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Arterial stiffness, frequently associated with hypertension, is associated with
disorganization of the vascular wall and has been recognized as an independent
predictor of all-cause mortality. The identification of the molecular mechanisms involved
in aortic stiffness would be an emerging target for hypertension therapeutic intervention.
This study evaluated the effects of perindopril on pulse wave velocity (PWV) and
on the differentially expressed proteins in aorta of spontaneously hypertensive rats
(SHR), using a proteomic approach. SHR and Wistar rats were treated with perindopril
(SHRP) or water (SHRc and Wistar rats) for 8 weeks. At the end, SHRC presented
higher systolic blood pressure (SBP, +70%) and PWV (+31%) compared with Wistar
rats. SHRP had higher values of nitrite concentration and lower PWV compared with
SHRC. From 21 upregulated proteins in the aortic wall from SHRC, most of them
were involved with the actin cytoskeleton organization, like Tropomyosin and Cofilin-
1. After perindopril treatment, there was an upregulation of the GDP dissociation
inhibitors (GDIs), which normally inhibits the RhoA/Rho-kinase/cofilin-1 pathway and
may contribute to decreased arterial stiffening. In conclusion, the results of the present
study revealed that treatment with perindopril reduced SBP and PWV in SHR. In
addition, the proteomic analysis in aorta suggested, for the first time, that the RhoA/Rho-
kinase/Cofilin-1 pathway may be inhibited by perindopril-induced upregulation of GDIs
or increases in NO bioavailability in SHR. Therefore, we may propose that activation of
GDIs or inhibition of RhoA/Rho-kinase pathway could be a possible strategy to treat
arterial stiffness.

Keywords: pulse wave velocity, proteomic analysis, ACE inhibitor, hypertension, aorta artery

Abbreviations: Ang II, angiotensin II; BP, blood pressure; DHPR, dihydropteridine reductase; ECM, extracellular matrix;
GDI, GDP dissociation inhibitor protein; GAPs, GTPase-activating proteins; GEFs, guanine nucleotide exchange factors;
LIMK, LIM kinase; MMP, metalloproteinase; MLC, myosin light chain; MLCK, myosin light-chain kinase; MLC-P, myosin
light-chain phosphorylation; MLCP, myosin light-chain phosphatase; MYPT1, myosin targeting subunit; NO, nitric oxide;
NO2

−, nitrite; PWV, pulse wave velocity; ROS, reactive oxygen species; RAS, renin–angiotensin system; SHR, spontaneously
hypertensive rats; SBP, systolic blood pressure; BH4, tetra-hydrobiopterin; TT, transit time; VSMCs, vascular smooth
muscle cells.
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INTRODUCTION

Arterial stiffness has been recognized as an independent predictor
of all-cause mortality, not only in population with diseases
like hypertension, diabetes, and renal disease (Hamilton et al.,
2007; Sakuragi and Abhayaratna, 2010; Vlachopoulos et al.,
2010), but also in overall population (Mitchell, 2014; Nilsson
Wadstrom et al., 2019; Scuteri et al., 2020). It is well established
that hypertension, associated or not with aging, leads to
increased arterial stiffness (Morgan et al., 2014; Phillips et al.,
2015; Lindesay et al., 2016, 2018; Lacolley et al., 2017; Rode
et al., 2020), assessed by pulse wave velocity (PWV), even
though some authors have shown that the development of
arterial stiffness may be prior to hypertension (Celik et al.,
2006; Kaess et al., 2012), which may cause increases in
afterload and left ventricular remodeling (Zieman et al., 2005;
Ohyama et al., 2016).

Assessment of PWV has been performed in humans
using ultrasound, Doppler, magnetic resonance imaging, and
applanation tonometry techniques (Mitchell et al., 2010; Phillips
et al., 2015; Ohyama et al., 2016; Obeid et al., 2017a,b;
Nilsson Wadstrom et al., 2019; Rode et al., 2020; Scuteri
et al., 2020); although human studies precisely determine the
compliance and arterial stiffness via the dynamic properties of
the arterial wall, they are limited in advancing our knowledge
on conditioning mechanisms. The possibility of having an
experimental model with the measurement of both blood
pressure (BP) and PWV, simultaneously with direct access to the
arteries for gene, protein, histological studies, and other assays,
represents an important advancement for better understanding
the mechanisms involved in arterial stiffness changes. In this
regard, our group recently standardized a new non-invasive
device for assessment of arterial stiffness in rats (Fabricio
et al., 2020) and showed that it is able to detect changes in
arterial stiffness that are conditioned by age- and pressure-related
arterial remodeling.

Aortic stiffening is associated with either a remodeling
or disorganization of the vascular wall, which derives from
an increased collagenous material, fibrotic components, the
presence of elastin fiber fracture, arterial elasticity, or vascular
smooth muscle cell (VSMC) hypertrophy (Morgan et al., 2014;
Lindesay et al., 2016, 2018; Fabricio et al., 2020; Steppan
et al., 2020). Among several causes of aortic stiffness, the
central role of the renin–angiotensin system (RAS) is well
known, and therefore, some studies have shown the effects
of RAS inhibition on arterial stiffness (Marque et al., 2002;
Gonzalez et al., 2018) and, consequently, on BP, but the exact
molecular mechanisms induced by RAS on aortic stiffness are not
completely understood.

Since either hypertension may induce arterial stiffness or
arterial stiffness may induce hypertension, understanding the
mechanisms involved in aortic stiffness would be an emerging
target for therapeutic intervention to prevent and/or treat
hypertension. Thus, the aim of this study was to evaluate the
effects of perindopril treatment on PWV and to identify the
differentially expressed proteins in the aorta of spontaneously
hypertensive rats (SHR), using a proteomic approach.

MATERIALS AND METHODS

Twenty-two SHR (250–300 g, 3 months) and ten Wistar rats
(similar age) were obtained from the Animal Facility of Institute
of Biomedical Sciences, University of São Paulo, (USP) and
São Paulo State University (UNESP), campus of Botucatu, SP,
Brazil, respectively. All rats were housed at the animal facility
maintenance at School of Sciences, São Paulo State University—
UNESP, campus of Bauru. All rats received water and food
(Biobase, Águas Frias, SC, Brazil) ad libitum and were maintained
in a dark–light cycle (12–12 h) in a controlled temperature
room (22 ± 2◦C). All methods used were approved by the
Committee for Ethical Use of Animals at School of Sciences,
UNESP (#778/2017 vol. 1).

