
The use of non-linear tools to
analyze the variability of force
production as an index of fatigue:
A systematic review

Fernando García-Aguilar, Carla Caballero*, Rafael Sabido and
Francisco J. Moreno

Sport Sciences Department, Miguel Hernández University of Elche, Elche, Spain

Background: Fatigue is a process that results in a decreased ability to produce

force, and which could eventually affect performance and increase the risk of

injury. Force variability analysis has been proposed to describe the level of

fatigue with the purpose of detecting the development of fatigue. Variability is

credited to play a functional and adaptive role through which the components

of a system self-organize to solve amotor problem. Non-linear tools have been

applied to analyze the variability of physiological signals, revealing that the

structure of motor fluctuations provides relevant information about the

functional role of variability. It has been suggested that the presence of

lower complexity in the variability structure could reveal a less functional

and adaptative state (e.g., ageing or illness). In the last years, an increased

number of studies have applied these techniques to force variability analysis in

relation to fatigue.

Objective: To provide an overview of the current knowledge on the use of non-

linear tools on force variability as a fatigue index.

Methods: Following PRISMA guidelines, a systematic search of SPORTDiscus,

Scopus, Web of Science and PubMed was carried out. Studies included were: a)

original studies that analyzed the effect of fatigue on humans during an action

focused on force production; b) published studies with their title and abstract in

English; c) studies that applied non-linear tools on a signal directly related to

force production.

Results: Twenty-five studies were included in this review. The relationship

between fatigue and the complexity of force variability, the type of action

and relative intensity, the nature of the signal and the non-linear tools used, and

the methods of data acquisition and processing were identified.

Conclusion: The articles reviewed suggest that fatigue leads to a decrease in

complexity mostly in isometric contractions, but this is not as clear in dynamic

contractions. This fatigue-induced loss of complexity seems to be a result of

changes in the nervous system at the central level, albeit triggered by peripheral

mechanisms. It should be noted that non-linear tools are affected by the relative

intensity of contraction, non-stationarity, and the acquisition and treatment of

the signal.
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Introduction

Fatigue can be defined as a multifactorial process resulting in

a decrease or failure to produce force by a muscle or muscle

group (Gandevia, 2001; Enoka and Duchateau, 2008; Carroll

et al., 2017). This decrease in force production affects the ability

to perform a motor task (Taylor and Gandevia, 2008; Ament and

Verkerke, 2009; Boyas and Guével, 2011; Carroll et al., 2017),

reducing contractile function and muscle activation (Enoka and

Duchateau, 2016), and it is related to an increase in the risk of

injury (Almonroeder et al., 2020). The onset of fatigue is an

intricate process that affects the organism in different ways

depending on factors which may be either intrinsic (e.g., age,

sex, body composition) or extrinsic (e.g., features of the task,

environmental conditions) (Enoka and Duchateau, 2008). These

factors impact on the development of fatigue (central or

peripheral) and how it reveals itself (Place and Millet, 2020),

and, thus, on how we can detect fatigue in the organism.

Classical measures of fatigue, such as maximal voluntary

contraction force (MVC) or energy output, may be an index of

fatigue, but they do not provide information on the intensity of

fatigue (Enoka and Duchateau, 2016), i.e., they do not allow us to

quantify the fatigue state of the organism. In addition, different

methods are recommended depending on both the task and the

predominant source of fatigue (Zwarts et al., 2008; Place and Millet,

2020). Among the methods used to examine the level of fatigue in

humans, the variability in force production has been proposed in

several studies (Slifkin and Newell, 2000; Contessa et al., 2009;

Cortes et al., 2014). Motor variability is considered to be the

variations or fluctuations that occur in motor behavior during

the repetitive execution of an action (Stergiou, 2004). The

production of muscle force involves multiple interacting elements

(e.g., motor neurons, myofibrils, tendon units) (Badillo, 2002),

which vary along different time scales (e.g., nerve impulses vary

over smaller time scales than joint movement variations). Therefore,

it can be assumed that these variations represent how the different

components self-organize to adapt to the environment and to the

task to be performed. Fatigue can be regarded as a determinant

affecting how these elements interact, modifying the neuromuscular

system’s response during a task. Some studies have analyzed the

variability of force production in different contexts (Slifkin and

Newell, 2000; Vaillancourt and Newell, 2003; Missenard et al., 2008;

Contessa et al., 2009; Singh et al., 2010; Cashaback and Cluff, 2015)

identified an increase in variability as relative intensity increased,

either due to the effect of age or due to the development of fatigue. In

these studies, variability has traditionally been analyzed with

measures of dispersion such as standard deviation (Harbourne

and Stergiou, 2009) or coefficient of variation (Christou and

Carlton, 2001). These measures provide an insight into the

magnitude or the amount of variability, and they assume that the

variations that occur are random and independent of each other

(Caballero et al., 2014).

Nevertheless, these measures of dispersion may not be

sensitive to the nature of nested fluctuation patterns of the

interdependent elements involved in muscle contraction

(Holden, 2005). The multiple time scale of change of the

elements implied in motor behavior are often hidden when

linear data reduction techniques are applied (Newell et al.,

2001). Therefore, as summary statistics would not be neatly

applicable to address the complexity of a heterogeneous

variable process, measuring the fluctuation changes over time

is necessary. The temporal evolution of these fluctuations is

known as the structure or dynamics of variability (Caballero

et al., 2014). The so-called Non-Linear Tools (NLTs) have been

applied to different physiological signals and human movement

to analyze the structure of variability (Stergiou, 2004, 2016).

NLTs are mathematical methods that aim to capture variations

in how a driving behavior emerges over time. Temporal

organization of fluctuations is quantified by the degree to which

values emerge in a structured manner across a range of time scales,

and its underlying complexity (Harbourne and Stergiou, 2009).

Some authors have defined complexity as chaotic temporal

variations in a biological system (Yentes et al., 2013) and its

structure can be studied through NLTs. Previous studies have

linked the loss of complexity to a decrease in the adaptive

capacity of the organism, which has led to “the theory of

complexity loss” (Goldberger, Peng, et al., 2002), reported in

studies on ageing and pathology (Lipsitz and Goldberger, 1992;

Slifkin andNewell, 1999; Goldberger, Peng, et al., 2002), and recently

extended to studies on fatigue (Beretta-Piccoli et al., 2015). If we

understand fatigue as a state in which the organism is in a non-

optimal situation we can expect a loss of complexity in the different

signals related to force production. Some NLTs are, for example,

entropy measures, which estimate the predictability of a signal,

i.e., the probability that a data sequence pattern repeats itself in a

time series (Pincus, 1991; Richman andMoorman, 2000; Costa et al.,

2005). Other NLTs have also been used to study the predictability of

a time series, such as the percentage of Determinism (%DET) (Bauer

et al., 2017) or the Lyapunov Exponent (LyE), which measures the

extent to which the data series represents a similar pattern along

time (Wolf et al., 1985).

