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Experimental and epidemiological studies have revealed a relationship between an
adverse intrauterine environment and chronic non-communicable disease (NCD) like
cardiovascular disease (CVD) in adulthood. An important risk factor for CVD is
the deregulation of the fibrinolytic system particularly high levels of expression of
plasminogen activator inhibitor 1 (Pai-1). Chronic exposure to altered photoperiod
disrupts the circadian organization of physiology in the pregnant female, known as
gestational chronodisruption, and cause long-term effects on the adult offspring’s
circadian physiology. The Pai-1 expression is regulated by the molecular components
of the circadian system, termed clock genes. The present study aimed to evaluate
the long-term effects of chronic photoperiod shifts (CPS) during pregnancy on the
expression of the clock genes and the fibrinolytic system in the liver of adult male
offspring. Our results using an animal model demonstrated statistically significant
differences at the transcriptional level in males gestated under CPS. At 90 days of
postnatal age, the liver transcript levels of the clock gene Bmal1 were downregulated,
whereas Rorα, Rorγ, Nfil3, and Pai-1 were upregulated. Our data indicate that CPS
during pregnancy affects gene expression in the liver of male adult progeny, showing
that alteration of the photoperiod in the mother’s environment leads to persistent effects
in the offspring. In conclusion, these results reveal for the first time the long-term effects
of gestational chronodisruption on the transcriptional activity of one well-established risk
factor associated with CVD in the adult male offspring.

Keywords: cardiovascular disease, fibrinolytic system, Pai-1, clock genes, gestational chronodisruption, DOHaD

Abbreviations: CCG, clock-controlled gene; CPS, chronic photoperiod shifts; CVD, cardiovascular disease; E18, embryonic
day 18; LD, light dark; NCD, non-communicable disease; Pai-1, plasminogen activator inhibitor-1; Plg, plasminogen; P1,
postnatal day 1; P60, postnatal day 60; P90, postnatal day 90; P120, postnatal day 120; ROR, retinoid-related orphan
receptor; RORE, ROR-response elements; tPA, tissue Plasminogen Activator; uPA, urokinase Plasminogen Activator; ZT,
zeitgeber time.
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INTRODUCTION

The environment during early life influences the risk of
developing pathophysiological processes later; the field
recognized as the developmental origins of health and disease
(DOHaD) (Calkins et al., 2011; Capra et al., 2013; Hanson
and Gluckman, 2014). In particular shows an association
with NCDs (Fowden et al., 2006; Marsh et al., 2011) as CVD
(Thompson and Trask, 2016).

In modern society, exposure to environmental light at
night (e.g., chronic shift work, work at night), disarranging
the internal biological clock; thus producing a significant
disturbance of the circadian organization of physiology known
as chronodisruption (Erren and Reiter, 2009). Circadian rhythms
are intrinsic biological oscillations with a 24-h period driven
by the circadian timing system, coordinating physiology and
behavior with the daily light/dark cycle (Mazzoccoli et al.,
2012; Partch et al., 2014; Tarquini and Mazzoccoli, 2017).
This system is organized by the central clock, located in the
suprachiasmatic nucleus; which is entrained by the light/dark
cycle as a dominant signal, in addition to several peripheral
clocks located throughout the body. At the cell level, circadian
rhythmicity relies on clock gene expression in central and
accessory interlocking transcription/translation feedback loops
(TTFL) (Mohawk et al., 2013; Curtis et al., 2014; Takahashi,
2016). In turn, these core clock genes promote the expression of
downstream genes (CCGs) (Albrecht, 2012; Liu and Chu, 2013).
Significant changes in the expression of clock genes can affect
physiological processes controlled by the biological clock and
have been associated with the development of NCDs (Plano et al.,
2017; Touitou et al., 2017).