Pharmacological Protocol
The animals were separated into three groups with similar body
weight (BW) and randomly assigned to undergo an experimental
protocol through 8 weeks: SHRc (n = 12): SHR treated daily with
tap water; SHRP (n = 10): SHR treated daily with perindopril; and
Wistar (n = 10): Wistar rats treated daily with tap water.

During the experimental protocol, rats were treated daily
with perindopril, an angiotensin II-converting enzyme inhibitor
(Conversyl R©, 3 mg/kg of BW), or tap water, via gavage, at 9 a.m.
for 8 weeks. This dose was chosen based on previous publication
(Yazawa et al., 2011). In order to test the effectiveness of the
pharmacological treatment, a bolus of Angiotensin I was infused
after treatment period (100 µl, at dose of 1 µg/µl, i.v.) in two
treated and two control rats and AP response was evaluated.

Functional and Biochemical Analyses
Pulse Wave Velocity
After 60 days of pharmacological treatment, the assessment
of PWV was performed as previously published (Fabricio
et al., 2020). In summary, each rat was anesthetized with
xylazine hydrochloride (Anasedan R©, 10 mg/kg) and ketamine
hydrochloride (Dopalen R©, 50 mg/kg), and two pOpet R© probes
(Axelife SAS, Saint Nicolas de Redon, France) were positioned on
the right forelimb (close to elbow) and hindlimb (close to knee).
After stabilization of the signal (in a quiet room), the transit
time (TT, ms) was recorded for 10 s and registered by pOpet
1.0 software. Taking together the travelled distance (D, cm),
estimated by the distance between the two probes, and TT, the
PWV was calculated using the following formula:

PWV (m/s) = D (m) /TT (s)

For PWV analysis, 10 measurements of each rat were done and
the average was calculated.

Blood Pressure Measurements
Systolic blood pressure (SBP) was measured every other
week during the experimental protocol using a tail-cuff
plethysmography system (PanLab LE5001, Barcelona, Spain).
Before the experimental protocol, each rat was subjected to an
adaptation period in the restraint cage (5 days before). For the
measurement, each rat was allocated into the restraint cage, which
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was preheated at 37◦C. Keeping the rat into the restraint cage,
a cuff was positioned around the tail of the rat (outside of the
cage), just before the transducer, which detected tail arterial
pulse. Systolic BP (through tail-cuff technique) was determined
when the first pulse was detected during the deflating process.
Rat’s tail BP was considered as the mean of five measurements
(Amaral et al., 2000).

At the end, 24 h after PWV assessment, all rats were
anesthetized with xylazine hydrochloride (Anasedan R©, 10 mg/ml)
and ketamine hydrochloride (Dopalen R©, 50 mg/kg) from Ceva
Sante Animale, Paulínea, SP, Brazil, and the carotid artery was
catheterized, as previously published (Amaral et al., 2000). After
24-h recovery, pulsatile pressure of each awake animal was
continuously recorded for at least 1 h, in a quiet room, using
a pressure transducer (DPT100, Utah Medical Products Inc.,
Midvale, UT, United States) connected to the artery cannula,
which sent the signal to an amplifier (Quad Bridge Amp,
ADInstruments, NSW, Australia) and then to an acquisition
board (Powerlab 4/35, ADInstruments, NSW, Australia), as
previously published (Duchatsch et al., 2018). SBP was derived
from pulsatile BP recordings, using a computer software
(Labchart pro v7.1, ADInstruments, NSW, Australia).

Nitrite Concentration
After the functional parameter measurements, all rats were
deeply anesthetized by an overload of xylazine hydrochloride and
ketamine hydrochloride (Anasedan R©, 20 mg/kg and Dopalen R©,
160 mg/kg, i.v., respectively, Ceva Sante Animale, Paulínea,
SP, Brazil) and euthanized by decapitation. Blood samples
were collected in heparinized vacutainers immediately after the
euthanasia and centrifuged at 4,000 rpm for 5 min for analysis
of nitrite concentration as previously published (Jacomini
et al., 2017). In summary, proteins were quantified using
automated biochemistry equipment (model A-15, Biosystems
S/A, Barcelona, Spain) to normalize the calculation of nitrite
concentration. Nitrites (NO2

−), metabolites of NO, were
determined in plasma using Griess reagent in which a
chromophore with a strong absorbance at 540 nm is formed
by the reaction of nitrite with a mixture of naphthyl
ethylenediamine (0.1%) and sulfanilamide (1%). Samples were
analyzed in duplicate, and plasma results are expressed as
nmol/mg of protein.

Proteomic Analysis
Protein Extraction
After euthanasia, the thoracic aorta was excised, cleaned, and
homogenized in liquid nitrogen to prevent protein degradation.
For the extraction, a total of 50 mg of tissue was homogenized
in 500 µl of lysis buffer (7 M urea, 2 M thiourea, and 40 mM
dithiothreitol (DTT), all diluted in 50 mM of AMBIC solution)
for 2 h in the refrigerator, shaking all the time and, at the
end, centrifuged at 20,817 g for 30 min at 4◦C, followed by the
collection of the supernatant. Total protein was quantified using
the Quick StartTM Bradford Protein Assay kit (Bio-Rad, Hercules,
CA, United States), in duplicate, as described in the literature
(Bradford, 1976).