Additionally, attentionmust be paid to the tools that analyze the

autocorrelation of a time series to understand the complexity of the

physiological signals, such as the Detrended Fluctuation Analysis

(DFA) (Peng et al., 1995). These tools quantify complexity in

different ways, so a decrease in entropy measures [such as

approximate entropy (ApEn), sample entropy (SampEn) or fuzzy

entropy (FuzzyEn)], in LyE or %DET would reflect a loss of

complexity, and an increase in their values would indicate an

increase in complexity. Conversely, increasing values of DFA,
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CrossDet or Cross Shannon Entropy indicate a loss of complexity,

and decreasing values indicate an increase in complexity. This NLT

has proven to be useful in detecting the flexibility and adaptability of

the organism in different scenarios, such as at a physiological level

(Goldberger et al., 2002; Goldberger, Peng, et al., 2002; Decker et al.,

2011), in postural control (Peng et al., 2009), in injuries detection

(Stergiou et al., 2006; Bauer et al., 2017) or learning processes

(Barbado et al., 2017). Thus, more complex behaviors have been

associated with the individual’s more adaptable and healthy

condition. In contrast, more periodic or random behaviors may

be associated with a less adaptable or less healthy condition (Stergiou

et al., 2006), due to pathology, injury or other factors limiting the

organism’s functionality.

Different studies have applied NLTs to analyze fluctuations in

force production (Slifkin andNewell, 1999, 2000; Forrest et al., 2014)

and electromyography (Farina et al., 2002; González-Izal et al., 2012;

Beretta-Piccoli et al., 2015) and kinematic variables (Mann et al.,

2015) in fatigue conditions. Given the additional information

provided by the NLTs, and that, in some cases, they seem more

sensitive than linear measurements (Cavanaugh et al., 2005),

applying these methods to force signals for fatigue detection is of

interest. In the past few years, there has been an increase in the

number of studies that have applied these techniques to force

variability concerning fatigue analysis (Missenard et al., 2008;

Singh et al., 2010; Cashaback and Cluff, 2015). Therefore,

considering the increasing interest in this topic, this review aimed

to summarize the findings of studies that analyzed the variability in

force production during a muscle fatigue protocol in humans using

NLTs. Furthermore, factors such as relative intensity, type of muscle

action, recording frequency, and signal processing will also be

analyzed to understand their impact on results.

Methods

General procedure

This revisionwas based on the criteria of the PRISMAguidelines

(Page et al., 2021). The search, inclusion and exclusion criteria were

decided by consensus of all researchers. The search process was

carried out in different phases. First, the research question and the

search criteria were defined (Supplementary Appendix S1) based on

the PICO (participants, interventions, comparisons, outcomes)

recommendations (Whiting et al., 2016). Then, the search string

was defined, for which different exploratory searches with different

keywordswere performed. To confirmwhich combination endorsed

the lowest risk of bias, we consulted with experts in systematic

reviews, using non-linear tools and in-strength training. Following

this, one of the investigators (FGA) performed one first screening to

discard titles that were not related to the topic (e.g., articles from the

field of engineering). If there was any doubt about a paper, it was

added for review at a later stage. In the selection phase by title and

abstract, it was necessary to have the consensus of two researchers

(FGA and FM) to be included. In the event of a discrepancy a third

researcher (RS) was consulted. Once the different articles had been

reviewed in depth, it was discussed and decided by consensus of the

group whether they could be added to the review.

Data search and sources

The search was conducted in the following databases: Web of

Science (WoS), PubMed, Scopus, and SPORTDiscus (EBSCO).

The following search string was used: fatigue AND (entropy OR

Lyapunov OR “detrended fluctuation analysis”OR dfa OR “hurst

exponent” OR fractal* OR “recurrence quantification” OR

autocorrelation). Articles published up to October 2022 were

included for this review. The reference manager Mendeley was

used to collect and manage the references found, as well as the

excel software to manage the results obtained.

Selection process

The criteria for inclusion in the review were set to answer the

target question, which was defined on the basis of the PICO

items. Thus, the following inclusion criteria were used: a)

published studies with their title and abstract in English, b)

original studies that analyzed the effect of fatigue on humans

during an action focused on force production, c) studies that

applied NLTs on a signal directly related to force production

(force signal or kinematic variables).

The findings from each database and the selection process are

shown in Figure 1. In addition, the number of articles that were

included after reading the title and abstract of each database are

also shown in this same figure. Once the duplicates had been

eliminated, two reviewers (FGA and FM) agreed on the articles to

be included, and when there was any doubt, a third reviewer (RS)

was consulted. Additional searches were performed based on the

list of references, articles and reviews included, and on the

ResearchGate profiles of authors, finding three additional

studies that satisfied the inclusion criteria.

Extraction dates

Data extraction was carried out using a protocol agreed by the

authors. The following data were extracted from the selected articles:

1) number of participants; 2) characteristics of the participants; 3)

type of fatigue protocol; 3) muscle group targeted by the protocol; 4)

intensity and volume of the fatigue protocol; 5) pre- and post-test

performed; 6) instruments used for data recording; 7) frequency

used for data recording; 8) data processing; 9) NLT used; 10) main

results; 11) observations, if relevant.

Data extraction was performed by two reviewers. One

performed the main extraction (FGA), and the other
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confirmed it (CC). The data led to the following sections: 1) main

results; 2) physiological explanations for changes in the structure

of variability; 3) protocol factors affecting changes in the

structure of variability (intensity, volume, type of action, etc.);

4) instrument or data processing factors affecting changes in the

structure of variability; 5) other relevant aspects.

Risk of bias assessment

To analyze the risk of bias of each of the included articles,

the Quality Assessment Tool for Before-After (Pre-Post)

Studies With No Control Group scale developed by the

National Institutes of Health (NIH), was used, which has

been recommended for pre-post interventions without a

control group (Ma et al., 2020). In addition, ROBIS

recommendations (Whiting et al., 2016) were followed to

analyze the risk of review bias.

Results

As a result of the search process, 35 studies were selected

from the 268 reviewed and thoroughly read. After analysis

FIGURE 1
Flowchart of the search strategy.
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according to the above criteria, 22 articles were selected and

included in the review. The remaining 12 articles were not

included for one of the following reasons: 1) they did not

report pre and post fatigue data; 2) they did not claim to

have generated fatigue with their protocol. Adding

those found from other sources (ResearchGate

and references), a total of 25 papers were included in this

review.

In terms of risk of bias, most studies had a high NIH score

(8 positive, 3 not applicable or not reported, and 1 negative),

which is interpreted as high quality. Two studies stand out as

potentially slightly biased, namely Bastida-Castillo et al. (2017),

as it does not report the data processing completely, and Vázquez

et al. (2016), as the sample size seems to be too small. As for the

ROSBIS guidelines, the limitations of a narrative review have

been found. Supplementary Appendix S2 and S3 reports the

results of both assessments.

Twenty-five studies (Gates and Dingwell, 2008; Cowley et al.,

2014; Lin et al., 2014; Pethick et al., 2015; Pethick et al., 2016;

Vázquez et al., 2016; Bastida-Castillo et al., 2017; Bauer et al.,

2017; Pethick et al., 2018a; Pethick et al., 2018b; Cruz-

Montecinos et al., 2018; Pethick et al., 2019a; Pethick et al.,

2019b; Pethick et al., 2019c; Jiang et al., 2019; Chatain et al., 2020;

Guzmán-González et al., 2020; Hollman et al., 2020; Pethick

et al., 2020; Tyagi et al., 2020; Zhu et al., 2020; Chatain et al., 2021;

Pethick et al., 2021c; Pethick et al., 2021c; Oliveira et al., 2022),

which were published between 2008 and 2022, were selected for

this review. Table 1 shows the characteristics of the studies,

including the sample, the protocol used to cause fatigue, the NLT

used, the data acquisition and processing, and the main results.