The misalignment of the maternal circadian system
(gestational chronodisruption) impacts fetal health (Serón-
Ferré et al., 2012, 2013). This field is of great interest because
of the potential long-term effects on the adult offspring’s health
and disease status (Amaral et al., 2014; Varcoe et al., 2017;
Richter et al., 2018). The available evidence has demonstrated
different consequences of chronodisruption on maternal
physiology (Gatford et al., 2019). In animal model, the
maternal exposure to CPS disrupted the biological clocks
in the pregnant female, altering physiological parameters
throughout gestation such as the circadian profile of plasma
hormones, changes in the liver metabolic gene expression
and alterations in the clock gene expression profile (Varcoe
et al., 2013; Mendez et al., 2016). Meanwhile, in the adult
offspring gestational chronodisruption induced effects such
as hyperleptinemia, hyperinsulinemia, impaired glucose
tolerance (Varcoe et al., 2011); alterations in the plasma
circadian profile of melatonin and corticosterone (Mendez
et al., 2016); as well as alteration of adrenal endocrine
messengers. In fact, there is strong evidence suggesting that
the adrenal gland loses the ability to respond to ACTH
(Mendez et al., 2016; Salazar et al., 2018). Given that the
endocrine adrenal outputs play a key role in the development
and entrainment of the fetal clock in the suprachiasmatic
nucleus (Čečmanová et al., 2019), coordinating metabolic
responses and acting as time-giving signals to other peripheral

circadian oscillators such as the liver (Pezük et al., 2012);
long-term alterations of adrenal function can lead to multiple
pathophysiological processes.

The liver is a well-described peripheral clock and as such, its
physiology is controlled by circadian rhythms, the clock regulates
the transcription of CCGs that participate in a wide array of
the physiological process in the liver (Reinke and Asher, 2016;
Tahara and Shibata, 2016; Zwighaft et al., 2016) and the evidence
supports that synchronized liver clockwork machinery develops
gradually during ontogenesis (Sumová et al., 2008). On the
other hand, the liver is the major site of Pai-1 synthesis, being
regulated transcriptionally by endocrine signals of the adrenal
gland, which in turn strongly responds to light input (Dimova
and Kietzmann, 2008; Aoshima et al., 2014). Also, Pai-1 is a
CCG (Haus, 2007) and its expression is upregulated through
binding of the CLOCK: BMAL heterodimer to E-box sites of the
Pai-1 gene promoter region (Maemura et al., 2000; Schoenhard
et al., 2003; Ohkura et al., 2006). Also, the transcription of Pai-
1 is promoted by RORα and repressed by REV-ERBα acting on
RORE sites (Wang et al., 2006), all of them important members of
the clock molecular machinery. Of note, epidemiological studies
identify PAI-1 as a risk factor for CVD (Tofler et al., 2016;
Jung et al., 2018).

Our hypothesis is that gestational chronodisruption promotes
changes in the adult offspring, specifically, alterations of the
regulation of molecular machinery of the liver clock genes; which
in turn regulate the transcriptional pattern of the Pai-1 in the
liver. To test our hypothesis, we used a rat model of gestational
chronodisruption. Our specific aims were to investigate the
impact of prenatal CPS in the liver of adult male progeny on (1)
clock gene transcription patterns; and (2) the fibrinolytic system,
particularly in the Pai-1 transcriptional levels.

MATERIALS AND METHODS

Animals
Animal handling and care followed the Guide for the Care
and Use of Laboratory Animals of the Institute for Laboratory
Animal Research of the National Research Council. The protocols
were approved by the Bioethics Commission of the Universidad
Austral de Chile (CBA number 267/2016).

