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Cognitive abilities are largely dependent on activation of cerebral tropomyosin-related

kinase B receptors (TrkB) by brain-derived neurotrophic factor (BDNF) that is secreted

under a bioactive form by both neurons and endothelial cells. In addition, there is

mounting evidence for a link between endothelial function and cognition even though

the underlying mechanisms are not well known. Therefore, we investigated the cerebral

BDNF pathway, either neuronal or endothelial, in rheumatoid arthritis (RA) that combines

both endothelial dysfunction (ED) and impaired cognition. Adjuvant-induced arthritis (AIA)

in rats was used as a model of RA. Clinical inflammatory symptoms were evaluated

from an arthritis score and brains were collected at day 31 ± 2 post-immunization.

Neuronal expression of BDNF and TrkB phosphorylated at tyrosine 816 (p-TrkB) was

examined in brain slices. Endothelial BDNF and p-TrkB expression was examined on

both brain slices (hippocampal arterioles) and isolated cerebral microvessels-enriched

fractions (vessels downstream to arterioles). The connection between endothelial nitric

oxide (NO) and BDNF production was explored on the cerebrovascular fractions using

endothelial NO synthase (eNOS) levels as amarker of NO production,Nω-Nitro-L-arginine

methyl ester hydrochloride (L-NAME) as a NOS inhibitor and glyceryl-trinitrate as a slow

releasing NO donor. Brain slices displayed lower BDNF and p-TrkB staining in both

neurons and arteriolar endothelial cells in AIA than in control rats. For endothelial cells

but not neurons, a strong correlation was observed between BDNF and p-TrkB staining.

Of note, a strong correlation was also observed between neuronal p-TrkB and endothelial

BDNF staining. In cerebral microvessels-enriched fractions, AIA led to decreased BDNF

and eNOS levels with a positive association between the 2 parameters. These effects

coincided with decreased BDNF and p-TrkB staining in endothelial cells. The exposure

of AIA cerebrovascular fractions to GTN increased BDNF levels while the exposure of

control fractions to L-NAME decreased BDNF levels. Changes in the cerebral BDNF
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pathway were not associated with arthritis score. The present study reveals that AIA

impairs the endothelial and neuronal BDNF/TrkB pathway, irrespective of the severity

of inflammatory symptoms but dependent on endothelial NO production. These results

open new perspectives for the understanding of the link between ED and impaired

cognition.

Keywords: BDNF, cognition, endothelium, NO, TrkB

INTRODUCTION

Brain-derived neurotrophic factor (BDNF) is present in high
concentrations in the adult brain where it plays a crucial
role in neuroplasticity, neurogenesis and angiogenesis (Pencea
et al., 2001; Kim et al., 2004; Lu et al., 2014) through the
phosphorylation of its cognate TrkB (tropomyosin-related kinase
B) receptors at tyrosine 816 (p-TrkB) (Bathina and Das, 2015).
Thus, decreased brain BDNF and TrkB levels in genetically-
modified mice induced changes in behavioral deficit (Korte et al.,
1995; Zorner et al., 2003), while transgenic mice overexpressing
TrkB showed improvement in learning abilities (Koponen et al.,
2004). It is generally assumed that low BDNF levels in the
brain are due to a deficit in BDNF production by neurons as
neurons are considered as the main source of BDNF in the
brain. However, in opposition with this traditional thinking, we
recently showed that the removal of endothelial cells from the
brain resulted in a marked decrease in BDNF levels measured in
the cerebral tissue (Monnier et al., 2017b). This shift of paradigm
in the cellular origin of cerebral BDNF indicates that a hitherto
unexpected large part of BDNF found in the brain corresponds
to BDNF produced by cerebral endothelial cells and paves the
way for the exciting hypothesis that neuronal function might
be dependent not only on neuronal-derived BDNF but also on
BDNF secreted by endothelial cells of cerebral capillaries. These
data emphasize the importance to separately explore the brain
BDNF/TrkB pathway at both the neuronal and endothelial level,
especially since the literature continues to report a link between
cardiovascular risk factors and impaired cognition (Knopman
et al., 2001; Diener, 2011; Srinivasa et al., 2016).