Type of action and intensity

Isometric contractions were carried out in most of these

studies (20 out of 25). The participants of 12 studies

performed intermittent isometric contractions (Pethick

et al., 2015; Pethick et al., 2016; Pethick et al., 2018a;

Pethick et al., 2018b; Pethick et al., 2019b; Chatain et al.,

2020; Pethick et al., 2020; Tyagi et al., 2020; Zhu et al., 2020;

Pethick et al., 2021b; Chatain et al., 2021; Pethick et al.,

2021c), in five studies sustained isometric contractions were

applied (Cruz-Montecinos et al., 2018; Pethick et al., 2019a;

Jiang et al., 2019; Guzmán-González et al., 2020; Oliveira

et al., 2022), one study conducted rhythmic isometric

contraction (Lin et al., 2014), another study combined

intermittent isometric and eccentric contractions (Pethick

et al., 2019c), and one study performed a quasi-isometric

contraction (Vázquez et al., 2016). The remaining five

studies analyzed dynamic contractions (Gates and

Dingwell, 2008; Cowley et al., 2014; Bastida-Castillo et al.,

2017; Bauer et al., 2017; Hollman et al., 2020) in different

movements.

Regarding the volume applied during fatigue protocol,

twenty-three studies applied a protocol of fatigue until failure

or time limit (Gates and Dingwell, 2008; Cowley et al., 2014; Lin

et al., 2014; Pethick et al., 2015; Pethick et al., 2016; Vázquez et al.,

2016; Bauer et al., 2017; Pethick et al., 2018a; Pethick et al., 2018b;

Cruz-Montecinos et al., 2018; Pethick et al., 2019a; Pethick et al.,

2019b; Pethick et al., 2019c; Jiang et al., 2019; Chatain et al., 2020;

Guzmán-González et al., 2020; Hollman et al., 2020; Pethick

et al., 2020; Tyagi et al., 2020; Zhu et al., 2020; Chatain et al., 2021;

Pethick et al., 2021c; Pethick et al., 2021c). In these twenty-three

studies, three of them applied a low relative intensity, less than

30% of maximum contraction (Gates and Dingwell, 2008;

Cowley et al., 2014; Chatain et al., 2020). Twelve studies

applied a sub-maximal relative intensity between 30% and

80% of maximum (Vázquez et al., 2016; Pethick et al., 2018a;

Pethick et al., 2018b; Cruz-Montecinos et al., 2018; Pethick et al.,

2019c; Jiang et al., 2019; Guzmán-González et al., 2020; Tyagi

et al., 2020; Zhu et al., 2020; Pethick et al., 2021b; Chatain et al.,

2021; Pethick et al., 2021c). Two different types of relative

intensity were analyzed in six studies: low and sub-maximal

(Pethick et al., 2016; Pethick et al., 2019b; Pethick et al., 2020),

low and maximum (Pethick et al., 2019a) and sub-maximal and

maximum (Lin et al., 2014; Pethick et al., 2015). And two studies

used body weight (Bauer et al., 2017; Hollman et al., 2020).

The other hand, two studies used different volumes to

induce fatigue. Bastida-Castillo, Gómez-Carmona and Pino

(2017) conducted a 4 × 10 at 65% of Repetition Maximum

(RM). And Oliveira et al. (2022) carry out 5 × 20 at 30%

of MVC.

Type of signal and non-linear tools used

NLTs (see Table 1) were applied in force signal or torque for

17 studies (Lin et al., 2014; Pethick et al., 2015; Pethick et al., 2016;

Pethick et al., 2018a; Pethick et al., 2018b; Cruz-Montecinos et al.,

2018; Pethick et al., 2019a; Pethick et al., 2019b; Pethick et al., 2019c;

Chatain et al., 2020; Guzmán-González et al., 2020; Pethick et al.,

2020; Tyagi et al., 2020; Chatain et al., 2021; Pethick et al., 2021c;

Pethick et al., 2021c; Oliveira et al., 2022). In one study (Zhu et al.,

2020) the signal force was combinate with acceleration force. The

other seven studies implemented NLTs in kinematic variables, such

as joint angle (Vázquez et al., 2016), distance, speed and timing error

(Gates and Dingwell, 2008; Cowley et al., 2014), the coupled hip and

knee (Hollman et al., 2020), acceleration signals (Bastida-Castillo

et al., 2017; Bauer et al., 2017) and mechanomyography (Jiang et al.,

2019). The most common NLT used was entropy measurements,

assessed by ApEn (Pethick et al., 2015; Pethick et al., 2016; Bastida-

Castillo et al., 2017; Pethick et al., 2018a; Pethick et al., 2018b;

Pethick et al., 2019a; Pethick et al., 2019b; Pethick et al., 2019c;

Pethick et al., 2020; Tyagi et al., 2020; Zhu et al., 2020; Pethick et al.,

2021b; Pethick et al., 2021c), SampEn (Pethick et al., 2015; Bauer

et al., 2017; Cruz-Montecinos et al., 2018; Chatain et al., 2020;
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TABLE 1 General characteristics of the studies.

Authors Sample Protocol fatigue NLT Data acquisition
and processing

Main results
NLT

Bastida-Castillo et al.
(2017)

n = 11 trained men 4 × 10 65% RM squat (dynamic) ApEn Acceleration data at 1,000 Hz.
There is no information about
the data processing

Decrement of complexity
(decrease of ApEn) together with
loss of average propulsive velocity

Bauer et al. (2017) n = 86 (42 men) Pre-post-test: repeated trunk
flexion and extension. Fatigue
protocol: isometric trunk
extensors to failure

%DET +
SampEn

Angular displacement and
velocity at 200 Hz. Data were
transformed into quaternions
and filtered with low-pass
Butterworth filter (6 Hz)

Participants without low back
pain showed more complex
behavior (increase of SampEn
and decrease of %DET) in
angular velocity after fatigue

n = 59 with low pain
(30 men) 39.6 ±
11.6 years

n = 27 without low pain
(12 men) 39.1 ±
12.8 years

Chatain et al. (2020) n = 11 Healthy active
men 24.1 ± 6.6 years

Isometric knee extensor, blocks of
80s at 15% MVC to failure

SampEn Force sensor data at 2000 Hz
were filtered with low-pass
Butterworth filter (20 Hz) and
down-sampled at 400 Hz. A
Dickey-Fuller test and EMD
were used

Increase of complexity in the
original signal (increase of
SampEn), and decrease in
complexity (decrease of SampEn)
after eliminating non-stationarity

Chatainet al. (2021) n = 38 healthy young
adults (19 men) 22.6 ±
2.9 years

Intermittent isometric
contractions (8:4s) of the knee
extensors at 50% MVC until task
failure

RQA (DET) Force sensor data at 2000 Hz
were filtered with low-pass
Butterworth filter (20 Hz) and
down-sampled at 500 Hz. EMD
was used