Proteomic Analysis of the Aorta
The proteomic analysis was performed as previously described
(Dionizio et al., 2018, 2020). A pool sample of aorta from two rats
was performed and the proteomic analysis was done in biological
triplicates. They were subdivided into 50-µl aliquots containing
50 µg of proteins (1 µg/µl) and 25 µl of a 0.2% RapiGest SF
solution (Waters, Milford Massachusetts, United States) was then
added, followed by agitation and 10 µl of 50 mM AMBIC was
added. The samples were incubated at 37◦C for 30 min. After
this period, samples were reduced using 2.5 µl of 100 mM DTT
(Merck KGaA, Darmstadt, Germany), incubated at 37◦C for
60 min, alkylated with 2.5 µl of 300 mM iodoacetamide (IAA,
Sigma-Aldrich, Darmstadt, Germany), agitated, and incubated
in the dark at room temperature for 30 min. The samples
were digested with the addition of 100 ng of trypsin solution
(Thermo Scientific, Santa Clara, United States) in 50 mM AMBIC
at 37◦C overnight. After digestion, 10 µl of 5% trifluoroacetic
acid (TFA) was added, agitated, and incubated at 37◦C for
90 min. Subsequently, samples were centrifuged at 20,817 g
at 6◦C, for 30 min. The supernatants were purified and
desalinated using a Pierce C18 Spin column (Thermo Scientific,
Santa Clara, United States). The supernatant was resuspended
in 108 µl 3% acetonitrile, 0.1% formic acid, and 12 µl of
standard enolase. Peptide identification was performed on a
nanoAcquity UPLC-Xevo QTof MS system (Waters, Manchester,
United Kingdom) as previously described (Lima Leite et al.,
2014). Protein identification was obtained using ProteinLynx
Global Server (PLGS) version 3.0, using the ion-counting
algorithm incorporated into the software. The data obtained
were searched in the database of the species Rattus norvegicus
(UniProtKB/Swiss-Prot). The protein profile was obtained using
the CYTOSCAPE R© software v.3.7.0 (Java R© 1.8.0_162) and the
plugins ClusterMarker and ClueGO. All proteins identified by
the mass spectrometer were inserted into the software, using
their access number, and can also be seen in the UniProt
database, free of charge and available on the virtual platform
(UniProt Consortium, 2019).

After confirming the proteins in the UniProt accession
database, the first network was created. Then, it was necessary
to make a filter with the taxonomy used in this study (Rattus
norvegicus; 10,116). Within this classification, proteins were
separated with a ratio value greater than one for those found to
be upregulated, or a ratio less than one for those downregulated.
Different numbers were assigned to identify the proteins specific
to each group in the comparison.

Then, in CYTOSCAPE R© itself, it was necessary to select other
subclassifications from the list to form networks with greater
specificity and the possible protein comparisons that interacted
with those identified by the mass spectrometer. CYTOSCAPE R©

also has other interesting features such as plug-ins Clustermarker
and ClueGo R©, which allowed us to classify the proteins identified
by the mass spectrometer according to their characteristics:
biological process, relationship with the cellular component,
immune system process, molecular function, KEGG (pathways
involving genes and genome), REACTOME (biological pathways
in humans), and WikiPathways (general biological pathways).
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The proteins were analyzed and aggregated by the term that
had the most meaning to describe them. In this way, genes,
proteins, and mRNA can be connected and integrated within
a subnetwork created by Cytoscape R© software of the plug-in
ClusterMark R©, which allows us to seek interrelationships to better
investigate and to provide new potential associations, which can
be created using the layout offered through ClueGo R©.

Statistical Analysis
All values are presented as mean ± standard error of the
mean (SEM). For the samples with normal distribution, one-
way analysis of variance (ANOVA) was used. Appropriate
adjustments were made by Sigma Stat software for abnormal
distribution samples. Two-way RM ANOVA was used for the
longitudinal data of SBP. Pearson test was used for the correlation
between functional and biochemical parameters. Tukey or
Bonferroni post hoc tests were used when necessary. For the
proteomic analysis, the comparison between groups was obtained
using the PLGS software, employing Monte Carlo algorithm,
considering p < 0.05 for the downregulated proteins and 1 –
p > 0.95 for the upregulated proteins.

RESULTS

Functional and Biochemical Analyses
At the beginning of the protocol, all groups presented similar
BW. At the end of the experimental protocol, SHR groups,
regardless of perindopril treatment, presented lower values of BW

(415± 11; 305± 9, and 313± 16 g, for Wistar, SHRC, and SHRP,
respectively, p < 0.0001).

We performed a tail-cuff pressure measurement at the
beginning and during the experimental protocol to observe a
time-course change of pressure during the protocol (Figure 1A).
As shown, when perindopril started to be administered, both
SHR groups presented higher SBP (tail-cuff) compared with
Wistar rats (187 ± 7, 180 ± 8, and 137 ± 3 mmHg for
SHRC, SHRP, and Wistar, respectively). From week 4 up to
week 8, SHRP presented lower SBP compared with SHRC
(p < 0.001). Perindopril treatment reduced the SBP of SHR up to
160 ± 4 mmHg (p = 0.02, vs beginning) while SHRC maintained
its higher values (213 ± 4 mmHg). During all 8 weeks, SBP
of both groups of SHR was higher than that of Wistar rats.
Figure 1B shows the values of direct BP measurement at the
end of the experimental protocol. SHRC presented higher values
of SBP compared with Wistar rats (+70%) and treated SHR
presented lower values of SBP compared with SHRC (121 ± 10,
206 ± 10, and 131 ± 6 mmHg for Wistar, SHRC, and SHRP,
respectively, p < 0.05).

Pulse wave velocity of the SHRC group was higher than that of
the Wistar group (+32%), and perindopril treatment attenuated
this increase (5.0 ± 0.2, 6.5 ± 0.5, and 4.4 ± 0.3 m/s for
Wistar, SHRC, and SHRP, respectively, p < 0.05), as shown in
Figure 1C. Note that the PWV value of SHRP was similar to
that of the Wistar group. Pearson correlation test revealed a
positive correlation between PWV and SBP (r = 0.410, p = 0.037),
considering all groups of rats.