The animals were maintained in a control (standard)
photoperiod [12 h light, 12 h dark cycle; lights on at 7:00
AM (ZT0), lights off at 7:00 PM (ZT12)]; ∼400 lux at the
head level, temperature (18–20◦C), humidity (∼48%), food
and water were available ad libitum (Mendez et al., 2016;
Salazar et al., 2018). Sprague Dawley rats (obtained from
Charles River Laboratories International Inc.) were mated
and raised in our animal facility. Timed-pregnant females
were used in the study, and the day in which spermatozoa
were observed in the smear of the vaginal contents was
considered embryonic day 0 (E0). The pregnant females were
separated by weight pairing and allocated to the following
two photoperiods: light/dark (LD; control photoperiod) and
CPS, using the same protocol reported by Mendez et al.
(2016). Briefly, pregnant females were exposed to lighting
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schedule manipulation every 3–4 days, reversing the photoperiod
completely, during 18 days of pregnancy (Figure 1). At
18 days of gestation, the mothers returned to a control 24-h
photoperiod (12:12, lights on at ZT0) and continued in this
photoperiod thereafter.

Effects of Gestational Chronodisruption
on Daily Rhythms and mRNA Expression
in Adult Offspring
After birth, both dams and pups from each pregnancy condition
(LD; n = 12 and CPS; n = 6 mothers) were kept under
control photoperiod and litters were weighed at postnatal age

1 day (P1) and homogenized to 10 individuals (five males and
females), in order to avoid variations in weight gain. Pups were
weaned at 21 days old, with the males being raised in the
control photoperiod (LD) to be studied at P90 (LD and CPS,
n = 30 each group).

Body weight was measured from 30 days old, every 7 days.
Males from each pregnancy condition were euthanized at P90
every 4 h for six samplings over 20 h, in LD and CPS (n = 5/each
time point), starting at ZT1 and ending at ZT21. To avoid litter
effects, each clock time point contained animals from different
mothers; thus, no siblings were used at the same time point.
Briefly, male rats were deeply anesthetized (isoflurane 3.5%,
Baxter Laboratories), a blood sample was collected from the

FIGURE 1 | Light dark (LD) and CPS protocol scheme during pregnancy. (Left) LD control or standard protocol; 12 h light, 12 h dark cycle [lights on at 7:00 AM
(ZT0), lights off at 7:00 PM (ZT12)]. (Right) CPS protocol; lighting schedule manipulation every 3–4 days, some days of constant light or constant darkness are
required to reversing the photoperiod completely (orange narrow) (Mendez et al., 2016).
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vena cava, and then an overdose of T61 (0.5 ml/kg body weight;
Merck Animal Health, Intervet Canada Corp., Kirkland, QC,
Canada) was delivered at the same site. Organs were collected,
weighed and stored in RNA stabilization solution (RNAlaterTM

Invitrogen) at 4◦C for 24 h and subsequently at −20◦C in
our tissue bank.

RNA Extraction and Quantitative
Real-Time PCR (RT-PCR) Analysis of the
Liver
Relative quantification by RT-PCR was used to evaluate the
mRNA expression of clock genes and fibrinolytic system genes at
P90. Total RNA was extracted using the SV Total RNA Isolation
System (Promega) according to the manufacturer’s instructions.
The amount of 2.0 µg of total RNA was reverse transcribed using
random primers (Promega) and MLT-V reverse transcriptase
(Promega). RT-PCR was performed using primers described in
Supplementary Table 1 and KAPA SYBR FAST quantitative
PCR master mix (Kapa Biosystems, Inc.). Quantitative PCR was
carried out in a Rotor-Gene Q real-time platform (QIAGEN).
Serial dilutions of cDNA were amplified by real-time PCR using
specific primers for target and reference gene and determining
template dilution for the sample’s measurements. A melting curve
analysis was performed on each sample after the final cycle to
ensure that a single product was obtained. Relative amounts of all
mRNAs were calculated by the comparative 11 cycle threshold
method using the equation 2−11Ct to linearize the data and then
perform the statistical analysis (Livak and Schmittgen, 2001) and
normalized to the corresponding 18S-rRNA housekeeping level.
For the analysis of daily rhythms we follow the Guidelines for
Genome-Scale Analysis of Biological Rhythms (Hughes et al.,
2017) and three independent methods were used; single cosinor
(Refinetti et al., 2007), JTK_Cycle (Hughes et al., 2010), and
RAIN’s longitudinal mode (Thaben and Westermark, 2014).