Reduction of complexity
(increase of DET). Men showed
more complexity than women

Cowley, Digwell and
Gates (2014)

n = 20 healthy right-
handed adults
(11 men) 25 ± 2.2 years

Pre-post-test: Sawing task
(dynamic). Fatigue protocol:
LIFT at 10%MVC at 0.5 Hz for
3 min or failure. SAW at 25%
MVC for 4 min or failure

DFA Motion analysis system data at
120 Hz was resampled at
1,080 Hz and filtered with low-
pass Butterworth filter (6 Hz)

Reduction of complexity
(increase of DFA) for error in
LIFT and speed in SAW. Men
showed more complexity than
women. Increment of complexity
(decrease of DFA) for speed in
LIFT

Cruz-Montecinos,
et al. (2018)

n = 15 healthy men, age
between 18 and 25,
right-handed, 21 ±
1 years

Isometric elbow flexor 50% MVC
until failure

SampEn Load cell data at 1000 Hz were
filter with low-pass Butterworth
filter (12 Hz)

Reduction of complexity
(decrease of SampEn)

Gates and Dingwell
(2008)

n = 14 healthy right-
handed (9 men) 27 ±
2.7 years

Sawing task (dynamic) to 15% of
this maximum pushing/pulling
force until failure

DFA Motion analysis system data at
60 Hz were resampled at
1,080 Hz and filtered with low-
pass Butterworth filter (6 Hz)

Increase of complexity in the
original signal (decrease of DFA)
in speed and timing error

Guzmán-Gónzalez
et al. (2020)

n = 12 healthy men
right-handed
dominance, with
sedentary lifestyle 20 ±
2 years

Isometric handgrip flexor 50%
MVC until failure

SampEn Force signal data at 1,500 Hz
were filtered with low-pass
Butterworth filter (12 Hz)

Reduction of complexity
(decrease SampEn)

Hollman, et al. (2020) n = 40 healthy adults
(14 men) 23.85 ±
1.7 years

Pre-post-test: 20 step-down task
with their preferred stance limb.
Fatigue of the hip extensors
protocol: isometric trunk
extensors to failure. Fatigue sham
control group: push-ups until
failure

cRQA +
cShaEn

Motion analysis system data at
100 Hz were smoothed with a
Woltring quintic spline filter
(20 mm mean square error)

Reduction of complexity
(decrease of cross determinism
and mean line) in fatigue hip
extensor group

(Continued on following page)
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TABLE 1 (Continued) General characteristics of the studies.

Authors Sample Protocol fatigue NLT Data acquisition
and processing

Main results
NLT

Jiang, et al. (2019) n = 10 healthy men
24 ± 2 years

Isometric contraction of the
upper trapezius at 50% MVC
until failure

LZC + FEN
+ LyE

Acceleration data at 1,000 Hz.
There is no information about
the data processing

Reduction of complexity
(decrease of SampEn) in the three
conditions (control, self-
regulated dual task and regulated
dual task)

Lin, Kuo and Hwang
(2014)

n = 16 healthy men
right-handed
dominance and
between 20 and
24 years

Isometric power gripping in a
rhythmic manner at 50–100%
MVC until failure

MSE
(SampEn)

Digital force gauge data at
1,000 Hz were down-sampled to
100 Hz and filtered with low-
pass Butterworth filter (6 Hz)

Increase of complexity (increase
of SampEn). In MSE, increase of
complexity in high time scale
(increase MSE) and reduction of
complexity (decrease in low scale
time) in low time scale

Oliveira et al. (2022) n = 10 healthy young
adults (8 men) 24.9 ±
5.4 years

Pre-post-test: isometric
contraction from ankle plantar
flexors at 30% MVC for 90s.
Fatigue protocol: 5 × 20 unilateral
calf raises, 1-min rest between
sets

SampEn Isokinetic dynamometer data at
1,000 Hz. The last 30s were
down-sampled to 50 Hz, and
analyzed

Reduction of complexity
(decrease of SampEn)

Pethick et al. (2020) n = 10 healthy
participants (6 men)
25.9 ± 6.7 years

Intermittent isometric (6s: 4s)
knee extension at 40% MVC until
failure, in ischemic
preconditioning and sham
treatment groups

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in both conditions, but
with ischemic preconditioning
the reduction of complexity was
attenuated

Pethick et al. (2015) n = 11 healthy
participants (10 men)
25 ± 5.6 years

Intermittent isometric (6s: 4s)
knee extension at 40% and
maximal MVC until failure

ApEn +
SampEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and SampEn
and increase DFA) in both
conditions, but with submaximal
intensity the reduction of
complexity was attenuated

Pethick et al. (2016) n = 9 healthy
participants (5 men)
25.3 ± 5.8 years

Intermittent isometric (6s: 4s)
four trails above CT (approx.
25–35% MVC) and two trials at
50% and 90% of CT

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in trials above TC but no
significant differences below TC

Pethick et al. (2018a) n = 11 healthy
participants (7 men)
26.1 ± 6 years

Intermittent isometric (6s: 4s)
knee extension at 40% MVC until
failure with and without caffeine

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in both conditions, but
with caffeine the reduction of
complexity was attenuated

Pethick et al. (2018b) n = 9 healthy
participants (5 men)
23.9 ± 5.7 years

Intermittent isometric (6s: 4s)
knee extension at 40% MVC until
failure with different fatigue
conditions ipsilateral,
contralateral, ipsilateral with
occlusions and contralateral
occlusion trials

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in all conditions, except
occlusion ipsi-lateral in which
initial complexity was lower

(Continued on following page)
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Guzmán-González et al., 2020; Oliveira et al., 2022), Multi Scale

Entropy (MSE) (Lin et al., 2014), Cross Shannon Entropy (Hollman

et al., 2020) and FuzzyEn (Jiang et al., 2019). DFAwas also applied in

12 studies (Gates and Dingwell, 2008; Cowley et al., 2014; Pethick

et al., 2015; Pethick et al., 2016; Vázquez et al., 2016; Pethick et al.,

2018a; Pethick et al., 2018b; Pethick et al., 2019a; Pethick et al.,

2019b; Pethick et al., 2019c; Pethick et al., 2020; Pethick et al., 2021b;

Pethick et al., 2021b). The tools that were used the least were,

TABLE 1 (Continued) General characteristics of the studies.