Rheumatoid arthritis (RA) is a chronic autoimmune
inflammatory joint disease associated with high cardiovascular
risk (del Rincon et al., 2001) and impaired cognition including
alteration in logical memory, memory working and executive
function and presence of depressive symptoms (Bartolini et al.,
2002; Sturgeon et al., 2016; Baptista et al., 2017). RA-associated
increased cardiovascular risk has been related to endothelial
dysfunction (ED) (Bergholm et al., 2002) and subsequent
acceleration of atherosclerosis (Del Rincon et al., 2007). ED
is present early in the course of the disease as evidenced
from decreased brachial flow-mediated dilatation (Xu et al.,
2017), which is a consequence of decreased endothelial NO
production/activity in response to hyperemia. Studies in AIA
rats identified mechanisms involved in decreased endothelial
NO production/bioactivity including eNOS uncoupling (Haruna
et al., 2006), arginase upregulation (Prati et al., 2011, 2012)
and increased NO inactivation by oxidative stress (Haruna
et al., 2006, 2007). On the contrary, the mechanisms involved in

impaired cognition remain poorly understood even though a role
of ED is suspected from studies reporting impaired cognition
in patients exposed to cardiovascular risk factors. Surprisingly,
while activation of cerebral TrkB by BDNF is largely involved
in cognition, whether RA is associated with an impairment of
cerebral BDNF pathway is unknown.

The present study investigated the cerebral BDNF pathway
in rats subjected to adjuvant-induced arthritis (AIA) and
the mechanisms involved in potential changes. The brains
were collected at day 31 ± 2 post-immunization, time at
which inflammatory symptoms are maximal and ED occurs at
the peripheral macro- and micro-vasculature (Totoson et al.,
2015). Neuronal BDNF and p-TrkB expression were examined
on hippocampal brain slices. Endothelial BDNF and p-TrkB
expression were examined on cerebral arterioles and downstream
vessels using immunohistochemical analysis on hippocampal
brain slices and Western blot analysis of isolated cerebral
microvascular-enriched fractions, respectively. The potential
connection between the cerebral BDNF pathway with the severity
of inflammatory symptoms or endothelial NO production was
also investigated.

METHODS

Animals
Experiments were carried out on 6 weeks-old male Lewis rats (n
= 64) that were purchased from Janvier (Le Genest Saint Isle,
France). Experiments were conducted according to the French
department of agriculture guidelines (license 21 CAE-102)
and approved by the local ethic committee. The experimental
procedures were performed in order to comply with ARRIVE
guidelines. Animals were housed under a 12 h/12 h light/dark
cycle and allowed free access to food and water. Anesthesia was
induced by isoflurane 4% (Virbac, Carros, France) for arthritis
induction and chloral hydrate anesthesia (400 mg/kg, i.p.; Sigma-
Aldrich, Saint-Quentin-Fallavier, France) for brain removal.

Induction and Clinical Evaluation of
Arthritis
Arthritis was induced by a single intradermal injection at the
base of the tail of 120 µL of 1mg of heat-killed Mycobacterium
butyricum (Difco, Detroit, MI) suspended in 0.1ml of mineral
oil [Freund’s incomplete adjuvant (Difco, Detroit, MI)]. Non-
arthritis Lewis age-matched rats that were used as controls
received 120 µL of saline. Indeed, Freund’s incomplete adjuvant
was previously suspected to interfere with the th1/th2 balance
of immune response (Zhang et al., 1999).The clinical scoring
system (arthritis score) of inflammation was employed as follows
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(Sakaguchi et al., 2003): inflammation (erythema and swelling)
of one finger scores 0.1, weak and moderate arthritis of one big
joint (ankle or wrist) scores 0.5 and intense arthritis of one big
joint scores 1. Tarsus and ankle were considered as the same joint.
Arthritis score for a given limb ranged from 0 to 1.5 and global
arthritis score (4 limbs) ranged from 0 to 6. The arthritis score
was regularly determined until animal sacrifice.

Preparation of Cerebral
Microvessels-Enriched Fractions
The procedure was detailed elsewhere (Monnier et al., 2017a).
Briefly, after the removal of large superficial vessels, the
forebrain except the hypothalamus was homogenized in ice cold
Hank’s balanced salt solution (HBSS) with a Potter-Thomas
homogenizer. After centrifugation the pellet (P1) was saved and
the supernatant was centrifuged again. The new pellet (P2) was
pooled with P1, suspended in 20% dextran and centrifuged.
The new pellet (P3) was again saved and the remaining tissue
was reprocessed similarly, thus leading to P4. P3 and P4 were
pooled together and suspended in HBSS. They were successfully
filtered through a 335, 110, 53, and 20µm mesh nylon filters.
The fraction retained on the 335- and 110 µm-filters were
discarded while fractions retained on other filters (F53 and F20)
were kept for further analysis. We previously showed that cells
from F53 and F20 were all positive for both BDNF and the
endothelial marker GLUT1 (Monnier et al., 2017b), indicating
that BDNF is constitutively expressed by endothelium of cerebral
microvasculature.