Statistical Analysis
Statistical analyses were performed using the IBM SPSS software
20.0. The normality of data distribution was determined by the
Shapiro Wilk test, and homogeneity of variances was analyzed
by Levene’s test. The body weight was analyzed by a two-way
ANOVA test for repeated measures in one of the factors, with the
Bonferroni adjustment and data were expressed as mean ± SEM.
Transcript levels between the two groups were analyzed by the
Mann–Whitney U test and Student’s t-test.

RESULTS

Impact of Gestational CPS on Liver
Clock Genes Expression in Adult Male
Offspring
The body weight data showed that gestational CPS in both,
newborn male (P1) and adult male (P90) offspring was
statistically greater than in LD progeny (P1: 7.1 ± 0.09 g
CPS vs. 6.78 ± 0.07 g LD, unpaired t-test p = 0.01; P90:
499.2 ± 5.9 g CPS vs. 476.2 ± 7.9 g LD, ANOVA two way test

for repeated measures with Bonferroni adjustment p = 0.032).
We found no differences in the weight of female offspring at
P1, size of the litters, and weight of the liver, lung, thymus, and
spleen at P90 between LD and CPS (Supplementary Table 2
and Supplementary Figure 1). Next, we evaluated the effects
of gestational CPS on the liver clock genes expression at the
transcript level in the male offspring at P90. Our results showed
daily rhythm expression of Bmal1 in the offspring from both
conditions (Figure 2A, left and Supplementary Tables 3–5),
but with significantly reduced mRNA expression in the progeny
gestated under CPS conditions (Figure 2A, right). Interestingly
we found that the daily peak of Clock and Nfil3 gene at transcript
level was changed by 4 h (ZT 3.7, 4.0, and 1 to 0.4, 0.0, 21 for
Cosinor, JKT_Cycle and RAN, respectively) between CPS and
LD gestated adult progeny (Supplementary Tables 3–5). Bmal1
and Clock are an important positive component of the central
loop and promotes the expression of other clock genes. For this
reason, we determined the transcript level of other genes of the
central loop of the molecular clock (Clock, Per1, Per2, Per3, Cry1,
and Cry2). The analysis of results showed that the daily peak of
expression in the control condition (LD) of all these genes was
in agreement with the reported ZT in other studies on the adult
rat (Sládek et al., 2007; Figure 2B, black dots and Supplementary
Tables 3–5). More importantly, the genes positively regulated by
Bmal1 of the central loop evaluated here showed a similar daily
rhythm of expression in both progenies with no remarkable effect
on the daily rhythm pattern (Figure 2B and Supplementary
Tables 3–5) or total expression (data not shown) at the mRNA
level in LD and CPS male offspring.

Interlocked with the central loop there is an additional well-
established secondary or accessory loop that involves REV-ERB
and RORs transcription factors which influence negatively and
positively, respectively on Bmal1 transcription by binding to its
promoter site (RORE site), and also regulate the expression of the
Nuclear Factor Interleukin 3 gene (Nfil3). Remarkable differences
in the daily expression were found in two clockwork components
of the accessory loop. The Rorα and Rorγ components of this
loop were significantly increased at the mRNA level in the CPS
male offspring (Figures 3A,B). Our results showed that the
transcriptional level of Nfil3 was increased in males gestated
under CPS conditions (Figure 3C), with a clear acrophase in
the active phase (dark phase) of the daily expression (Figure 3C,
red dots and Supplementary Tables 3–5). Interestingly, Rorα
displayed a pattern of daily rhythm only in adult males gestated
in CPS with an acrophase at active phase (Figure 3A, red
dots and Supplementary Tables 3–5). Differences at individuals
time points but not in the daily total expression were found
in the main repressor component of the accessory loop Rev-
Erbα between CPS and LD male progeny (Figure 3D, right and
left, respectively).