Authors Sample Protocol fatigue NLT Data acquisition
and processing

Main results
NLT

Pethick et al. (2019a) n = 9 healthy
participants (7 men)
24.6 ± 5.5 years

Isometric knee extension at 20%
and maximal MVC until failure

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Each of the
experimental trials was divided
into 10 s intervals, using the
most stable 5 s

Reduction of complexity
(decrease of ApEn and increase
DFA) in maximal, but in
submaximal only decrease of
ApEn

Pethick et al. (2019b) n = 13 healthy
participants (10 men)
27.6 ± 6.4 years

Intermittent isometric (6s: 4s)
knee extension at 20% and 40%
MVC until failure

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in maximal intensity but
non-significant at 20% MV

Pethick et al. (2020) n = 12 healthy
participants (7 men)
24.7 ± 4.8 years

Intermittent isometric (6s: 4s)
three trails above CT (approx.
25–35%MVC) and four trials at ±
1 and 2 ES of CT

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) at 40% MVC but no
significant differences at
20% MVC

Pethick et al. (2021b) n = 11 healthy
participants (9 men)
26.3 ± 6 years

Intermittent isometric
contractions (6s: 4s) knee
extension at 50% MVC, in
different knee angles: 30°, 60° and
90° until failure or for 30 min

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in 90° and 60° angle but no
in 30°

Pethick et al. (2019c) n = 10 healthy
participants (8 men)
24.8 ± 6.2 years

Intermittent isometric (6s: 4s)
knee extension at 50% MVC until
failure and eccentric contraction
until than MVC >40%

ApEn
+ DFA

Isokinetic dynamometer data at
1,000 Hz. Analyzed the most
stable 5s

Reduction of complexity
(decrease of ApEn and increase
DFA) in both conditions, but in
eccentric recovery it was slower

Tyagi, et al. (2020) n = 42 adults 20 with
T1D (9 men) and
22 control (10 men)
22.7 ± 4.5 years

Intermittent isometric (15s: 15s)
handgrip at 30% MVC until
inability of maintaining
contractions or voluntary fatigue

ApEn Data from the intermediate 10s
of the hand-held dynamometer
at 1,000 Hz were filtered with a
Butterworth low-pass filter
(15 Hz)

Reduction of complexity
(decrease of ApEn)

Vazquez et al. (2016) n = 7 caucasian men
22.34 ± 3.5 years

Quasi-isometric elbow flexion of
90° at 80% 1RM until failure

DFA Electro goniometer data at
50 Hz. Amplitude resolution was
0.1° for each extremity do not
report to inform about the
processing of data

Reduction of complexity
(increase DFA)

Zhu et al. (2020) 22 healthy (10 men)
and 20 with type
1 diabetes (9 men)

Intermittent isometric (15s: 15s)
handgrip at 30% MVC until
exhaustion

ApEn Data from the intermediate 10s
of the hand-held dynamometer
at 1,000 Hz were filtered with a
Butterworth low-pass filter
(15 Hz) and of the accelerometer
at 45 Hz were filtered with a
Butterworth high-pass
filter (3 Hz)

Reduction of complexity
(decrease of ApEn) in both
instrumentals and both groups

Note. RM, repetition maximum; MVC, maximum voluntary contraction; CT, critical torque; SAW, sawing task; LIFT, shoulder flexor; ES, standard error; ApEn, Approximate Entropy;

SampEn, Sample Entropy; FEN, fuzzy entropy; MSE, multi scale entropy; cShaEn, cross Shannon Entropy; LZC, Lempel-Ziv complexity; LyE = Lyapunov Exponent; RQA, recurrence

quantification analyses; cRQA, cross Recurrence Quantification Analyses; DET, determinism; DFA, detrended fluctuation analysis; EMD, empirical mode decomposition.

Frontiers in Physiology frontiersin.org08

García-Aguilar et al. 10.3389/fphys.2022.1074652

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1074652


Lyapunov Exponent (Jiang et al., 2019), Recurrence Quantification

Analyses (RQA) (Bauer et al., 2017; Hollman et al., 2020; Chatain

et al., 2021), and Lempel-Ziv complexity (Jiang et al., 2019).

Data acquisition and processing

Most of the studies (19 out of 25) registered signals at 1,000 Hz

(Lin et al., 2014; Pethick et al., 2015; Pethick et al., 2016; Bastida-

Castillo et al., 2017; Pethick et al., 2018a; Pethick et al., 2018b; Cruz-

Montecinos et al., 2018; Pethick et al., 2019a; Pethick et al., 2019b;

Pethick et al., 2019c; Jiang et al., 2019; Pethick et al., 2020; Tyagi et al.,

2020; Pethick et al., 2021b; Pethick et al., 2021b; Oliveira et al., 2022)

or higher (Chatain et al., 2020; Guzmán-González et al., 2020;

Chatain et al., 2021). Lower sampling frequencies (lower than

200 Hz) were used in five of the 25 studies. (Gates and Dingwell,

2008; Cowley et al., 2014; Vázquez et al., 2016; Bauer et al., 2017;

Hollman et al., 2020). One study combined a high-frequency sample

in signal force and low-frequency sample in acceleration signal (Zhu

et al., 2020). Regarding data processing, four studies subsampled the

time series at 50 Hz (Oliveira et al., 2022), at 100 Hz (Lin et al., 2014),

at 400 Hz (Chatain et al., 2020) and at 500 Hz (Chatain et al., 2021)

and two oversampled at 1,080 Hz (Gates and Dingwell, 2008;

Cowley et al., 2014). As for filters, none were applied in

13 studies. In those studies which did use filters, the most

common one was a low-pass filter with different cut-off

frequencies: 6 Hz (Gates and Dingwell, 2008; Cowley et al., 2014;

Lin et al., 2014; Bauer et al., 2017), 12 Hz (Cruz-Montecinos et al.,

2018; Guzmán-González et al., 2020), 15 Hz (Tyagi et al., 2020; Zhu

et al., 2020) and 20 Hz (Chatain et al., 2020; Chatain et al., 2021).

Only one study (Zhu et al., 2020) applied a high pass filter on

accelerations signals, with a cut-off frequency of 3 Hz. Hollman et al.

(2020) applied a Woltring quintic spline filter for smooth

trajectories. Moreover, Chatain et al. (2020, 2021) used a Dickey-

Fuller test for detecting non-stationarity and Empirical Mode

Decomposition to obtain a stationary signal.

Relation between fatigue and force
variability

Seventeen studies showed a significant decrease in

complexity in all variables in which NLTs were used in the

development of fatigue (Pethick et al., 2015; Vázquez et al., 2016;

Bastida-Castillo et al., 2017; Pethick et al., 2018a; Pethick et al.,

2018b; Cruz-Montecinos et al., 2018; Pethick et al., 2019a;

Pethick et al., 2019c; Jiang et al., 2019; Guzmán-González

et al., 2020; Hollman et al., 2020; Pethick et al., 2020; Tyagi

et al., 2020; Zhu et al., 2020; Chatain et al., 2021; Pethick et al.,

2021c; Oliveira et al., 2022). One study (Pethick et al., 2021a)

reported a decrease in complexity when the contraction was

performed at angles of 60° and 90° at the knee, but not at 30°. Five

studies showed different relationships between complexity and

fatigue depending on the intensity of the fatigue protocol, the

NLTs used, the signal processing or the variable analyzed. Of

these five studies two found a decrease in complexity after

applying high and sub-maximal relative intensity, but there

was no change in complexity with fatigue caused by the

application of low intensities (Pethick et al., 2016; Pethick

et al., 2019b). Lin, Kuo and Hwang (2014), using MSE,

reported a complexity increase at high time scales, and a

decrease at low time scales. Chatain et al. (2020) observed a

complexity increase due to fatigue in the original signal, but after

removing the non-stationarity of the signal, they observed that

complexity decreased after fatigue. (Cowley, Dingwell and Gates

(2014) found that complexity decreased in the speed variability

under general fatigue, but it increased under localized fatigue. On

the other hand, two studies showed an increase in complexity due

to fatigue (Gates and Dingwell, 2008; Bauer et al., 2017).