Figure 1D illustrates that perindopril treatment induced
an increase on plasma nitrite concentration in SHR, since

FIGURE 1 | (A) Values of systolic blood pressure (SBP, mmHg, and tail-cuff technique) measured every other week in all groups: Wistar (n = 10), SHRC (SHRC,
n = 7), and SHRP (SHRP, n = 5). (B) Values of systolic blood pressure (SBP, mmHg, and direct technique) measured at the end of the experimental protocol in all
groups: Wistar (n = 8), SHRC (SHRC, n = 11), and SHRP (SHRP, n = 8). (C) Values of pulse wave velocity (PWV, m/s) measured at the end of the experimental
protocol in all groups: Wistar (n = 8), SHRC (SHRC, n = 12), and SHRP (SHRP, n = 10). (D) Values of plasma nitrite concentration (nmol/mg) in all groups: Wistar
(n = 8), SHRC (SHRC, n = 12), and SHRP (SHRP, n = 10). Significance: # vs Wistar and * vs control, p < 0.05.
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SHRP presented higher values of plasma nitrite compared with
SHRC and Wistar groups (p ≤ 0.007). In addition, Pearson
correlation test found a negative correlation between plasma
nitrite concentration and PWV (r =−0.511, p = 0.034).

Proteomic Analysis
As for the comparisons between the SHRC × WISTAR groups,
a total of 228 proteins were identified (Supplementary Table 1).
From that, 86 proteins were uniquely identified in each group,
26 of which were related to the SHRC group and 60 were related
to the Wistar group. We obtained 142 of them with difference in
expression, but only 42 reached significant statistical differences
(Supplementary Table 1). Among them, 21 were upregulated and
21 downregulated in the first group of the comparison.

For the comparisons between SHRP × SHRC, a total of
260 proteins were identified (Supplementary Table 2). Among
them, a total of 122 were uniquely identified, 101 for SHRP
and 21 for SHRC. From the total of identified proteins, 138
showed differences in expression, but only 75 reached significant
statistical difference (Supplementary Table 2). Among them, 73
were upregulated and two were downregulated as an effect of
perindopril treatment.

The functional classification according to the cellular
component is illustrated in Figure 2, for the SHRC × WISTAR
comparisons, and in Figure 3, for SHRP × SHRC comparisons.
As shown in Figure 2, 30 components were changed by
hypertension. Among them, the six most modified were
Supramolecular Fiber (29%), Intermediate Filament (7.65%),
Collagen-Containing Extracellular Matrix (7.14%), Actin
Filament (7.14%), Actomyosin (6%), and I Band (5%).

Figure 3 shows that perindopril treatment determined
more changes in the cellular component, that is, 38 types
of components. Among them, the six most affected were
Supramolecular Fiber (22%), Membrane Raft (9%), Contractile
Fiber (8%), Mitochondrial Matrix (8%), Actomyosin (5%), and
Stress Fiber (4%).

Figure 4 shows the comparison network SHRC × Wistar
and Figure 5 shows the comparison between SHRP × SHRC.
These comparisons demonstrate changes in proteins during
the process of hypertension and treatment with perindopril,
respectively. Looking at the networks, each color represents
a type of regulation: dark green denotes proteins belonging
to the first group of the comparison only, red indicates
those belonging to the second group of the comparison
only, light pink represents downregulated proteins, light

FIGURE 2 | The protein distributions identified with the expression in the SHRC × WISTAR comparison group. The categories are presented and based on the gene
ontology according to the cellular component in which they participate, provided by the Cytoscape R© software v.3.7.0. Only significant terms were used, and the
distribution was made according to the percentage of genes associated by category. The protein access numbers were made available by UNIPROT, while the gene
ontology was analyzed by the Cytoscape R© software of the plug-in Cluego (Bindea et al., 2013).
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FIGURE 3 | The protein distributions identified with the expression in the SHRP × SHRC comparison group. The categories are presented and based on the gene
ontology according to the cellular component in which they participate, provided by the Cytoscape R© software v.3.7.0. Only significant terms were used, and the
distribution was made according to the percentage of genes associated by category. The protein access numbers were made available by UNIPROT, while the gene
ontology was analyzed by the Cytoscape R© software of the plug-in Cluego (Bindea et al., 2013).

green denotes upregulated proteins, and gray represents the
interacting proteins.

For the first comparison, between SHRc and Wistar, the
network illustrated in Figure 4A shows a Parkinson disease
protein 7 homolog (O88767), which was shown to belong to
SHRC interacting with several other proteins, but especially
with an upregulated protein in the SHRc groups called Cofilin-
1 (P45592), which in turn interacts with Sodium/potassium-
transporting ATPase subunit alpha-1 (P06685), 14-3-3 protein
zeta/delta (P63102), and Src substrate cortactin (Q66HL2).
Similarly, Figure 4B shows that Rab GDP dissociation inhibitor
alpha (P50398), which is upregulated in SHRC × Wistar,
is interacting with three other upregulated proteins, Malato
dehydrogenase (O88989), Ubiquitin (P62982), and Tropomyosin
(O63610), through the interaction protein Polyubiquitin-C
(Q63429). Also, Rab GDP dissociation inhibitor alpha (P50398)
is interacting with Ras-related protein Rab-10 (P35281) and
Ras-related protein Rab-3A (P63012). In addition, Figure 4C
illustrates another network with several modulated proteins
in the aorta artery, within the SHRc × Wistar comparisons.

It is possible to observe in this network that there were
three main interaction proteins, Mitogen-activated protein kinase
3 (P21708), solute carrier muscle family-2 glucose transporter
(P19357), and UV excision Rad23 homolog (Q4KMA2), that
interacted with several proteins up- or downregulated in the
aorta sample, after SHRc ×Wistar comparisons, like long-chain
specific acyl-CoA dehydrogenase-mitochondrial (P15650), heat
shock protein beta-1 (P42930), 40S ribosomal protein AS (P38983),
and Desmin (P48675).