Impact of Gestational CPS on the
Expression of the Fibrinolytic System in
the Adult Offspring
Alterations of fibrinolytic activity mediated by deregulation in
the expression of its components have been associated with a
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FIGURE 2 | The transcription level of clock genes of the central loop in the liver from 90-day-old male rats by RT-PCR. [A(left),B] Detection of daily rhythm. Black
symbols represent males gestated under control conditions (LD, black dots), and red symbols indicate males gestated in CPS (CPS, red dots). Males from each
pregnancy condition (LD: n = 12 and CPS: n = 6 mothers) in LD and CPS offspring (n = 5/each time point). Time is expressed as zeitgeber time (ZT), with ZT0 as
time lighting onset and ZT12 as lighting end; the gray bar indicates lights off. The RAIN’s longitudinal mode, JTK_Cycle and the single cosinor method were used to
determine daily rhythm (p < 0.05), solid black and red lines represent the detection of a 24-h daily rhythm for the three methods. (A,left) Data for Bmal1 are shown.
∗p < 0.05 indicate differences between LD and CPS for time point (Mann–Whitney U test). (A,right) Daily total expression. Data for Bmal1, minimum, first quartile,
median, third quartile, and maximum were for LD offspring: Bmal1: 0.02, 0.11, 0.44, 0.73, and 1.33; and for CPS offspring: 0.01, 0.03, 0.17, 0.40, and 0.83.
∗p < 0.05. Different from LD (Mann–Whitney U test). (B) Data for other clock genes are shown ∗p < 0.05, ∗∗p < 0.01 Different from LD for time point (Mann–Whitney
U test).

risk factor for CVD (Mavri et al., 2004; Oishi, 2009). Also, in the
liver, the expression of important components of the fibrinolytic
system is controlled by the circadian system. Our results showed
that males gestated in CPS displayed significant differences in
the mRNA expression level in important components of the
fibrinolytic system relative to the LD group. More specifically, the

main inhibitor of this system, Pai-1, was increased (Figure 4A,
right); in contrast, the precursor of plasmin, Plg and tPA,
were reduced (Figures 4B,C, right). On the other hand, uPA
did not show significant differences between the two progenies
(Figure 4D, right). Regarding daily oscillations of mRNA
components of the fibrinolytic system evaluated here, we only
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FIGURE 3 | The transcription level of clock genes of the accessory loop in the liver from 90-day-old male rats by RT-PCR. (A–D,left) Detection of daily rhythm. Black
symbols represent males gestated under control conditions (LD, black dots), and red symbols indicate males gestated in CPS (CPS, red dots). Males from each
pregnancy condition (LD: n = 12 and CPS: n = 6 mothers) in LD and CPS offspring (n = 5/each time point). Time is expressed as zeitgeber time (ZT), with ZT0 as
time lighting onset and ZT12 as lighting end; the gray bar indicates lights off. The RAIN’s longitudinal mode, JTK_Cycle and the single cosinor method were used to
determine daily rhythm (p < 0.05), solid black and red lines represent the detection of a 24-h daily rhythm for the three methods. ∗p < 0.05, ∗∗p < 0.01. Different
from LD for that time point (Mann–Whitney U test). (A–D,right) Daily total expression. Data and median with interquartile range are shown, in LD and CPS (n = 30)
offspring. ∗p < 0.05, ∗∗p < 0.01. Different from LD (Mann–Whitney U test). Minimum, first quartile, median, third quartile, and maximum were for LD offspring:
Rorα:0.27, 0.55, 0.78, 0.86, and 1.63; Rorγ: 0.2, 0.41, 0.86, 1.23, and 2.80; Nfil3: 0.2, 0.38, 0.55, 0.96, and 1.59; and for CPS offspring: Rorα: 0.39, 0.68, 1.07,
1.44, and 2.92; Rorγ: 0.35, 0.58, 1.42, 2.15, and 5.6; Nfil3: 0.32, 0.53, 1.07, 1.64, and 2.53.

detected a rhythm in tPA but only by RAIN method in CPS
but not in LD adult male progeny (Figures 4A–D left, and
Supplementary Tables 3–5).

