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An international project on the human genome revealed that various RNAs (e.g.,

messenger RNAs, microRNAs, and long noncoding RNAs [lncRNAs] and their

subclass circular RNA [circRNA)) are involved in the pathogenesis of different

human diseases, including cancer. Recent studies have highlighted the critical

roles of lncRNAs and circRNA in pancreatic ductal adenocarcinoma (PDAC),

especially in the epithelial–mesenchymal transition, a phenomenon regulating

cancer metastasis. Growing research in this field has indicated that the tertiary

structure of lncRNAs supposedly regulates biological function via RNA–RNA or

RNA–protein associations, aiding early diagnosis and therapy selection for

various diseases, including cancer. Here we describe the emerging roles of

ncRNAs in PDAC and highlight how these ncRNAs can be used to detect and

control this intractable cancer.
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1 Introduction

Cancer, a genetic disease, involves multiple mutations in cell growth-promoting and

death-inhibiting oncogenes and growth-restricting tumor suppressor genes. These

mutations arise from various genetic alterations, including those in both coding and

noncoding regions of chromosomes (Nowell, 1993; Hanahan and Weinberg, 2000;

Hanahan and Weinberg, 2011). Positional cloning approaches for exploring

oncogenes and tumor suppressor genes have enabled researchers to identify multiple

transcripts exhibiting aberrant structures and expression levels (Hanahan and Weinberg,

2000; Hanahan and Weinberg, 2011). MicroRNAs (miRNAs), a type of short noncoding

RNA, were first discovered in a study regarding hematopoietic malignancies (Calin et al.,

2002; Calin et al., 2005). Only a portion of the transcripts in human cells are associated
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with protein-coding genes. Long noncoding RNAs (lncRNAs)

are at least four times more transcribed than protein-coding

transcripts (Kapranov et al., 2007). The human genome project

identified various transcripts, including lncRNAs. The findings of

this project identified that large-scale cDNA sequencing projects

can reveal transcriptional complexities (Carninci et al., 2005).

Generally, lncRNAs are defined as transcripts

of >200 nucleotides that have been considered, although it

was discussed, not translated into protein (Kung et al., 2013).

According to multiomics analyses, tens of thousands of lncRNAs

are potentially associated with various diseases, providing further

evidence in their involvement and contribution in neurological

disorders and cancer (Ma et al., 2019). In this opinion article, we

focused on the recent advances in understanding the role of

lncRNAs and their corresponding nucleotides in a typical

refractory disease in gastrointestinal organs, pancreatic ductal

adenocarcinoma (PDAC), whose epidemiology has been

described in the Discussion section (Figure 1).

2 LncRNAs in PDAC

Although ncRNA are generally defined as nonprotein-

coding, notably, previous ribosome profiling studies suggest

that 40%–90% of the annotated lncRNAs undergo translation

(Ingolia et al., 2011; Guttman et al., 2013; Ji et al., 2015),

indicating diverse functions of ncRNAs. A study involving

mouse embryonic stem cells aimed to reveal the complexity

and dynamics of mammalian proteomes and defined a class

of short, polycistronic ribosome-associated coding RNAs

encoding small proteins known as micropeptides (Ingolia

et al., 2011). A study involving lncRNAs, 5’UTRs, and

pseudogenes indicated that lncRNAs may be translated, with

some likely to express functional peptides or proteins (Ji et al.,

2015). However, the peptides generated from lncRNAs

translation are unstable and lack biological function (Ji et al.,

2015). Nevertheless, there is a lack of consensus regarding the

exact method for assessing whether RNAs express functional

peptides or proteins (Guttman et al., 2013).