Figure 5 illustrates the networks after perindopril treatment
that is between SHRP × SHRC groups. The first network
(Figure 5A) reveals that the upregulated protein Heat shock
protein beta-1 (P42930) interacts also with an upregulated
protein, Desmin (P48675). This network also shows that long-
chain specific acyl-CoA dehydrogenase, mitochondrial (P15650)
interacts with several other upregulated proteins through the
heterogeneous nuclear ribonucleoprotein K (P61980). On the
other hand, Figure 5B illustrates that Actin, cytoplasmic 1
(P60711), which was upregulated after perindopril treatment,
interacts with several other proteins, but none of them were
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FIGURE 4 | Proteins identified in the aorta of the SHRC × Wistar group. The subnetworks created to demonstrate the interactions carried out by Cytoscape R©

software of the plug-in ClusterMark. The color indicates the differential expression of the respective named protein with its access code; dark green denotes proteins
belonging to the first group of the comparison, red indicates those belonging to the second group of the comparison, light pink represents downregulated proteins,
light green denotes upregulated proteins, and gray indicates the interacting proteins. In (A), light green denotes upregulated protein cofilin-1 (P45592), dark green
indicates protein Parkinson disease protein 7 homolog (O88767), and gray represents the interacting proteins Sodium/potassium-transporting ATPase subunit
alpha-1 (P06685), 14-3-3 protein zeta/delta (P63102), Src substrate cortactin (Q66HL2), 40S ribosomal protein S6 (P62755), 40S ribosomal protein S3 (P62909),
Prohibitin (P67779), Heterogeneous nuclear ribonucleoprotein A1 (P04256), Septin-11 (B3GNI6), Tyrosine–tRNA ligase cytoplasmic (Q4KM49), 28 kDa heat- and
acid-stable phosphoprotein (Q62785), Transcription elongation factor A protein 1 (Q4KLL0), Cytochrome c somatic (P62898), and Rho GDP-dissociation inhibitor 1
(Q5XI73). In (B), light green indicates upregulated protein Rab GDP dissociation inhibitor alpha (P50398) interacting with two gray proteins Ras-related protein
Rab-10 (P35281) and Ras-related protein Rab-3a (P63012); the other gray protein, Polyubiquitin-C (Q63429), is interacting with other proteins; dark green denotes
the first group of the comparison Heme oxygenase 1 (P06762), while the other three red ones represent those belonging to the second group of the comparison,
Unconventional myosin-Id (Q63357), Sodium/calcium exchanger 2 (P48768), Nucleoside diphosphate kinase A (Q05928), Tropomyosin alpha-3 chain (Q63610),
Ubiquitin-40S ribosomal protein S27a (P62982), Malate dehydrogenase, and cytoplasmic (O88989); light green denotes upregulated proteins while light pink
indicates downregulated proteins Neurofilament medium polypeptide (P12839) and Elongation factor 1-alpha 2 (P62632). In (C), gray denotes interaction proteins
Mitogen-activated protein kinase 3 (P21708), Solute carrier family 2, facilitated glucose transporter member 4 (P19357), UV excision repair protein RAD23 homolog
B (Q4KMA2), Heterogeneous nuclear ribonucleoprotein K (P61980), Small ubiquitin-related modifier 3 (Q5XIF4), Desmin (P48675), Gap junction alpha-1 protein
(P08050), and Tumor necrosis factor (P16599); light pink represents downregulated proteins Long-chain specific acyl-CoA dehydrogenase, mitochondrial (P15650),
Heat shock protein beta-1 (P42930), Aldo-keto reductase family 1 member B1 (P07943), Galectin-1 (P11762), Actin, alpha skeletal muscle (P68136), Actin, aortic
smooth muscle (P62738), Actin, gamma-enteric smooth muscle (P63269), Aconitate hydratase, mitochondrial (Q9ER34), Tubulin alpha-8 chain (Q6AY56), WD
repeat-containing protein 1 (Q5RKI0), and 40S ribosomal protein AS (P38983). Annexin A1 (P07150), Glutathione S-transferase P (P04906), Myosin light chain 1/3,
skeletal muscle isoform (P02600), Tubulin alpha-4A chain (Q5XIF6), Tubulin beta-5 chain (P69897), ATP synthase subunit alpha, mitochondrial (P15999) are in light
green, denoting upregulated proteins; red ones are those belonging to the second group of the comparison Moesin (O35763), Hyaluronan-mediated motility
receptor (P97779), Clusterin (P05371), Glutamate dehydrogenase 1, mitochondrial (P10860), and Dihydropyrimidinase-related protein 3 (Q62952); dark green ones
belong to the first group of the comparison Superoxide dismutase [Cu-Zn] (P07632), Cytochrome b-c1 complex subunit 1, mitochondrial (Q68FY0), Heat shock
protein 75 kDa, mitochondrial (Q5XHZ0), Transketolase (P50137), and Integrin-linked protein kinase (Q99J82).
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FIGURE 5 | Proteins identified in the aorta of the SHRC × Wistar group. The subnetworks created to demonstrate the interactions carried out by Cytoscape R©

software of the plug-in ClusterMark. The color indicates the differential expression of the respective named protein with its access code; dark green denotes proteins
belonging to the first group of the comparison; light green indicates upregulated proteins; and gray represents the interacting protein. In (A), light green denotes Heat
shock protein beta-1 (P42930), Desmin (P48675), Long-chain specific acyl-CoA dehydrogenase, mitochondrial (P15650), Histone H2B type 1 (Q00715), Annexin A2
(Q07936), and Elongation factor 1-alpha 1 (P62630); dark green indicates proteins belonging to the first group, Protein S100-A6 (P05964), Acetyl-CoA
acetyltransferase, mitochondrial (P17764), and Macrophage migration inhibitory factor (P30904); gray represents the interacting proteins Alpha-enolase (P04764)
and Heterogeneous nuclear ribonucleoprotein K (P61980). In (B) Actin, cytoplasmic 1 (P60711) is the only protein upregulated, with networks COFILIN-1 (P45592),
Sodium channel protein type 10 subunit alpha (Q62968), Trans-Golgi network integral membrane protein TGN38 (P19814), Citron rho-interacting kinase (Q9QX19),
Wiskott-Aldrich syndrome protein family member 1 (Q5BJU7), Disks large homolog 4 (P31016), WAS/WASL-interacting protein family member 1 (Q6IN36), and
Caveolin-1 (P41350-1); dark green indicates proteins belonging to the first group, Moesin (O35763), Cytoplasmic dynein 1 intermediate chain 2 (Q62871), and
Guanine nucleotide-binding protein G(i) subunit alpha (P08753).

altered by treatment, like sodium channel protein type 10
subunit alpha (Q62968), moesin (O35763), cytoplasmic dynein 1
intermediate chain 2 (Q62871), and cofilin-1 (P45592).