At the protein level, the results obtained for daily plasma
concentration of PAI-1 did not show significant differences
between CPS and LD male offspring (Supplementary Figure 2

and Supplementary Table 6). However, daily rhythms were
found for PAI-1 plasma protein concentration in both CPS
and LD progeny; displaying a daily peak expression of the
protein in the active phase (dark) of the circadian cycle (Ohkura
et al., 2006). Notably, at P90 of development the amplitude of
the oscillation of PAI-1 plasma concentration was increased in
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FIGURE 4 | The transcription level of Pai-1, Plg, tPA, and uPA in the liver from 90-day-old male rats by RT-PCR. (A–D,left) Detection of daily rhythm. Black symbols
represent males gestated under control conditions (LD, black dots) and red symbols indicate males gestated in CPS (CPS, red dots). Males from each pregnancy
condition (LD: n = 12 and CPS: n = 6 mothers), in LD and CPS offspring (n = 5/each time point). Time is expressed as zeitgeber time (ZT), with ZT0 as time lighting
onset and ZT12 as lighting end; the gray bar indicates lights off. The RAIN’s longitudinal mode, JTK_Cycle and the single cosinor method were used to determine
daily rhythm (p < 0.05), solid black and red lines represent the detection of a 24-h daily rhythm for the three methods. (A–D,right) Daily total expression. Data and
median with interquartile range are shown in LD and CPS (n = 30) offspring. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Different from LD (Mann–Whitney U test).
Minimum, first quartile, median, third quartile, and maximum for LD offspring: Pai-1: 0.44, 0.62, 0.96, 1.33, and 2.73; Plg: 0.39, 0.61, 0.92, 1.15, and 2.85; tPA: 0.19,
0.78, 0.99, 1.27, and 2.5 and for CPS offspring: Pai-1: 0.92, 1.5, 2.27, 3.01, and 7.76; Plg: 0.34, 0.55, 0.66, 0.81, and 1.65; tPA: 0.34, 0.58, 0.76, 1.09, and 1.7.

adult males which had been gestated under CPS (A = 198.8
(LD) and 387.9 (CPS); AMP = 96.0 (LD) and 206.0 (CPS)
determined by Cosinor and JTK_Cycle, respectively) relative
to LD adult offspring (Supplementary Table 6). Finally, we
found a circadian rhythm in the ex vivo coagulation time

in both CPS and LD progeny (Supplementary Figure 3 and
Supplementary Tables 7–9). Remarkably, at the postnatal age
of 180 days, in CPS gestated male the time required to ex vivo
coagulation was greater than LD. This difference showed seems
to be age-dependent because it was not observed at P60 or P120
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(Supplementary Figures 3A,B). These results point to a putative
mayor propensity to a coagulation/fibrinolytic system imbalance
in CPS than LD during the aging process.

DISCUSSION

Modern lifestyles are strongly correlated with misalignment
of biological clocks. In this context, circadian disruption act
as a sustained environmental factor that leads to conflicts
between endogenous biologic clock cycles and the environment
(Bass and Lazar, 2016). In the present study, gene expression
patterns in the peripheral liver clock and fibrinolytic system
were assessed to determine the long-term effects of gestational
chronic photoperiod shifting (mimicking repeated night shift
work schedules in pregnant women) on the adult offspring.