Discussion

This review has examined the current knowledge on the

application of NLTs to analyze the relationship between the

complexity of force variability and the fatigue state of the

organism. Most of the studies reviewed reported a decrease in

the complexity of force variability along with the development of

fatigue. However, some studies did not report the same results.

Therefore, it is necessary to review the proposed mechanisms to

explain the possible causes of the decrease in complexity, as well

as the factors that apparently modulate the results: intensity, type

of contraction, recording frequency, and signal processing.

Possible mechanisms involved in the loss
of complexity

It has been suggested that force variability reflects the

interaction between the components of the neuromuscular

system (Slifkin and Newell, 1999) and the control loops

governing the force output (Fiogbé et al., 2021). Most

included studies found a loss of complexity caused by fatigue

in tasks with relatively short duration and sub-maximal to

maximum relative intensity. In these tasks, fatigue is expected

to be related to peripheral factors. Some studies support this

claim by shopping one-sidedly between fatigued and non-

fatigued limbs (Oliveira et al., 2022; Pethick et al., 2018b).

Thus, some studies in this review have interpreted that a loss

of complexity may be caused, or at least be affected, by increased

metabolic rate (Pethick et al., 2016; Pethick et al., 2018b; Pethick

et al., 2019a; Pethick et al., 2021c), reduced force-producing

capacity in the motor units (MU) (Pethick et al., 2015; Pethick

et al., 2016), or muscle damage caused by eccentric contractions

(Pethick et al., 2019c). Although there is no clear explanation

Pethick et al. (2021a) speculated that peripheral fatigue mediated
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by metabolite accumulation may lead to changes in the discharge

of motor units, being responsible for changes in complexity.

Secondly, it has also been pointed out that central mechanisms,

such as motor unit synchronization and firing rate, affect the loss of

complexity. Different studies in this review agree that one of the

main mechanisms that may affect this complexity loss is in MU

recruitment (Lin et al., 2014; Pethick et al., 2015; Pethick et al.,

2018b; Cruz-Montecinos et al., 2018; Pethick et al., 2019a; Pethick

et al., 2019b; Pethick et al., 2021a; Pethick et al., 2021a). This is

consistent with other studies that have linked changes in

organization and activity of MUs to changes in “motor output”

fluctuations (Taylor et al., 2003; Adam and De Luca, 2005;

Madeleine and Farina, 2008; Skurvydas et al., 2010). Thus, the

decrease in the ability to produce force requires a greater

synchronization of motor neurons. This increase in

synchronization means that the degrees of freedom of the system

are reduced, thus reducing complexity. It should be noted that some

authors have observed that, although timing is strongly related to

variability, it seems that common input also influences changes in

variability (Farina and Negro, 2015). On the other hand, some

studies have related the loss of complexity to changes in firing rate,

which may be modulated by factor such as relative intensity or time

contraction. However, literature shows disparate results regarding

the relationship between fatigue and the firing rate (Adam and De

Luca, 2005; Babault et al., 2006; Boyas andGuével, 2011; Castronovo

et al., 2015). Some studies have related this loss of complexity with an

increase in the firing rate (Lin et al., 2014; Cruz-Montecinos et al.,

2018), while other studies interpret it as a decrease in this rate

(Pethick et al., 2015; Bastida-Castillo et al., 2017). These disparate

results may be due to the heterogeneity of the protocols used (Boyas

and Guével, 2011).

In addition to the above mechanisms, some studies support the

influence of central factors on the loss of complexity as they report

that with increasing cognitive demands (central level) there was a

greater decrease in complexity in force production compared to

tasks with lower cognitive demands (Cruz-Montecinos et al., 2018;

Guzmán-González et al., 2020; Tyagi et al., 2020). Furthermore,

caffeine consumption, which affects the central nervous system, has

also been shown to slow down the loss of complexity that is caused

by the onset of fatigue (Pethick et al., 2018a).

Different authors have discussed the relationship between

fatigue of central and peripheral origin, with one affecting the

other (Gandevia, 2001; Boyas and Guével, 2011). It has been

suggested that changes at the peripheral level produced by fatigue

are compensated by changes at the central level (Taylor and

Gandevia, 2008). For example, when the capacity to produce

force is reduced due to alterations at the peripheral level, the

increase in active MU is activated as a compensation mechanism

(Gandevia, 2001; Pethick et al., 2015; Pethick et al., 2019b). It has also

been suggested that afferent outputs from the muscle affect central

levels (Taylor and Gandevia, 2008; Boyas and Guével, 2011), so

changes in a central level due to fatiguewould be useful to protect the

muscle from further peripheral fatigue (Gandevia, 2001). Therefore,

attempting to understand changes in force complexity solely based

on of the central or peripheral origin of fatigue may not adequately

portray the process that triggers fatigue mechanisms, which are not

independent elements, but are interconnected. Furthermore, Lin

et al. (2014) considered that the loss of complexity observed at the

shorter time scale (1–5) could be related to the increase in active

motoneurons d, and to the increase in excitatory impulses coming

from the central nervous system compensating for the loss of force.

Meanwhile, the increase in complexity observed over longer time

scales (25–40) could result from motor noises associated with

fatigue. The opposing time-scale trends in completeness with the

development of fatigue could reflect the interaction of at least two

regulatory systems, one voluntary and one involuntary, operating

over a wide range of time scales, and it could reflect the central and

peripheral mechanisms mentioned above. Thus, as suggested by

Pethick et al., (2021b), both peripheral and central processes appear

to be involved in the loss of complexity at the onset of fatigue. We

suggest understanding this as a feedback loop in which different

peripheral triggers leading to a decrease in force production are

compensated by central mechanisms, resulting in a decrease in

complexity. This could be caused by the reduction of the degrees of

freedom needed to meet the task demands. Thus, the complexity in

the different force production signals would decrease due to fatigue,

indicating that the organism is in a situation where it is less flexible

and has a reduced adaptive capacity.

Intensity and type of contraction

The intensity of the contraction seems to be one relevant factor

involved in the change in complexity due to fatigue. Most studies

assessing actions at sub-maximal or maximum intensity have

reported a decrease in complexity after the fatigue protocol

(Pethick et al., 2015; Pethick et al., 2016; Vázquez et al., 2016;

Bastida-Castillo et al., 2017; Pethick et al., 2018a; Pethick et al.,

2018b; Cruz-Montecinos et al., 2018; Pethick et al., 2019a; Pethick

et al., 2019b; Pethick et al., 2019c; Guzmán-González et al., 2020;

Pethick et al., 2020; Tyagi et al., 2020; Zhu et al., 2020; Chatain et al.,

2021; Pethick et al., 2021c; Oliveira et al., 2022). One study (Pethick

et al., 2021a) reported a loss of complexity at submaximal intensity

(50% MVC) in knee extension when the knee was at 90° and 60° of

extension (0° full extension), but not at 30°. The authors state that in

other studies, to achieve similar responses at 90° of extension, the

relative intensity had to be increased to 30°.