DISCUSSION

The main results observed in the present study were that
perindopril treatment significantly reduced blood pressure and
PWV in SHR. Also, plasma nitrite concentration was negatively
correlated with PWV. The proteomic approach identified some
differentially expressed proteins induced by hypertension and
perindopril treatment, which may contribute to identify possible
targets for the management of arterial stiffness.

Even though it is not clear whether arterial stiffness precedes
hypertension or it is a consequence (Kaess et al., 2012; Mitchell,
2014; Celik et al., 2017; Rode et al., 2020), several studies have
shown a significant correlation between PWV and BP (Laurent
et al., 2009; Phillips et al., 2015; Steppan et al., 2020), including
the present study, and the growing incidence of cardiovascular
events in patients with high PWV values is eminent (Niiranen
et al., 2017; Nilsson Wadstrom et al., 2019; Scuteri et al., 2020).
Therefore, it is important to determine the mechanisms involved
in vascular stiffening.

It is well known that angiotensin II (Ang II) plays a central role
in hypertension due to its potent contractile action, and drugs
that inhibit Ang II signaling are widely used to treat hypertension
(Schmidt-Ott et al., 2000; Marque et al., 2002; Varagic et al., 2010;

Gonzalez et al., 2018). While there are several classes of
therapeutic agents to control pressure (Chobanian, 2017; Cuspidi
et al., 2018; Unger et al., 2020), ACE inhibitors are highly
recommended because of their cardio- and vascular protective
effects (Ferrari et al., 2005; Janic et al., 2014; Chobanian, 2017).
This study confirmed the participation of RAS in hypertension,
as shown elsewhere (Marque et al., 2002; Safar, 2010; Hong
et al., 2013; Natalin et al., 2016; Mancini et al., 2017; Steppan
et al., 2020), since 8 weeks of perindopril treatment significantly
reduced BP (−11%), as shown by the time course of SBP. We
did not measure PWV at the beginning of the treatment, but
since we have shown that PWV positively correlates with BP
in SHR (Fabricio et al., 2020), we may assume that PWV was
also high at the beginning of the protocol. Because RAS has also
been implicated in vessel remodeling and aortic stiffening, ACE
inhibitors play a crucial role in the restoration of the balance
between plasma (and tissue) angiotensin II and bradykinin
levels (Ferrari et al., 2005), which improves arteriolar structure,
independent of their ability to reduce BP (Mancini et al., 2017).
Ong et al. (2011) demonstrated in their meta-analysis that
antihypertensive treatment can improve aortic stiffness beyond
BP reduction in essential hypertensive patients and that the
decrease in arterial stiffness was less under calcium antagonist
treatment than under ACEi in a short-term trial, whereas all
classes were equivalent in long-term trials.

Several clinical trials show interesting results, even though
they are still inconclusive, but it is already known that other
classes of anti-hypertensive drugs like diuretics and beta-blockers
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have few effects on PWV (Ong et al., 2011; Janic et al.,
2014). Therefore, we chose to use perindopril, which has been
shown to be a promising anti-hypertensive drug, capable to
control/reverse artery stiffening, mainly because it causes changes
on the mechanisms responsible to increase stiffness and it can
be independent of BP reduction (Mahmud and Feely, 2002;
Nakamura et al., 2005). In addition, perindopril is a prodrug
ester that has a strong affinity for ACE and it inhibits 50%
of ACE activity at a lower concentration than enalapril (Louis
et al., 1992). Likewise, it was shown that lisinopril had about
one-tenth the potency of perindopril with respect to its effects
on plasma angiotensin peptide levels (Campbell et al., 1994).
In addition, perindopril has high lipid solubility, it crosses the
blood–brain barrier, and, because of that, it decreases brain
ACE activity by 50%, different from enalapril and imidapril. For
review, see Perini et al. (2020), which is a recent review that
shows the pharmacological data of several ACEi. Also, it has
been shown that perindopril reduces oxidative stress, which is
another mechanism responsible to increase arterial stiffness (Ulu
et al., 2014). Although there are several clinical trials investigating
and demonstrating the effectiveness of perindopril, regular use
in the clinical management of hypertension is not common yet
(specially in public health units), mainly because of its elevated
costs, when compared with other ACEi.

At the end of the experimental protocol, this study revealed
that PWV and SBP were similar between Wistar and perindopril-
treated SHR, but different from untreated SHR. We cannot
avoid the possibility that PWV in SHR-treated rats could also
be due to the hypotensive effect of perindopril. The use of
another antihypertensive drug could help to solve this dilemma;
however, it has been shown that clonidine as well as calcium
blocker diltiazem reduced AP in parallel with a reduction of
β-stiffness index and PWV (Vayssettes-Courchay et al., 2011;
Lindesay et al., 2016, 2018), at least in young SHR. So, it seems
that there is a lack of hypertension-independent arterial stiffening
in young SHR, as suggested by Lindesay et al. (2016). On the
other hand, it is important to note that the decrease on BP
per se does not always reduce stiffness; for instance, Lindesay
et al. (2016) demonstrated that when hypertension-induced
vessel remodeling is already present, like in aged hypertensive
rat, vessel distensibility remains, even after a pharmacological
reduction of pressure (clonidine administration). In agreement,
Mahmud and Feely (2002) have shown that PWV reduces
independent of BP in hypertensive humans treated with Valsartan
(AT1 antagonist) and captopril (ACEi). Recently, Steppan et al.
(2020) showed that the restoration of normal BP in hypertensive
mice (recovery period after stopping Ang II infusion) results
in a partial recovery of overall in vivo stiffness (PWV).
These authors suggest that restoration of BP improves the
viscoelastic nature of blood vessels and partially recover the
matrix mechanics, but the stiffness, which is irreversible, results
from endothelial dysfunction and molecular changes to the
vascular matrix, which contribute to VSMC dysregulation and
are the major contributor to the overall in vivo vascular
stiffness in essential hypertension. Therefore, further studies are
still necessary to better understand the effects of perindopril
treatment on PWV of SHR.