Hormonal disturbances have also been linked to altered
photoperiods. Impaired secretion of corticosterone, aldosterone,
and the loss of response to ACTH of the adrenal gland have been
observed in progeny gestated under CPS (Mendez et al., 2016;
Salazar et al., 2018). Adrenal function is directly regulated by
the photoperiod as it is strictly controlled by the master clock
residing in the suprachiasmatic nucleus (Aoshima et al., 2014;
Plano et al., 2017). Moreover, the adrenal gland is an important
oscillator from fetal to postnatal period of life (Torres-Farfan
et al., 2011; Roa et al., 2017; Salazar et al., 2018) that synchronizes
the rhythmic signaling of glucocorticoids and catecholamines to
peripheral clocks such as the liver (Kalsbeek et al., 2012; Pezük
et al., 2012). In fact, a significant desynchronization is observed
in the liver of adult rats subjected to adrenalectomy (Pezük
et al., 2012), strongly suggesting that the adrenal peripheral
oscillator plays a crucial role in synchronizing the circadian
rhythm of the liver. Previous findings in adult rats gestated under
CPS indicate significant desynchronization of daily rhythms
of plasma corticosterone, whereas the daily pattern of plasma
ACTH was similar in both CPS and control offspring; however,
corticosterone response to ACTH was lost in CPS adrenals
(Mendez et al., 2016; Salazar et al., 2018). These lines of evidence
could be associated with the alteration of the hepatic circadian
clock. In the liver, our results demonstrated that transcript levels
of Bmal1 and the phase of the daily peak expression of Clock
and Nfil3 were significantly affected in adult males gestated in
CPS. Interestingly, gestational CPS disrupted daily rhythms in
the liver of these clock-genes even after 3 months of exposure
to LD photoperiod during the postnatal developing (P90). These
results reveal a long-term effect on the expression of the clock
genes that changes the phenotype displayed at the adult stage
under LD photoperiod in a male gestated in CPS protocol.
Importantly, Bmal1 plays a key role in the regulation of the
hemostatic function of the liver and also in the progression of the
prothrombotic state in aging (Hemmeryckx et al., 2011, 2019).

Alterations of the molecular clock at the accessory loop (RORE
site) in the male adult progeny were also evidenced. Specifically,
transcript levels of the clock genes Rorα and Rorγ (Rorα/γ)
were increased in adult CPS males. The expression of Rorα/γ
clock genes has been described to be positively controlled by
the BMAL/CLOCK heterodimer. However, as it was described

before, the transcript levels of Bmal1 were downregulated in adult
males gestated under CPS relative to LD conditions. That can
be explained by the fact that posttranslational modifications of
the BMAL/CLOCK heterodimer have been shown play a key
role in terms to modify its activity independently of mRNA
level regulation (Hirayama et al., 2007; Bellet and Sassone-
Corsi, 2010; Preußner and Heyd, 2016). Additionally, it has
been demonstrated that Rorα/γ expression is controlled by other
circadian signals via cAMP response elements (CREs) (O’Neill
et al., 2008) that could increase its role under the effects of
gestational CPS. In order to determine if increased transcript
levels of Rorα/γ may have functional consequences, we evaluated
transcript levels of Nfil3 in the liver, because its expression is
principally regulated by Rorγ (Ueda et al., 2005; Takeda et al.,
2012). The transcription level of Nfil3 was significantly increased
in adult males gestated in CPS. Also, the phase (ZT) of the
daily peak expression of Nfil3 was significantly affected (3.5 h) in
males gestated in CPS (Supplementary Tables 3–5). This finding
emphasizes that the effects on the accessory loop of the molecular
clock could deregulate CCGs and therefore alter physiological
functions. Moreover, endocrine signal as insulin is also important
in the regulation of the expression of Nfil3 (Keniry et al.,
2014) and as previously mentioned, hyperinsulinemia has been
reported in adult offspring gestated in CPS (Varcoe et al., 2011).