Western Blot Analysis
Pooled microvessels-enriched fractions (F53 + F20) were
homogenized in ice-cold lysis buffer [100 mmol/L Tris-HCl
(pH 7.4), 150 mmol/L NaCl, 1 mmol/L EGTA, 1% triton
X-100, 1% protease inhibitor cocktail (P8340, Sigma-Aldrich,
Saint-Quentin-Fallavier, France)]. After centrifugation of
homogenates, an aliquot of the supernatant was kept for protein
measurement by using the Lowry method. Equal protein
amounts were resolved by SDS-PAGE and electrophoretically
transferred to polyvinylidene difluoride (PVDF) membranes
(0.2µm) for western blotting. After blocking non-specific
binding sites with a 5% solution of non-fat dry milk in TBS
(20mM Tris/HCl, 137mM NaCl, pH 7.4) containing 0.1%
Tween 20, membranes were probed with an anti-BDNF rabbit
monoclonal antibody (1/3,000 with 5% non-fat dry milk,
ab108319, Abcam, Cambridge, United Kingdom), an anti-eNOS
mouse monoclonal antibody (1/2,500 with 5% non-fat dry milk,
610297, BD Biosciences, San Jose, USA) or an anti-β-actin
antibody (1/10,000, A5441, Sigma-Aldrich, Saint Quentin-
Fallavier, France). Then, membranes were incubated with
secondary antibodies conjugated with horseradish peroxidase
[111-035-144 (anti-rabbit, 1/20,000) and 115-035-166 (anti-
mouse, 1/50,000), Jackson ImmunoResearch Laboratories,
Interchim, Montluçon, France]. Protein-antibody complexes
were visualized using the enhanced chemiluminescence Western
blotting detection system (ECL 2, 1151-7371, Fisher Scientific,
Illkirch, France). The band densities were determined by
scanning densitometry (GS-800, BIO-RAD Laboratories, Ivry

sur Seine, France). Whole membranes for BDNF and eNOS are
available on supplemental data (Datasheet 1).

Immunohistochemical Analysis
Immunohistochemical experiments were performed on pooled
microvessels-enriched fractions (F53 + F20) and brain slices.
Vascular fractions were cryoprotected in HEPES/sucrose buffer,
fixed in methanol and collected on superFrost Plus slides.
For preparation of brain slices, brain of anesthetized rats
was successively transcardially perfused with saline and 4%
paraformaldehyde (PFA) solution in 0.1M phosphate buffer (PB)
(pH 7.4). The brains were then removed, post-fixed in PFA (1 h),
cryoprotected with a sucrose solution (20% in PB for 48 h) and
then transversally cryosectioned (20 µm-thick) with a cryostat
(HM550, OMPV, Microm-Microtech, Francheville, France) at
−20◦C and collected on SuperFrost Plus slides. After fixation and
blockade of non-specific binding sites, slices were first incubated
with the rabbit monoclonal anti-BDNF antibody (dilution
1/200, ab108319, Abcam, Cambridge, United Kingdom) or
anti-phospho-TrkB Y816 polyclonal antibody (dilution 1/200,
ABN1381, Merck-Millipore, Saint Quentin en Yvelines, France),
in the presence of antibodies directed against the specific
endothelial markers, either GLUT1 (dilution 1/300, mouse
monoclonal, MABS132, Merck-Millipore, Saint Quentin en
Yvelines, France) or vWF(dilution 1/200, mouse monoclonal,
MCA 3442, Merck-Millipore, Saint Quentin en Yvelines, France),
or the specific neuronal marker NeuN (dilution 1/100, mouse
monoclonal, MAB377, Merck-Millipore, Saint Quentin en
Yvelines, France). They were then exposed to a fluorescent
secondary antibody ALEXA Fluor 488 and 568 [A11029 (anti-
mouse) and A11036 (anti-rabbit), Molecular Probes, Invitrogen,
Cergy Pontoise, France, dilution 1/1,000]. Negative controls were
prepared by omitting the primary antibodies. Finally, slides were
mounted with DAPI (a nuclear marker)-containing mounting
medium (Vectashield, FP-DT094A, Interchim, Montluçon,
France) and analyzed by using an epifluorescent microscope
(Eclipse E600, Nikon France S.A.S., Champigny-sur-Marne,
France). Endothelial and neuronal staining for BDNF and p-
TrkB Y816 was examined using an automated method (software
Matlab, Mathworks, Natick, USA) as described in Kim et al.
(2015). The Matlab program can be downloaded in: http://
faculty.jsd.claremont.edu/jarmstrong/fquant/index.html. The
calculated fluorescence intensity corresponded to the mean of
intensity exhibited by adjacent cells that were selected by the
experimenter by plotting a line through adjacent endothelial or
neuronal cells. Endothelial staining was quantified on cerebral
microvessels-enriched fractions vascular fractions as well as on
brain slices. It was quantified on the smallest vessels (capillaries)
for cerebrovascular fractions and on three arterioles (seen in
transversal section) present between the Cornu Ammonis 1
(CA1) and dentate gyrus for brain slices. Neuronal staining
was quantified on brain slices from a line passing throughout
neurons of the CA1 subfield.