In addition, Ang II is a powerful mitogen that causes structural
alterations in the vessel wall by stimulating the hypertrophy and
hyperplasia of VSMCs, causing increases in the intralamellar
distance on the vessel wall, increase of collagen, reduction of
the elastin, and stiffness of intact and decellularized segments,
among others (Wagenseil and Mecham, 2012; Mancini et al.,
2017; Steppan et al., 2020). However, how exactly Ang II may
modulate PWV is not completely known. Actually, there are
several components that contribute to the arterial stiffening,
like extracellular matrix (ECM) proteins that support the
mechanical load, such as collagen and elastin (Lacolley et al.,
2017). Lacerda et al. (2015) have suggested that PWV may be
correlated with some components of the ECM in the vessel
wall, like metalloproteinase biomarkers (MMP-9 and MMP-
2) and collagen in patients with hypertensive heart disease;
however, these biomarkers were evaluated in blood plasma.
In addition, alterations of VSMCs, which regulate actomyosin
interactions for contraction and cell–ECM interactions and
depend on the architecture of cytoskeletal proteins and focal
adhesion, are also contributing to regulate arterial stiffness; see
Lacolley and colleagues for review (Lacolley et al., 2017). In
agreement, phosphorylation or dephosphorylation of contractile
proteins in VSMCs contributes to determine the dynamic
modifications of the vessel diameter (Touyz et al., 2018).
In fact, functional, structural, and biochemical alterations in
the vessel wall have been investigated in different types of
hypertension, but the molecular mechanisms involved remain
unclear and most of these studies were performed in vitro.
For this reason, in this study, we performed a proteomic
analysis of the aorta tissue, excised from normotensive and
hypertensive rats, treated or not with perindopril and compared
SHRC × Wistar to comprehend the effects of hypertension
and SHRP × SHRC to identify the differentially expressed
proteins after 8 weeks of perindopril treatment. As far as
we know, this is the first work that aimed to identify the
proteins related to vascular stiffening in aorta of SHR treated
with perindopril.

Only few studies have analyzed the protein expression
profile of the aorta during hypertension (Lee et al., 2004,
2006, 2009; Moriki et al., 2004; Bian et al., 2008; Feng et al.,
2015; Lyck Hansen et al., 2015), and the results are fairly
different. In the present study, when the functional classification
according to the cellular component was performed, 30 different
components were changed by hypertension (SHRC × Wistar),
and most of them were related to the mechanical integration
of the various components of the cytoskeleton and responsible
for physical support for cellular constituents, as shown in
Figure 2. From 42 differentially expressed proteins in the
aortic wall from SHRC × Wistar rats (see Supplementary
Table 1), 21 were upregulated and most of them were
associated with cytoskeleton organization, stabilization of the
aorta, and apoptosis like Cofilin-1, Tubulin β-5 chain, and
Tropomyosin alpha-3 chain, among others (see Supplementary
Table 1). In agreement, Lyck Hansen et al. (2015) have
shown that several proteins related to smooth muscle cell
function and organization of actin cytoskeleton, like tubulin
β-2A, tropomyosin α-4, and α-actinin 4, among others, were
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significantly upregulated in patients with high PWV compared
with those patients with normal PWV. In particular, these
authors (Lyck Hansen et al., 2015) found that Tropomyosin
α-4 chain was a significant predictor of PWV. In the present
study, Tropomyosin α-4 chain was expressed in SHRC’s aorta but
did not reach statistical significance; however, Tropomyosin α-3
chain was upregulated. Using a two-dimensional electrophoresis
system (2-DE), Bian et al. (2008) performed a proteomic
analysis of the aorta from SHR and found that only two
upregulated proteins were related to vessel stiffness: GDP
dissociation inhibitor protein (RhoGDIa) and Non-muscle myosin
alkali light chain.

It has been shown that Ang II levels in VSMC of hypertensive
rats are higher than those in normotensive ones (Moriki et al.,
2004) and Ang II is one of the main activators of the small GTPase
family member (Moriki et al., 2004; Guan et al., 2013) and
its downstream effector Rho-associated protein kinase (ROCK)
(Zhou et al., 2017). In turn, activation on the RhoA/Rho-
kinase pathway reduces the activity of myosin light-chain
phosphatase (MLCP) through phosphorylation of its myosin
targeting subunit (MYPT1) (Brozovich et al., 2016). This process
sustains vasoconstriction, since myosin light chain (MLC) is not
dephosphorylated by MLCP. In agreement, Zhou et al. (2017)
demonstrated that VMSC from SHR’s aorta presents high activity
of ROCK and high MYPT1 protein level. Similarly, Han et al.
(2008) have shown that aorta of SHR had higher expression
of myosin light chain kinase (MLCK) and myosin light chain
phosphorylation (MLC-P), which in turn induces contraction
(Guan et al., 2013).

In addition, ROCK is also an activator of LIM kinase-LIMK
(Lacolley et al., 2017), an enzyme that phosphorylates and
inactivates Cofilin-1 (Morales-Quinones et al., 2020). Since the
main activity of Cofilin-1 is to sever F-actin cytoskeletal stress
fibers, inactivation of Cofilin-1 reduces actin depolymerization
(Lacolley et al., 2017; Sousa-Squiavinato et al., 2019) and induces
arterial stiffening (Lam et al., 2007; Williams et al., 2019; Morales-
Quinones et al., 2020). Although PWV of SHR was higher
than that of Wistar, the present study showed that Cofilin-
1 was upregulated in stiffened aorta from SHRC compared
with Wistar rats. We may speculate that this increased cofilin-
1 expression could be a compensatory mechanism against
aortic stiffening in SHRc, induced by high activity of the
RhoA/Rho-kinase pathway, observed in hypertension (Moriki
et al., 2004; Ying et al., 2004; Wynne et al., 2009; Walsh,
2011; Zhou et al., 2017). Furthermore, this cofilin-1 could be
dephosphorylated, as demonstrated by Lee et al. (2006). These
authors have shown that Cofilin-1 protein level was upregulated
by hydrogen peroxide in rat aortic smooth muscle, but further
analysis revealed that this cofilin-1 was dephosphorylated, which
may lead to an inhibition of actin polymerization. Due to
the nature of the proteomic analysis performed in the present
study, this confirmation could not be performed, and future
studies are necessary to confirm the activation state of cofilin-
1 in SHR’s aorta.

