRE y, ŷ( ) � 1
N2

∑N2
i�1

��������
yi − ŷi( )2√
���
yi

2
√ × 100%, (1)

NMAE y, ŷ( ) � 1
N2

∑N2
i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣
Max y

∣∣∣∣ ∣∣∣∣ −Min y
∣∣∣∣ ∣∣∣∣ × 100%, (2)

where yi and ŷi denote the ith inner fluid point values of pressure

or velocity obtained by DL-predicted values and CFD-simulated

results, respectively. I is the point spatial sequence. N2 is the total

number of fluid point clouds. Max|y| and Min|y| represent the

maximum and minimum magnitudes of the corresponding

TABLE 2 Four DL datasets.

Stage Hemodynamic Training number Testing number

Preoperative Velocity 900 100

Pressure 900 100

Postoperative Velocity 900 100

Pressure 900 100

FIGURE 2
Structure of the proposed network.
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hemodynamic parameters among all points in the selected area,

respectively.

3 Results

First, the mesh convergence analysis was conducted by

investigating the mesh independency of the CFD simulation

in terms of minimum mesh spacing adjacent to the wall and

mesh number. For the sake of simplicity, a stenotic carotid artery

model, as shown in Figure 1A, was used for the mesh

convergence analysis. It was verified that a minimum mesh

spacing/size of 0.0455 mm of the tetrahedral meshes at the

wall surface was good enough to capture the hemodynamic

characteristics of the flow field accurately; and the mesh

number exceeding 1.2 million could achieve a marginal

difference in association with the velocity magnitude at the

systole peak (Figure 3), less than 3% with increasing the mesh

number. With consideration of the balance between numerical

accuracy and computational cost for the CFD simulation, we thus

selected the number of mesh nodes (point cloud) ranging from

0.18 to 0.25 million, identical to a mesh number exceeding

1.2 million in total across different cases, which were verified

capable of accurately and effectively representing the geometric

features and flow field details of the CAS models.

Because the DL analyses in terms of accuracy and validity

are highly dependent upon the data quality, particularly in the

present case of the unsteady flow field, which could exert a

significant impact on the point cloud data converted by CFD

simulation results. Therefore, we validated the time accuracy

of the CFD simulation through a comparison of the mass flow

rate at the ICA and ECA outlets in Figure 4. The current CFD-

based results are in reasonable agreement with reliable

published data (Lopes et al., 2019) in terms of the time-

varying mass flow rates at the two outlets of the

carotid model even though some noticeable differences exist

in the amplitudes mainly due to the discrepancy in the two

models.

We then randomly selected a preoperative model and a

postoperative (cavity changed) model from the testing sets as

samples to intuitively illustrate the predicted hemodynamic

results in terms of pressure and velocity distributions of the

maximum inflow rate (t = 0.21 s in Figure 1B) as illustrated in

Figures 5, 6. It is observed that both the pressure fields (Figure 5)

and velocity fields (Figure 6) associated with the CAS model and

the normal carotid artery model (i.e., the cavity changed model)

display excellent consistency between the CFD-based and DL-

predicted results.

In addition, we summarized the error function results of the

velocity and pressure fields in Table 3 in terms of the mean radial

error (MRE) (Eq. 1) and the normalized mean absolute error

(NAME) (Eq. 2) to investigate the error at each mesh point of

the testing set models. Except for the overall error, we also

segmented the narrow stenotic portion of the CAS model and

calculated the corresponding errors. The error function results

indicate that our DL method can achieve reasonable and

effective hemodynamic prediction with the maximum error

of less than 12.5% throughout the flow field inside the CAS

model. The prediction errors for the pressure field are noticeably

lower than those of the velocity field, which may be due to the

DL-based prediction of the three velocity components at each

point can significantly increase the computational cost

associated with the corresponding network, substantially

leading to high errors. Besides, the errors of the stenotic

models are noticeably larger than the normal carotid artery

model (the cavity changed model), probably because of the

FIGURE 3
Mesh convergence analysis in terms of mesh independency
associated with a specific velocity at the systole peak of the fourth
cycle.

FIGURE 4
Comparison of simulated mass flow rates at two outlets with
published data (Lopes et al., 2019).
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complex transient flow structures in the vicinity of the stenosis,

which may lower the DL-based prediction accuracy. With

respect to the computational cost between CFD simulation

and DL-based prediction, it is obvious that the DL method is

superior, which enables the prediction to be accomplished

within merely 1 s. The CFD simulation that comprises the

pre-processing of the geometric CAS modeling, the numerical

simulation for four beat cycles, and the post-processing of the

FIGURE 5
Comparison of pressure fields between CFD simulation and DL prediction. (A). Carotid stenotic artery model; (B). Carotid artery model without
stenosis (cavity changed model).
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computed results, however, being run at Intel Core I5-9400

2.9 GHz × 4 CPU, takes approximately 2 h on the server,

indicates that the computational cost of the CFD simulation

can be reduced by approximately 7,200 times.