Although several lncRNAs may be involved in generating

small functional proteins or peptides, sequence complementarity

to other nucleotides probably helps regulate target stability or

function (Yang et al., 2022). lncRNAs act as competing

endogenous RNAs (ceRNAs) to sequester target miRNAs,

bind nearby target genes, and directly control

epithelial–mesenchymal transition (EMT)-related proteins

(Yang et al., 2022); EMT characterizes the metastasis and

invasion of cancer cells (Pastushenko and Blanpain, 2019). It

is not an on-or-off binary process but occurs in distinct cellular

states, involving multiple continuous dynamic transcriptional

FIGURE 1
lncRNAs and subclass circRNAs in PDAC PDAC developed from normal ducts in the pancreas and its altered precancer lesion, pancreatic
intraepithelial neoplasia (PanIN) (Suryavanshi et al., 2017; Ma et al., 2021). lncRNAs and subclass circRNAs can suppress the miRNA-dependent
inhibition of mRNA transcripts and their translated protein products involved in the development of PDAC. Notably, lncRNAs and circRNAs play roles
in EMT regulation, which is involved in PDAC metastasis: A phenomenon causing fatal outcomes in patients. Although lncRNAs and circRNAs
deploy various mechanisms and functions, as mentioned in the text, the schematic of a typical pathway is depicted in this figure. The multi-faced
function of ncRNAs includes the involvement in epigenetic regulation for PRC2 by HOTAIR. See each abbreviation in-text. lncRNA, long noncoding
RNA; circRNA, circular RNA; PRC2, polycomb repressive complex 2; PDAC, pancreatic ductal adenocarcinoma.
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and translational mechanisms (Pastushenko and Blanpain,

2019). EMT and its reverse phenotype

(mesenchymal–epithelial transition) are transcriptionally

regulated at the epigenetic level by mRNAs, miRNAs, and

lncRNAs (Brabletz et al., 2021). The transcription factor

cascade involved includes snail family transcriptional repressor

1 (SNAI1), SNAI2/SLUG, TWIST family basic helix-loop-helix

transcription factor 1, zinc finger E-box-binding homeobox 1

(ZEB1), and ZEB2 (Brabletz et al., 2021). Therapeutically

targeting EMT interferes with tumor progression (Brabletz

et al., 2021). By combining single-cell RNA and protein

analytics to investigate the role of stromal cancer-associated

fibroblasts in PDAC, considerable single-cell population shift

toward EMT and proliferative phenotypes linked with mitogen-

activated protein kinase and signal transducer and activator of

transcription 3 have been identified (Ligorio et al., 2019; Brabletz

et al., 2021). These observations highlight the influence of the

stroma in shaping tumor architecture in PDAC, which is closely

associated with the clinical observation that PDAC invasion and

metastasis occur during the early stages of the disease (Ligorio

et al., 2019). Generally, PDAC already metastasizes to multiple

organs by its diagnosis (Chen et al., 2021). Hence, to further

understand the disease mechanism of PDAC, the investigation of

lncRNAs is warranted.

2.1 lncRNAs function as CeRNAs in PDAC

A recent study indicated that 50% lncRNAs in PDAC

supposedly function as ceRNAs, which are any RNAs that

bind other RNAs, such as miRNA sponges, thereby regulating

other transcripts by competing for shared target sequences in

miRNAs (Salmena et al., 2011; Yang et al., 2022). The ceRNA

hypothesis proposes that RNAs form a large-scale regulatory

network across the transcriptome, extensively communicating

functional genetic information in the whole genome, and play

important roles in various disease pathologies, including cancer

(Salmena et al., 2011). Considering that a finite number of

lncRNAs exist, the ceRNA hypothesis supports the exchange

of information between molecules for communication within a

closed space (Salmena et al., 2011). Of the remaining lncRNAs in

PDAC, 9% are affected by the local regulators of their nearby

genes (Yang et al., 2022), suggesting that transcriptomal changes

in lncRNAs are also involved in the transcriptional regulation of

other genes. Hence, lncRNAs can be used to assess the epigenetic

regulation of local gene expressions. We discuss the ceRNA

related function of lncRNAs and circRNAs.