It is well known that reactive oxygen species (ROS) decreases
nitric oxide (NO) bioavailability and induces hypertension and

arterial stiffness (Landmesser et al., 2003; Bellien et al., 2010;
Eleuterio-Silva et al., 2013; Roque et al., 2013; Wu et al.,
2014). In agreement, using a 2D gel electrophoresis, Lee et al.
(2009) identified seven proteins in the aorta artery that were
differentially expressed between SHR and Wistar rats, including
downregulation of the dihydropteridine reductase (DHPR),
which is associated with the regeneration of tetra-hydrobiopterin
(BH4) (Bendall et al., 2014). It has been shown that decreases
in BH4 increases the generation of superoxide anion, which
reduces NO bioavailability (Bellien et al., 2010). Reduction of
NO availability has also been found after RhoA/ROCK pathway
activation, which negatively regulates eNOS phosphorylation and
eNOS expression (Ming et al., 2002).

In our study, we did not observe altered expression of
DHPR or BH4 in aorta of SHR, but if we consider that
hypertension and arterial stiffness are associated with reduction
of NO bioavailability (induced by RhoA/Rho-kinase pathway
activation or increases of ROS), we may hypothesize that
increases in NO, due to perindopril treatment (indicated by
the plasma nitrite concentration), could be involved in the
PWV reduction observed in the present study in treated SHR
(SHRP). Actually, the present study revealed that perindopril
increased the nitrite concentration by 83% in SHR, and it
was negatively correlated with PWV. In agreement with our
results, other studies have shown that perindopril treatment
increases plasma concentrations of nitrite/nitrate, indirectly
indicating plasma NO contents (Kedziora-Kornatowska et al.,
2006; Ceconi et al., 2007). Ceconi et al. (2007) have also
observed an increase on eNOS protein expression and activity
in coronary artery disease patients treated with perindopril.
It has been shown that NO may relieve vascular stiffness by
inactivation of RhoA/Rho-kinase pathway through a cGMP-
dependent protein kinase activation (Krepinsky et al., 2003;
Sauzeau et al., 2003). In fact, NO has been considered the most
powerful physiological endothelial relaxing factor that negatively
regulates RhoA/Rho-kinase activation in the vasculature. For
review, see Nunes and Webb (2020).

In addition, we have identified an upregulation of GDP
dissociation inhibitor protein (GDIs) in aorta of perindopril-
treated SHR (SHRP), which is an internal regulator of RhoA
activation. Actually, the activity of RhoA is normally controlled
by three regulatory proteins, such as guanine nucleotide exchange
factors (GEFs), GTPase-activating proteins (GAPs), and GDP
dissociation inhibitors (GDIs) (Guan et al., 2013), the last one
being an inhibitory protein, which is involved in the suppression
of the transformation between Rho-GDP and Rho-GTP forms
(Guan et al., 2013) and may contribute to a decrease in
the RhoA/ROCK/LIMK/Cofilin-1 pathway. Recently, Morales-
Quinones et al. (2020) have shown that inhibition of LIMK
reduces p-Cofilin/Cofilin and reduces arterial stiffness, which
suggests the involvement of RhoA/ROCK/LIMK/Cofilin-1 on
vascular stiffening. Similarly, losartan (an Ang II receptor type
1 antagonist) inhibits RhoA/Rho-kinase pathway activity in
hypertensive rats (Moriki et al., 2004; Wynne et al., 2009).
Likewise, inhibition of this RhoA/Rho-kinase pathway by Y-27632
(an inhibitor of ROCK) has been associated with reduction of

Frontiers in Physiology | www.frontiersin.org 10 February 2021 | Volume 12 | Article 624515

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-624515 February 5, 2021 Time: 12:56 # 11

Miotto et al. Perindopril-Induced Proteins and Arterial Stiffness

BP (Seko et al., 2003; Moriki et al., 2004; Zhou et al., 2017)
and vascular stiffness (Wehrwein et al., 2004). In agreement,
Masumoto et al. (2001) have shown that Fasudil, an inhibitor of
Rho-kinase, increased forearm blood flow in humans.

Moreover, the proteins Long-chain specific acyl-CoA
dehydrogenase mitochondrial and Heat shock protein beta-1,
interacting with Desmin in the network of SHRP × SHRC
comparison, were downregulated in aorta of SHRC and became
upregulated after perindopril treatment. Long-chain specific acyl-
CoA dehydrogenase mitochondrial is involved with the energy
production and Heat shock protein beta-1 is involved in protein
folding. Interesting, Feng et al. (2015) identified the same
proteins after physical exercise in aorta of SHR, which means
that perindopril treatment may be contributing to restart the
normal function of the vessel, as well as exercise training does.

In summary, the results of the present study revealed that
treatment with perindopril reduced arterial pressure and PWV
in SHR. In addition, the proteomic analysis in aorta suggested
for the first time that RhoA/Rho-kinase/LIMK/Cofilin-1 pathway
may be inhibited by perindopril-induced upregulation of GDIs
or increases in NO bioavailability in SHR. Therefore, we may
propose that activation of GDIs or inhibition of RhoA/Rho-kinase
pathway could be a possible strategy to treat arterial stiffness.

This study has some limitations. First, although we have
shown a positive correlation between PWV and SBP, we cannot
say that perindopril treatment improved PWV, since we did not
measure PWV at the beginning of the experimental protocol;
however, we may say that SHR-treated rats showed lower PWV
compared with non-treated SHR. Second, since perindopril
reduced pressure and PWV, we cannot avoid the possibility that
PWV response was dependent of the BP, even though some
studies have shown that sometimes arterial stiffness reduction
may be independent of BP reduction; third, due to the limitation
of the technique, PWV was measured in anesthetized rats. Finally,
due to the nature of the proteomic analysis performed in the
present study, we cannot confirm if the upregulation of the
cofilin-1 in SHR’s aorta is a compensatory mechanism or if this
protein is dephosphorylated. Future studies, using more specific
techniques, are necessary to further confirm the results observed
in this study. Besides that, we do believe that this kind of study
is important, mainly because the currently available studies using
proteomics looking for a better management of hypertension and
cardiovascular diseases are relatively small, not standardized, and
difficult to compare with each other (Delles et al., 2018).
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