In addition, we carried out a consistent analysis of the DL- and

CFD-based results to examine the prediction performance and

capability of clinical application. We calculated the averaged flow

velocities, i.e., the mean values of velocities at all points of the

FIGURE 6
Comparison of velocity fields between CFD results and DL prediction. (A). Carotid stenotic artery model; (B). Carotid artery model without
stenosis (cavity changed model).
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narrowest cross-sections of the stenoses on ICA and CCA, based on

the preoperative and postoperative testing set models. Correlations

between DL- and CFD-based average velocities are compared in

terms of Velocity-CFD and Velocity-DL, as depicted in Figure 7 of

the scatter plot of the preoperative models with r = 0.9471, p < 0.001

(Figure 7A), and the scatter plot of the postoperativemodels with r =

0.9584, p < 0.001 (Figure 7B), respectively. Obviously, good

consistency is observed between the DL-based predictions and

the CFD-based simulations equally in the preoperative and

postoperative datasets.

4 Discussion

In this study, we proposed a DL strategy for the first time to

predict the 3D and unsteady hemodynamics of stenotic carotid

arteries before and after surgical treatments (i.e., cavity change).

Error analysis results show that the DL strategy can achieve high-

accuracy hemodynamic prediction (ERR<12.5%) while reducing

computational cost by 7,200 times, which demonstrates the

clinical potential and practical capability of the DL strategy in

predicting complex hemodynamics for stenotic arteries while

reducing the computational cost and simplifying the operation

process.

As summarized in Table 4, the previous studies on predicting

flow fields or hemodynamic parameters based on ML or DL

methods are limited to either 2D and reduced models or

simplified 3D models but with no applications to the complex

CAS. Itu et al. reported an ML-based model to predict the FFR

parameter (Itu et al., 2016) but with a reduced-order model,

which is highly targeted but limited in its application scope. Guo

et al. presented a deconvolutional network (CNN)-based model

TABLE 3 Error functions of pressure and velocity fields.

Types Locations Hemodynamic parameters NMAE MRE

Preoperative Whole Model Pressure 3.34 ± 1.31 6.47 ± 1.42

Velocity 4.53 ± 1.45 8.03 ± 1.57

Stenosis Pressure 6.31 ± 2.72 10.42 ± 3.69

Velocity 7.16 ± 1.50 11.48 ± 3.86

Bifurcation Pressure 5.34 ± 1.69 10.63 ± 2.64

Velocity 6.88 ± 2.25 12.35 ± 3.61

Postoperative Whole model Pressure 1.77 ± 1.12 3.81 ± 1.47

Velocity 2.83 ± 1.33 4.29 ± 1.67

Bifurcation Pressure 3.91 ± 2.39 7.87 ± 2.05

Velocity 5.47 ± 1.74 9.73 ± 2.60

FIGURE 7
Comparison of averaged velocities in the vicinity of stenosis between DL- and CFD-based results. (A). Scatterplot of averaged velocities for
preoperative models in terms of Velocity-CFD and Velocity-DL. (B). Scatterplot of averaged velocities for postoperative models in terms of Velocity-
CFD and Velocity-DL.
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for the prediction of 2D and/or 3D flow fields (Guo et al., 2016)

by developing a dimensionality-reduction model, however,

which can cause the information loss of flow fields because

the data normalization process introduces considerable noises,

needing larger datasets and hence much more computational

cost. By generating a large number of idealized blood vessel

models based on a small size of clinical datasets and employing a

convolutional neural network, Su et al. achieved the 2D real-time

wall shell stress (WSS) prediction (Su et al., 2020), but their

model did not take account for the realistic spatial geometric

information. Recently, Liang et al. built up 3D idealized thoracic

aorta models but used merely 80,100 nodes for model

segmentation and normalization of the human thoracic aorta

(Liang et al., 2020), which was combined with a DLmethod. Even

though a high-resolution prediction of 3D hemodynamics was

achieved, the small-scale dataset of subjects and the utilization of

a fixed mesh set for different geometric models largely

constrained the flexibility and accuracy of the simulations.

Compared with previous ML- and DL-based studies, this

study first manifested in larger clinical datasets, which could

demonstrate better generality in terms of capabilities in

clinical application. And besides, we used two formats of

point cloud datasets that can flexibly characterize the

stenosis/cavity geometry and carotid flow fields while

employing a double input-sampling network structure for

feature extraction and 3D hemodynamic prediction. The

mesh-independent test result demonstrated that it is

sufficient to accurately characterize the geometry of stenotic

carotid artery models at a suitable resolution. The variability of

point clouds regarding quantity and spatial coordinates is

conducive to accurately characterizing different complex

models that vary from a preoperative artery to a

postoperative artery, which previous DL studies cannot

handle. For instance, a stenotic model contained

approximately 40,000 cavity points and 220,000 fluid

points. And to match the point cloud’s characteristics, the

employed DL network could extract the geometric

information from the cavity point cloud while obtaining the

hemodynamic information from the fluid point cloud.