2.2 lncRNAs involved in EMT in PDAC

A recent study indicated that 34% lncRNAs in PDAC are

involved in regulating EMT or transforming growth factor beta 1

(TGFB)-related mechanisms (Yang et al., 2022), although

lncRNAs are not mutually exclusive to the ceRNA functional

group and overlap with each other.

2.2.1 Taurine-upregulated gene 1 (TUG1)
TUG1, an lncRNA overexpressed in PDAC, was initially

identified as an upregulated transcript by taurine; its abnormal

expression has been reported in numerous cancers (Qin and

Zhao, 2017; Zhao et al., 2017). TUG1 functions as an oncogenic

lncRNA promoting tumor progression by functioning as an

endogenous “sponge” and competing for miR-382 binding to

the target enhancer of zeste 2 polycomb repressive complex

2 subunit (EZH2), and regulates EMT-related gene expression

via epigenetic control (Qin and Zhao, 2017; Zhao et al., 2017).

2.2.2 HOX transcript antisense RNA (HOTAIR)
HOTAIR is located within the homeobox C (HOXC) gene

cluster on chromosome 12 and is coexpressed alongside the

HOXC genes (Ji et al., 2018). HOTAIR can bind lysine-specific

demethylase 1 and polycomb repressive complex 2, serving as a

scaffold for the assembly of these regulators at the HOXD gene

cluster, thereby promoting the epigenetic repression of HOXD

genes (Ji et al., 2018). In addition, HOTAIR interacts with miR-

17-5p, which is a tumor promoter or suppressor depending on

the cellular context. The interaction between HOTAIR and miR-

17-5p includes polycomb repressive complex 2 (PRC2)-mediated

chromatin regulation (Cloonan et al., 2008; Ji et al., 2018). The

first reported and most well-studied oncomiR is the humanmiR-

17-92 polycistron, which is a cluster of seven miRNAs derived

from the c-myc-regulated c13orf25 locus at chromosome 13q31.3

(He et al., 2005). miR-17-5p regulates the G1/S phase cell cycle

transition (Cloonan et al., 2008). The high expression in multiple

tumors, including PDAC (Tang et al., 2021; Yang et al., 2022),

makesHOTAIR a promising therapeutic target. Indeed, silencing

lncRNA HOTAIR inhibits EMT and PDAC progression through

the Wnt/β-catenin signaling pathway, providing a novel therapy

for PDAC (Tang et al., 2021).

2.2.3 DYNC2H1-4
PDAC is characterized by the overexpression of lncRNA

DYNC2H1-4 (human chromosome 11q22), which subsequently

promotes EMT and the subpopulation of cancer stem-like cell

phenotypes by acting as a miR-145 sponge in pancreatic cancer

cells, potentially associated with malignant behavior and

chemoresistance (Gao et al., 2017).

2.2.4 ADP-dependent glucokinase antisense
RNA 1 (ADPGK-AS1)

lncRNA ADPGK-AS1 (human chromosome 15q24.1)

overexpression promotes PDAC progression via the ceRNA

mechanism involving miR-205-5p by activating ZEB1-

mediated EMT (Song et al., 2018), suggesting a link between

cancer glycolysis control and EMT induction.
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2.2.5 linc00462
lncRNA linc00462 (human chromosome 13q14.2) promotes

the invasiveness of PDAC via the miR-665/TGFBR1-TGFBR2/

SMAD2/3 pathway (Zhou et al., 2018), suggesting that a ceRNA

mechanism links linc00462 with the TGFB pathway.