Only one study showed contradictory results according to the

time scale analyzed using MSE (Lin et al., 2014). It should be noted

that this type of analysis allows us to analyze how complexity behaves

at different temporal scales, which could be related to different system

elements involved.Moreover, according to Stergiou (2016), if entropy

(SampEn in this case) tends to decrease with increasing time scale, it

could mean that the relevant information is only at low time scales,

which could be related to the voluntary control mentioned above. In

this case, the contradictory results may be because they performed
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sinusoidal isometric contractions, as reported by Vaillancourt and

Newell (2003) who found different trends depending on whether

constant or sinusoidal isometric actions were performed. It may also

be the case that, while entropy measures typically analyze a single

time scale, the MSE examines different scales within the same time

series (Costa et al., 2005). As mentioned above, this could be related

to the type of control (voluntary or involuntary). Thus, it may be that

this type of actions may lead to an increase in complexity in

involuntary control, but a decrease in complexity in voluntary

control.

Papers that analyzed exercises carried out at low relative

intensity did not follow the aforementioned trend between

fatigue and complexity, revealing no significant differences

(Pethick et al., 2016; Pethick et al., 2019a; Pethick et al., 2019b)

or even showing an increase in complexity with the development of

fatigue (Gates and Dingwell, 2008). These differences depending on

relative intensity could be because the fact that the organism would

not be in a sufficiently compromised situation to show a loss of

complexity during low-intensity exercises. For instance, it has been

found that there is an inverse relationship between metabolic rate

and complexity (Pethick et al., 2019b). If the metabolic rate is not

increased enough at low relative intensity, complexity may not

decrease. The same applies to muscle oxygenation (Pethick et al.,

2019b) and changes inmovement patterns depending on the relative

intensity required (Gates and Dingwell, 2008; Cowley et al., 2014).

Consequently, if these changes are irrelevant, the central control

mechanisms will adjust the system’s requirements without

significant loss of complexity. Pethick et al. (2016) noticed that

loss of complexity happens because of intensities exceeding the

critical torque, which is approximately 20–25% of the MVC. In

another study, it was found that this critical torque is not an exact

threshold but a transition phase (Pethick et al., 2021b). It is

important to keep this in mind, since below this critical torque

or critical power, the organism may not have important changes in

homeostasis (Enoka and Duchateau, 2016). Moreover, as noted

above, they may even be sensitive to the angle at which the force is

produced, as the relative intensity for an effort will change as a

function of factors such as the length of the cross-bridge or lever

arm, for example. Thus, while theymay be a development of fatigue,

it may not be significant enough to affect complexity or the effect

may be minimal. This could explain why the NLTs seem to be less

sensitive at low intensities, thus showing no loss of complexity.

Another aspect that seems to affect the results is the type of

muscle activation. Most studies measured isometric actions at

sub-maximal and high intensities, resulting in a decrease in

complexity due to fatigue (Pethick et al., 2015; Pethick et al.,

2016; Vázquez et al., 2016; Pethick et al., 2018a; Pethick et al.,

2018b; Cruz-Montecinos et al., 2018; Pethick et al., 2019a;

Pethick et al., 2019b; Jiang et al., 2019; Chatain et al., 2020;

Guzmán-González et al., 2020; Pethick et al., 2020; Tyagi et al.,

2020; Zhu et al., 2020; Pethick et al., 2021a; Chatain et al., 2021;

Pethick et al., 2021c; Oliveira et al., 2022). But only one study,

Pethick et al. (2019c), analyzed eccentric and isometric

contractions, reporting greater fatigue and muscle damage

after the eccentric contractions, and longer recovery time in

eccentric actions (Pethick et al., 2019c). In that study, linear

measures of variability, such as standard deviation and coefficient

of variation, returned to baseline in a shorter period of time

(10 and 30 min, respectively) than measures of complexity. ApEn

and DFA maintained low complexity values for a longer period

showing that the organism had not yet recovered, although it is

possible that it is due to a greater extent to muscle damage. Thus,

this study also suggests that the NLTs are more sensitive than

traditional measures of variability.

In addition, there were five studies that analyzed dynamic

actions and only two of these five studies found a loss of

complexity due to fatigue (Bastida-Castillo et al., 2017;

Hollman et al., 2020). The rest of them showed controversial

results. Two studies found an increase in complexity (Gates and

Dingwell, 2008; Bauer et al., 2017), one study found an increase

or decrease of complexity depending on the variable analyzed

(Cowley et al., 2014). It has to be pointed out that two of the

studies that found an increase of complexity due to fatigue,

conducted actions at low intensities (Gates and Dingwell,

2008; Cowley et al., 2014), and it is possible that these results

are mediated by relative intensity, as mentioned above. Is should

also be noted that two of the studies (Bauer et al., 2017; Hollman

et al., 2020) used body weight loading as part of the fatigue

protocol and found opposite results. These studies found

contrary results, with Bauer et al. (2017) reporting an increase

in complexity, while Hollman et al. (2020) reported a decrease.

Both fatigued the lumbar musculature, using the Biering-

Sorensen test, in the fatiguing protocol, but in the pre- and

post-tests there was a greater involvement of the hip extensors. It

should be noted that Hollman et al. (2020) compared the lumbar

muscle fatigue protocol with a control protocol (push-up to

failure protocol) and reported that changes in complexity only

occurred in the lumbar muscle protocol, which was more specific

than the other. We interpret that these controversial results in

dynamic actions have three causes. Firstly, the methodological

heterogeneity of the studies. Secondly, because of the influence of

relative intensity, as mentioned above. Finally, due to the

differences between dynamic and isometric actions.

Differences in the involvement of the central and peripheral

levels in fatigue have been reported, depending on whether the

actions are isometric or concentric (Allen et al., 2008).

Furthermore, given the nature of dynamic actions, it is to be

expected that these have a higher non-stationarity component

than isometric actions. This increased non-stationarity will affect

the results, since some NLTs follow algorithms that assume a

higher degree of stationarity (Stergiou, 2016). Thus, in order to

obtain robust and reliable results, some of the HNLs mentioned

above need stationarity in the time series in which they are

applied (e.g., the LyE and entropy measures) (Caballero et al.,

2014). Therefore, signal processing can play an important role in

the study of complexity and its relation to fatigue.
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Influence of signal recording and
processing

Both the nature of the signal and its processing (e.g., sample

frequency, filtering) are significant factors when using NLTs

(Stergiou, 2016). In order to select the most appropriate sample

frequency, both the purpose of the analysis and the system’s

behavior (Stergiou, 2004, 2016) should be considered. Although

the studies analyzed in this review have not looked into this matter,

the results seem to suggest that it is advisable to use high recording

frequencies to capture the dynamics of fluctuations in force

production. Forrest et al. (2014) found that frequencies below

200 Hz were not suitable for ApEn analysis on force signals. It

appears that recording frequencies below this threshold may modify

the shape of the recorded signal and prevent capturing the dynamics

of variations in force production. Most of the studies in this review

that used recording frequencies higher than 200 Hz (n = 20)

reported a loss of complexity along with the development of

fatigue (Pethick et al., 2015; Pethick et al., 2016; Pethick et al.,

2018a; Pethick et al., 2018b; Cruz-Montecinos et al., 2018; Pethick

et al., 2019a; Pethick et al., 2019b; Pethick et al., 2019c; Guzmán-

González et al., 2020; Pethick et al., 2020; Zhu et al., 2020; Pethick

et al., 2021b; Pethick et al., 2021c), exception the study by Chatain

et al. (2020). Although Chatain et al. (2020) found an increase in

complexity in the original signal after the fatigue protocol, they

found a decrease in complexity when the non-stationarity of the

signal was eliminated. Studies using recording frequencies of 200 Hz

or lower (n = 6) reported results in different directions (Lin et al.,

2014; Vázquez et al., 2016; Bauer et al., 2017; Hollman et al., 2020;

Zhu et al., 2020; Oliveira et al., 2022). Two of these studies

oversampled the signal, increasing the length of the data sets

obtained in the record, and reported that fatigue caused an

increase in complexity in some measured variables (Gates and

Dingwell, 2008; Cowley et al., 2014), and a decrease in others

(Cowley et al., 2014). Furthermore, it has been observed that in

previous reviews on the use of NLTs, these have shown the

disadvantage of obtaining non-reliable results when the length of

time series is artificially increased as this signal processing may

significantly influence the results of the analysis, which is not

advisable (Stergiou, 2016).