Specifically, the network was separately constrained by the

global geometric features of the overall blood cavity while

guided by the local hemodynamic information. Thus, the

combination of the point cloud and the DL network could

effectively introduce spatial relationships by stitching the two

modules and then realizing point-by-point hemodynamic

prediction of a carotid artery.

For the ERR results, the stenotic model was higher than the

cavity changed model (Table 3), which may be due to the

difference in the flow field and complexity of the narrow

location. In our CAS models, the number of fluid points in

the lesion area of the artery accounted for approximately 10%

of the entire model, which means that the ERRs of the entire

model was mainly determined by the stenosis part. In addition,

flow field changes in the stenosis due to a narrow lumen, as

well as secondary flow near the bifurcation site, lead to large

changes in the flow field at the stenosis site. On the other hand,

compared with the healthy model, the lesion model (CAS) has

a larger range regardless of the velocity field and the pressure

field, resulting in the ERRs in the stenotic part being more

sensitive to flow field changes. Taking the above factors into

consideration, the ERRs of diseased arteries, i.e., the CAS

models, were higher than those of healthy arteries (the

whole model), and the ERRs of the lesioned and bifurcated

areas of the models were the highest.

The limitations of this study mainly lie in the insufficient

number of clinical patients and the related pathological

information. These limitations are reflected in the following:

First, 720 augmented models were constructed through

morphological modification of the carotid artery models based

on the original dataset of the 280 patients but without apparent

CAS features, which was conducted by adjusting the seven

primary parameters of the diameters of CCA, ICA, and ECA,

the bifurcation angle between ICA and CCA, the stenosis

location, the number of stenoses, the stenosis severity, and the

stenosis length base on. Thus, it is necessary to enlarge the

original dataset by recruiting more patients with recognizable

TABLE 4 Comparison of ML- and DL-based methods on hemodynamic prediction.

Method Predicting objective Subject
number

Data
size

Data format Performance

Current DL-based strategy 3D CAS unsteady hemodynamics 298 1000 High resolution point
cloud

MRE <12.5%,
NAME <7.5%

ML approach (Itu et al.) Fractional flow reserve (FFR)
value

87 12000 Geometric parameter Accuracy = 99.7%

Deconvolution Network (Guo
et al.)

2D steady flow None 400000 Low resolution pixels MRE <3%

CNNs model (Su et al.) 2D unsteady WSS distribution small 2000 Low resolution pixels MAE <2.5%

DNNs model (Liang et al.) 3D thoracic aorta hemodynamics 25 729 Low resolution meshes NMAE<6.5%
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CAS diseases to enhance the efficiency, stability, and accuracy of

the DL training analysis. Second, the lesion generated for

constructing the stenotic artery is idealistic and thus ignores

the diversity in stenoses such as asymmetric type, multiple

contiguous types, etc. Therefore, a comprehensive analytical

study on simultaneously validating the applicability and ability

of our DL strategy for patients with different types of stenosis will

be explored in our future studies by expanding the sample size of

real clinical data. Third, instead of imposing personalized

boundary conditions on each artery, we employed a generic

boundary condition for the CFD simulations and then selected

the CFD results for the DL dataset generation only at one time

instant. Moreover, owing to solely focusing on the cavity change

while ignoring the influences of specific surgical treatments, we

neither utilized the arterial models treated by carotid

endarterectomy nor a balloon or a vascular stent for

expanding the narrowed artery. Therefore, like the

postoperative scars, the thickness of an actual vascular stent,

and the interaction between stents and blood vessels that we did

not include in our study (Xu et al., 2018), which in turn may

impact the reasonably of hemodynamic results and lead to

potential errors. Finally, our study only chose the artery

portion near the carotid bifurcation as the object of interest. It

did not account for the cerebral artery and facial artery parts

downstream of the ICA and the ECA, respectively, as well as the

cardiovascular artery upstream of the CCA, which will be

evaluated in our future study.

In summary, this study aimed to employ a flexible data

format to represent high-resolution geometric stenotic arteries

while proposing a suitable DL network and substantially

achieved an accurate prediction of hemodynamic results of

carotid stenotic arteries before and after surgical treatments.

Therefore, with the high goal of applying our DL strategy to

real-time clinical revascularization surgery guidance,

improvement of our strategy prediction performance and

applicability through optimizing our DL methods with larger

datasets will be our next research target.

5 Conclusion

In this study, we proposed a simulation-based framework

to achieve DL-based hemodynamic prediction of normal

and diseased carotid arteries. Through establishing high-

quality point cloud datasets combined with an advanced DL

network, the DL-based methodology is verified capable of

achieving high accurate DL predictions, which are well

consistent with computational fluid dynamic (CFD)

simulations while dramatically reducing computational

costs. This points to the capability and feasibility of the

DL-based strategy for fast and accurately predicting the

hemodynamics of carotid artery stenosis (CAS) before and

after surgical treatments.
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