Ex Vivo Experiments
Fresh pooled microvessels-enriched fractions were immediately
distributed into wells previously loaded with a culture medium
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(M199 medium supplemented with 0.1 mg/L L-glutamine, 10%
fetal bovine serum, 2% glucose, 2% amino acids and 1%
antibiotic solution). Microvessels-enriched fractions collected in
AIA rats were incubated (24 h, in a 95% O2-5%CO2 atmosphere)
with either 10µM glyceryl trinitrate (GTN, MR107753, Merck-
Millipore, Saint Quentin en Yvelines, France) as a slow-releasing
NO donor that well mimics physiological endothelial NO
production or saline. Fractions collected in control rats were in
parallel incubated with either 5mM of the eNOS inhibitor Nw-
nitro-L-arginine methyl ester hydrochloride (L-NAME on BDNF
levels, N5751, Sigma-Aldrich, Saint-Quentin-Fallavier, France)
or saline. At the end of the incubation period, cerebrovascular
fractions were prepared for Western blotting analysis.

Statistical Analysis
Results were expressed as means ± standard deviations
(SD). Statistical analysis between two groups was performed
using a parametric t-test or non-parametric Mann–Whitney’s
test, depending on normality and equal variance tests. The
relationship between two variables was investigated using
Pearson’s and Spearman’s correlations (for normally or not
normally distributed data, respectively). Differences were
considered significant at p < 0.05.

RESULTS

The Neuronal BDNF/TrkB Pathway Is
Impaired in AIA
Brains were collected in AIA (n = 5, arthritis score = 3.6 ±

0.8) and control rats (n = 5). BDNF and p-TrkB expression was

examined on hippocampal slices at the level of the CA1 region.
Indeed, the hippocampus is a cognition-related brain region. In
addition, the low neuronal densitiy of the CA1 subfield offers
the opportunity to easily quantify the neuronal fluorescence
intensity. As shown in Figure 1A, AIA decreased BDNF staining
in cells positive for the neuronal marker NeuN, the intensity of
staining in control and AIA rats being 32.8± 16.3 and 13.0± 7.0,
respectively. In these neurons, p-TrkB staining (Figure 1B) was
also lower in AIA rats than in controls, the intensity of staining
dropping from 20.1± 11.4 in control rats to 4.6± 4.9 in AIA rats.
However, no association was observed between neuronal BDNF
and p-TrkB. staining (rs = 0.428, p= 0.21, data not shown) when
control and AIA were simultaneously observed.

The Endothelial BDNF/TrkB Pathway Is
Impaired in AIA
Arteriolar endothelial BDNF expression was first examined on
brain slices used for investigation of the neuronal BDNF pathway.
We focused on arterioles (seen in transversal section) located
between the Cornu Ammonis 1 (CA1) and dentate gyrus of the
hippocampus. As shown in Figure 2A, BDNF labeling in cells
lining the arteriolar lumen (cells positive for the endothelial
marker vWF) was lower in AIA (n = 5) than in control
rats (n = 5). Then, we investigated the endothelial BDNF
pathway in vessels dowstream to arterioles. For this purpose,
the endothelial BDNF pathway was examined on cerebral
microvascular-enriched fractions isolated from additional AIA
(n = 18, 12 rats for Western blot analysis and 6 rats for
immunohistochemical analysis) and control rats (n = 12).