2.2.6 MEG8 and MEG3
lncRNAMEG8 (human chromosome 14q32) overexpression

in lung cancer and PDAC suppresses miR-34a and miR-203

expression, thereby upregulating the transcription factors SNAI1

and SNAI2, consequently repressing cadherin 1/E-cadherin

expression (Terashima et al., 2018). MEG8 associates with

EZH2 to recruit it to the regulatory regions of the two

miRNAs, eliciting histone H3 methylation and transcriptional

repression; the ceRNA mechanism in this case involves

lncRNA–protein binding, thereby reducing the proportion of

miRNAs (Terashima et al., 2018). The study indicated that

endogenous MEG8 lncRNA was indispensable for TGFB-

induced EMT (Terashima et al., 2018), proposing it as a

therapeutic target. MEG8 shares the delta-like homolog

1 gene (DLK1) and type III iodothyronine deiodinase gene

(DIO3) locus with MEG3 in EMT regulation (Terashima

et al., 2018). The imprint regulation of the DLK1-DIO3 locus

at 14q32.1–32.31 is biologically important for fetal development,

wherein imprinting errors can cause disorders, such as

cancer. Emerging evidence implicates this locus in both fetal

organ and tumor development (Enterina et al., 2017). MEG3

(human chromosome 14q32.2) is a maternally expressed

imprinted gene (He et al., 2017). Reportedly, MEG3 can be

affected by interaction of the activities of tumor protein 53

(TP53), mouse double minute 2 (human homolog),

growth differentiation factor 15, retinoblastoma 1, and other

key cell cycle regulators, suggesting that it can be used for

cancer diagnosis and prognosis (He et al., 2017), despite

the underlying ceRNA mechanism not being understood

completely.

2.2.7 X-inactive specific transcript (XIST)
lncRNA XIST (human chromosome Xq13.2) overexpression

in PDAC promotes cancer cell migration, invasion, and EMT via

a typical ceRNA mechanism involving the sponging of miR-429

to modulate ZEB1 expression (Shen et al., 2019).

2.2.8 Regulator of reprogramming
lncRNA ROR (human chromosome 18q21.31)

overexpression in PDAC promotes EMT via the

ZEB1 pathway (Zhan et al., 2016). ROR promotes the

proliferation, migration, and invasion of PDAC cells via the

Salvador–Warts–Hippo/yes-associated protein (YAP) pathway

(Chen et al., 2020), a mechanism different from that of ceRNA.

YAP potentially mediates EMT in PDAC and can be an

underlying target of ROR, which is supposedly an PDAC

biomarker (Chen et al., 2020).

2.2.9 LINC01296
lncRNA LINC01296 (human chromosome 14q11.2)

overexpression in PDAC promotes cell metastatic properties

by influencing EMT, indicating a poor PDAC prognosis,

whereas its silencing elicits apoptosis by impacting the B-cell

chronic lymphocytic leukemia/lymphoma 2/caspase-3 pathway

(Yuan et al., 2019), thereby suggesting the suitability of this

lncRNA as a diagnostic and therapeutic target of PDAC.

2.2.10 MALAT1
The lncRNA, metastasis-associated lung adenocarcinoma

transcript 1 (MALAT1; human chromosome 11q13.1) is

conserved evolutionary (Johnsson et al., 2014). MALAT1 is

transcribed from a single exon into a 7-kb long RNA

molecule as a precursor transcript. MALAT1 is derived by

RNase p cleavage of a tRNA-like small ncRNA (mascRNA)

from its 3’ end (McCown et al., 2019). The resultant mature

transcript lacks a canonical poly(A) tail but is stabilized by a 3’

triple helical structure (McCown et al., 2019). Whereas the

processed MALAT1 is predominantly retained in the nuclear

speckles, mascRNA is transferred into the cytoplasm (Johnsson

et al., 2014; McCown et al., 2019). Although the function of

MALAT1 in “miRNA sponge” was noted and reviewed

(Plotnikova et al., 2019), the involvement of PDAC remains to

be investigated fully.

3 Circular RNAs in PDAC

During normal splicing, introns are removed from

premRNA to form mRNA. However, back splicing can induce

one or more exons to form a single ring, thereby generating

circRNAs (Barrett and Salzman, 2016; Patop et al., 2019), a

subclass of noncoding RNAs (Qu et al., 2015). Certain circRNAs

interact with miRNAs, whereas some others are translated.