A reduced fibrinolytic activity due to an increase in the
expression of PAI-1 is a characteristic risk factor for CVD
(Mavri et al., 2004; Oishi, 2009). Liver physiology is heavily
involved in the regulation of fibrinolytic activity since many of
its components, like plasminogen (Cesarman-Maus and Hajjar,
2005; Leebeek and Rijken, 2015) and PAI-1 (Oishi, 2009;
Declerck and Gils, 2013) are mainly synthesized by this organ.
In adult mice, it has been reported that chronic alteration of
the photoperiod was associated with the deregulation of the
Pai-1 expression in the liver (Oishi and Ohkura, 2013). On
the other hand, previous evidence indicates that clock genes
regulate the expression of PAI-1 (Schoenhard et al., 2003; Ohkura
et al., 2006; Wang et al., 2006). For instance, a mouse model
deficient in Bmal1 (Bmal1−/−) displayed elevated plasma levels
of PAI-1, which were associated with a prothrombotic phenotype
(Hemmeryckx et al., 2011; Somanath et al., 2011). Regarding
gestational chronodisruption, our results showed increased levels
of Pai-1 in the liver of male adult offspring gestated under
CPS. This observation is relevant because we previously showed
a significant increase in blood pressure in CPS males at P90
(Mendez et al., 2016). Both, increased levels of PAI-1 associated
with clock genes deregulation here reported and high pressure
described previously are recognized like a CVD risk factors.
Some factors that induce Pai-1 gene expression are insulin,
glucocorticoids (Irigoyen et al., 1999; Mavri et al., 2004; Dimova
and Kietzmann, 2008). Interestingly, factors as hyperinsulinemia
and alteration of corticosterone circadian rhythm also described
in this animal model (Varcoe et al., 2011; Mendez et al., 2016)
have been shown to induce greater expression of Pai-1 in the liver.
On the other hand, our data showed a decreased expression of
Bmal1 clock gene in the males gestated in CPS. Previous evidence
supports the idea that reduced expression of Bmal1 in the liver
results in increased expression levels of Pai-1. In particular,
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the upregulation of PAI-1 is associated with an increase in
thrombosis propensity during the aging process (Hemmeryckx
et al., 2011, 2019; Somanath et al., 2011). In addition, REV-ERBα

is a negative regulator of Pai-1 (Wang et al., 2006) expression
by a mechanism involving its competition with RORα, a positive
regulator that our results showed that is increased at transcript
level and also rhythmic with a phase (ZT) of the daily peak
expression in the active phase (dark) in CPS adult progeny. We
did not observe differences in Rev-Erbα daily total expression
between adult males gestated under CPS and LD conditions,
suggesting an inclination to induce Pai-1 expression by RORα

rather than repression by REV-ERBα.
The appearance of a marked daily oscillation at the transcript

level of the clock gene Rorα in adult CPS but not in LD offspring
was another interesting finding. The induction of rhythmic
expression of genes that are not oscillatory could be mediated
by epigenetic mechanisms, which are involved in the regulation
of the transcriptional machinery and reveal that expression of
genes that are not rhythmic could be induced (Masri et al., 2014).
The induction of the rhythmic expression pattern in Rorα in CPS
adult males suggests that epigenetic mechanisms might play a role
in the long-term effects observed.

At the protein level, results obtained for daily plasma
concentration of PAI-1 did not show significant differences
between CPS and LD male offspring. However, daily rhythms
were found for PAI-1 plasma protein; displaying a daily peak
expression of the protein in the active phase (dark) of the daily
cycle that are in agreement with data previously reported in
rodents for LD condition (Ohkura et al., 2006). Notably, at
P90 of development, the amplitude of the oscillation of plasma
concentration in the active phase was increased in adult males
which had been gestated under CPS relative to LD offspring
(Supplementary Table 6).

It has been described that older humans are more susceptible
to thrombosis under septic conditions (Balleisen et al., 1985;
Aillaud et al., 1986). In addition, murine models have been
demonstrated that the aging process increases the endotoxin-
induced thrombosis by a mechanism that involves increased
expression of PAI-1 protein in the plasma and at mRNA level in
the liver. This tendency is linked to an enhanced inflammatory
response in aged mice (Yamamoto et al., 2002). Connected with
this previous literature we found a circadian rhythm in the ex vivo

coagulation time that was increased at postnatal age of 180 days
in CPS gestated male in a process that is age-dependent because
this difference was not observed at P60 or P120.
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