Once the recording frequency has been determined, the

application of a filter can be considered. To consider the need for

a filter we have to know the characteristics of the signal (e.g., how

noisy it is). On this basis the type offilter will also be decided.While in

some cases it has been recommended to avoid filtering signals to

analyze the structure of the variability of a time series (Caballero et al.,

2014; Stergiou, 2016), one of the most commonly applied treatments

is the low-pass filter to prevent the occurrence of “unwanted” noise.

The analyzed studies reported low-passfilters with cut-off frequencies

of 6 Hz (Gates and Dingwell, 2008; Cowley et al., 2014; Lin et al.,

2014; Bauer et al., 2017), 12 Hz (Cruz-Montecinos et al., 2018;

Guzmán-González et al., 2020), 15 Hz (Tyagi et al., 2020; Zhu

et al., 2020), 20 Hz (Chatain et al., 2020; Chatain et al., 2021), and

in one of the studies a Woltring quintic spline filter (Hollman et al.,

2020) was used. Two of these studies showed a clear increase in

complexity (Gates and Dingwell, 2008; Bauer et al., 2017), three

showed mixed results (Cowley et al., 2014; Lin et al., 2014; Chatain

et al., 2020), and five revealed a decrease in complexity (Cruz-

Montecinos et al., 2018; Guzmán-González et al., 2020; Hollman

et al., 2020; Tyagi et al., 2020; Chatain et al., 2021). It seems that when

the filter cut-off ismade at a frequency of 6 Hz the results become less

consistent. This could be because, as some authors have pointed out

(Singh et al., 2010; Novak and Newell, 2017), frequencies ≤4 Hz
reflect voluntary control loops, while frequencies between 8 and

12 Hz reflect involuntary control loops such as physiological tremor.

Based on this, Zhu et al. (2020) used a high-pass filter with a 3 Hz

cutoff frequency to analyze the complexity of the tremor, reporting

loss of complexity in both the force signal and tremor in the

acceleration signal. Thus, if we use low-pass filters above 12 Hz it

is possible that the signal hardly varies at all, and therefore the results

are more consistent. On the other hand, it can be interesting to

analyze the signals at different frequency widths to find out how the

different voluntary and involuntary control systems affect the

complexity of the signal.

Finally, it should be noted that NLTs are sensitive to the

stationarity of the time series (Peng et al., 2009; Caballero et al.,

2013), whichmay have influenced the results reported by the studies

reviewed. Two studies (Chatain et al., 2020; Chatain et al., 2021)

applied Empirical Mode Decomposition (EMD) to reduce the non-

stationarity of the signal. The comparison between the original and

the treated signal was only performed in one of them (Chatain et al.,

2020). In that study the authors observed that complexity decreased

due to fatigue when non-stationarity was reduced, while it increased

in the original signal. This was observed at low intensities (15%

MVC), and it suggests that the non-stationarity of the signal affects

the sensitivity of NLTs, although further research is needed to

explore this methodological aspect in the application of these

tools when analyzing force variability. Moreover, non-stationarity

can be expected to have a bigger impact on dynamic actions. Thus, it

would be interesting to verify if applying this type of method

improves the robustness and reliability of NLTs to analyze

fatigue in non-isometric contractions.

Limitations, conclusion and future
perspectives

The main limitations of this review were the heterogeneity of

protocols, both of the NLTs used and of the different signal

treatments, which makes it difficult to draw solid conclusions. The

low number of studies on dynamic actions was another significant

limitation, which indicating the difficulty of performing non-linear

analyses on this type of actions. In addition to the above limitations,

some factors can modify the complexity values, such as pathologies

(Bauer et al., 2017; Tyagi et al., 2020), or intrinsic characteristics of the

participant such as gender (Duan et al., 2018; Chatain et al., 2021).
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Therefore, these variables should be considered in futurework relating

fatigue to complexity.

As mentioned above, a relationship has been suggested

between fatigue and loss of complexity in isometric actions at

a relative intensity that engages the body (above the critical

point). This loss of complexity appears to reflect changes at the

central level that occur to compensate for alterations at the

peripheral level. This clear relationship has not been observed

in dynamic actions, where factors such as non-stationarity may

hinder the application of NLTs. This review has highlighted the

importance of proper selection of the recording method and

signal processing. Thus, the following are suggested as practical

recommendations for analyzing force variability (see Figure 2).

Based on the studies reviewed, it is suggested that recording

FIGURE 2
Flowchart with the steps to analyse the structure of variability in kinetic and kinematic signals.
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frequencies of 200 Hz are adequate to capture the dynamics of

the system. Low-pass filters with cut-off frequencies above 12 Hz

do not seem to be particularly influential on the results. And it is

also possible that analyzing using filters with cut-off ranges with

frequencies of 12 Hz allows different aspects of force control to be

studied (e.g., <4 Hz to study voluntary control or 8–12 Hz to

study involuntary control). However, non-stationarity should be

a factor to be considered, especially in rhythmic isometric or

dynamic actions. Methods such as the EMD can be effective in

eliminating the non-stationarity of the signal. In addition, it may

be advisable to use methods that allow to analyze the structure on

different time scales (e.g., MSE), as the way these methods

develop in different structures of the system can then be

analyzed. Finally, as recommended by some authors

(Harbourne and Stergiou, 2009; Caballero et al., 2014;

Stergiou, 2016), the use of different NLTs is also advisable,

since these can measure complementary aspects of variability

(regularity, autocorrelation, etc.).

Further studies are needed in two directions. On the one

hand, an in-depth study of dynamic contractions, as they are the

most frequently performed in sport and in everyday life, and are

the ones about which we have the least information. In this way,

it will be possible to know if there is a relationship between

fatigue and the loss of complexity in these contractions, as well as

to know the correct methodology to apply. On the other hand, it

would be convenient to study whether it is possible to use these

tools in dynamic and isometric contractions to monitor fatigue in

training sessions. In this way, it would be possible to control the

state of fatigue in which the organism finds itself, allowing safer

and more efficient training programs to be carried out. In

addition, since no study specifically addresses the neural

mechanisms causing the loss of complexity, it would be

desirable to add measures to understand the neural

contributions to the loss of complexity, e.g., transcranial

magnetic stimulation. It would be interesting to conduct

studies with the aim of analyzing the underlying mechanisms.

To this end, measures can be added to understand the neural

contributions to the loss of complexity, e.g., transcranial

magnetic stimulation.
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