Furthermore, circRNAs reportedly regulate immune responses

(Patop et al., 2019). Recent studies have proposed that circRNAs

alongside lncRNAs participate in EMT in PDAC, affecting the

migration and invasion of tumor cells by playing important roles

in epigenetic processes, transcription, and post-transcriptional

regulation (Yang et al., 2022). However, the mechanisms

underlying their intelligent structures and whether they can

correctly and efficiently act as miRNA sponges remain

unclarified (Qu et al., 2015; Barrett and Salzman, 2016; Patop

et al., 2019). A significant fraction (>90%) of circRNAs

supposedly functions as ceRNAs against target miRNAs

through RNA–RNA complementarity (Yang et al., 2022).

3.1 circ-NEIL3

circ-NEIL3 (human chromosome 4 [chr4]:178274462-

178,281,831) overexpression in PDAC facilitates cancer
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proliferation and metastasis through circ-NEIL3/miR-432-5p/

adenosine deaminases acting on the RNA 1 (ADAR1) axis

(Shen et al., 2021a). Mechanistically, circ-NEIL3 regulates

ADAR1 expression by sponging miR-432-5p to induce RNA

editing of glioma-associated oncogene 1 (GLI1), ultimately

influencing cell cycle progression and promoting EMT in

PDAC cells (Shen et al., 2021a). This process is regulated by

the adenosine (A)-to-inosine (I) RNA editing via

ADAR1 through a negative feedback loop (Solomon et al.,

2017; Shen et al., 2021a). RNA editing is vital for preventing

the abnormal activation of cytosolic nucleic acid-sensing

pathways by self-double-stranded RNAs (Solomon et al.,

2017). The editing effect on the RNA secondary structure is

context-dependent, suggesting for the first time that circRNAs

can interplay with RNA editing, underscored by the intricate

regulatory role of ADAR1 on global RNA secondary structure

(Solomon et al., 2017).

3.2 circ-0001666

circ-0001666 (chr6:170,626,457-170,639,638) overexpression

in PDAC increases transcription factor SOX4 expression, a direct

downstream effector of miR-1251, by binding to miR-1251

(Zhang et al., 2021). Silencing circ-0001666 repressed EMT in

PDAC cells by upregulatingmiR-1251 and downregulating SOX4

(Zhang et al., 2021). This study indicated that circ-0001666

functions via a ceRNA mechanism.

3.3 circ-0092367

circ-0092367 (transcribed from the SNORD116-14 gene

[ENSG00000206621]) is significantly downregulated in PDAC

and inhibits EMT phenotypes and sensitizes PDAC cells to

gemcitabine treatment both in vitro and in vivo via the miR-

1206/epithelial splicing regulatory protein 1 (ESRP1) axis (Yu

et al., 2021). ESRP1 regulates fibroblast growth factor receptor 2

(FGFR2)/K-sam-IIIb expression, an epithelial cell-specific

FGFR2 isoform, and regulates hyaluronate receptor (CD44),

catenin delta 1, and enabled homolog Drosophila splicing,

which undergoes splicing changes during EMT (Vadlamudi

et al., 2020). circ-0092367 is involved in controlling EMT in

PDAC and in the therapeutic response.

3.4 circ-0092314

circ-0092314 (produced from human RAN binding protein

1 [RANBP1] gene located at chr22: 20,113,099-20,113,439)

overexpression in PDAC induces EMT by sponging miR-671,

increasing S100P expression (Shen et al., 2021b). circ-0092314

directly binds to miR-671 (Shen et al., 2021b). S100P may

function as an ion sensor and contribute to cellular signaling by

binding Ca2+, Zn2+, andMg2+ (Suryavanshi et al., 2017). It interacts

in a calcium-dependent manner with other proteins, such as villin

2, ezrin, and protein phosphatase 5 catalytic subunit, and indirectly

plays a role in physiological processes, such as microvilli formation

in epithelial cells (Suryavanshi et al., 2017).

3.5 circ-0005105

circ-0005105 (produced at the yeast Sec24 homolog A

[SEC24A] gene locus on chromosome 5q13 containing exon

9-12 [chr5:134022479-134023989]) overexpression in PDAC

activates collagen type XI alpha 1 chain by targeting miR-20a-

3p to promote PDAC progression (Ma et al., 2021). circ-0005105

triggers EMT via a ceRNA mechanism, making it a potential

prognostic marker and therapeutic target of PDAC (Ma et al.,

2021). Future studies should investigate the mechanism by which

this lncRNA influences EMT.

3.6 circ-UHRF1

circ-UHRF1 (chr19:4,941,539-4,945,977) overexpression in

PDAC regulates ADP ribosylation factor-like GTPase 4C

expression by sponging miR-1306-5p to promote PDAC

progression. Circ-UHRF1 expression in PDAC cells was

transcriptionally regulated via the interferon regulatory factor

3 (Liu et al., 2022).

4 Discussion

While clinical approaches indicated improvements in the first-

line therapy, the 5-year overall survival only shows an increase

from 5% to 10%, and surgical resection is only available for 20%

patients with advanced PDAC, indicating that the disease is fatal

for humans (Raja Arul et al., 2022). This cancer harbors the “big 4”

driver mutations, i.e., substitutions or alterations in the KRAS

proto-oncogene, GTPase (KRAS), TP53, cyclin-dependent kinase

inhibitor 2A, and mothers against decapentaplegic homolog 4

(https://cancer.sanger.ac.uk/census; https://portal.gdc.cancer.gov).

These can be useful for predicting the prognosis of patients with

PDAC (McIntyre et al., 2020). Nevertheless, recent studies

indicated that single-cell transcriptomes of PDAC exhibit

several alterations; however, further studies are undoubtedly

necessary for profiling whole-cell transcriptomes, including

those of lncRNAs (Hwang et al., 2022). Altered lncRNA

expressions can dysregulate clinically significant protein-coding

of clinical significance and contribute to disease pathogenesis.

lncRNA functions remain to be clearly understood. Some

researchers have argued that lncRNAs are annotated in the

wrong position and that they actually encode proteins, with
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several of them having been reported to encode peptides with

biologically relevant functions, as demonstrated in the study

involving myoregulin, an important regulator of skeletal muscle

physiology (Anderson et al., 2015). The study revealed the

possibility of additional micropeptides being encoded by the

many RNAs that are currently annotated as noncoding

(Anderson et al., 2015). For example, LINC00961 encodes the

small regulatory polypeptide of amino acid response (Matsumoto

et al., 2017). Using the data in this review, we have significantly

expanded our knowledge regarding lncRNAs, and we have a better

understanding of their regulation of EMT in PDAC.

Notably, the current information indicates that almost all

circRNAs are involved in the ceRNA mechanism, whereas linear

lncRNAs are associated with diverse functions and not restricted

to the ceRNAmechanism. The lncRNA–miRNA–mRNA ceRNA

network has been implicated in various cancers, including lung

(Wu et al., 2020), tongue (Zhou et al., 2019), and ovarian (Braga

et al., 2020) cancers. The exact mechanism can be assessed by

computational calculations and actual biological experiments

showing the binding of miRNAs to circRNA via binding

assays with mutated miRNA binding sites and luciferase

translation readout as, similar to mRNAs, a significant portion

of the noncoding transcriptome, including lncRNAs and

pseudogenes, harbors miRNA-response elements that are

targets of ceRNA (Karreth and Pandolfi, 2013). The fact that

the lncRNA/circRNA–miRNA–mRNA ceRNA network can be

predicted based on the overlap between miRNA-binding sites

brings us one step closer to the complete functionalization of the

human transcriptome in cancer, including PDAC, and toward

precise diagnosis and innovative therapies for precision

medicine. In combination with current development of PDAC

surgery, we expected that the full characterization of lncRNA and

circRNA network will contribute to further optimizing outcomes

and shed light on refractory PDAC (Strobel et al., 2019).
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