FIGURE 1 | (A) Effect of AIA on neuronal BDNF expression using immunohistochemical analysis of brain slices. Representative photographs of BDNF (red) labeling in

neurons of the CA1 hippocampal region and quantification of staining intensity, (B) Effect of AIA on neuronal p-TrkB Y816 receptors expression (see legend A). NeuN

was used as a neuronal marker (merged images in inserts). Brain samples were collected at day 31 ± 2 post-immunization. Values are expressed as means ± SD, n

= number of rats, *p < 0.05 vs. control rats.
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FIGURE 2 | (A) Effect of AIA on endothelial BDNF expression using immunohistochemical analysis of brain slices. Representative photograph of vWF (a marker of

endothelial cells, green), BDNF (red) labeling and merged images (insert) in hippocampal arterioles and quantification of endothelial staining intensity, (B) Effect of AIA

on BDNF levels in cerebral microvessels-enriched fractions. A representative immunoblot of BDNF and β-actin as internal control is shown above the bar graphs, (C)

Effect of AIA on endothelial BDNF expression using immunohistochemical analysis of cerebral microvessels-enriched fractions. Representative photographs of DAPI (a

nuclear marker, blue), GLUT1 (a marker of endothelial cells, green) BDNF (red) immunostaining and merged images (inserts) and quantification of staining intensity, (D)

Effect of AIA on endothelial p-TrkB Y816 receptors expression (see legend C). Brain and vascular samples were collected at day 31 ± 2 post-immunization. Values are

expressed as means ± SD, n = number of rats, *p < 0.05 vs. control rats.

According to Western blot analysis, 6 control and 6 AIA rats
(arthritis score = 2.8 ± 1.0) were run on a same membrane, the
remaining AIA rats (arthritis score = 1.5 ± 0.9) being run on
another membrane with the same 6 control rats. BDNF values
in AIA rats were expressed as percentage of control values. As
shown in Figure 2B, BDNF levels in cerebral microvascular-
enriched fractions (F20 + F53) were significantly lower in AIA
than in control rats (n = 6). These changes coincided with
lower BDNF and p-TrkB staining in endothelial cells (cells
positive for the specific endothelial marker GLUT1) in AIA
(n = 6, arthritis score = 3.3 ± 1.0) than in control rats

(n = 6). Indeed, the intensity of endothelial BDNF staining
at capillary levels was 27.4 ± 11.6 in control and 13.1 ± 5.2
in AIA rats (Figure 2C), the corresponding values for p-TrkB
staining being 39.3 ± 13.0 and 20.1 ± 5.0 (Figure 2D). Notably,
DAPI (a specific nuclear) labeling of (F20 + F53) fractions
showed that these fractions were well enriched in capillaries
(vascular wall consisting with a monolayer of endothelial cells)
(see Figures 2C,D).

Finally, we investigated to what extent endothelial
BDNF could act as an autocrine and/or paracrine actions.
Consistent with an autocrine action, a positive correlation was
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FIGURE 3 | (A) In cerebral microvessels-enriched fractions, endothelial BDNF and p-TrkB Y816 staining were correlated when AIA (n = 6) and control rats (n = 6)

were simultaneously examined, (B) on brain slices, endothelial BDNF staining of hippocampal arterioles correlated with p-TrkB Y816 staining in CA1 neurons when

AIA (n = 5) and control rats (5) were simultaneously examined. rs = spearman correlation coefficient.

observed between endothelial BDNF and p-TrkB staining in
cerebral microvessels-enriched when control and AIA were
simultaneously analyzed (Figure 3A). A positive correlation
was also observed between endothelial BDNF staining of
hippocampal arterioles and p-TrkB staining by CA1 neurons
when the two groups of rats were again simultaneously analyzed,
suggesting a paracrine action of endothelial BDNF on neurons
(Figure 3B).

No Controls BDNF Production by
Endothelial Cells in AIA
While it is well documented that AIA led to decreased endothelial
NO bioactivity in peripheral vessels (see introduction) whether
the production of NO by the cerebral endothelium is altered
by AIA has never been investigated. Therefore, we measured
eNOS levels in cerebrovascular fractions (previously used to
investigate BDNF levels) as an indicator of NO production
by the cerebral endothelium. As shown in Figure 4A, eNOS
levels were significantly lower in AIA than in control rats.
Then, we explored the connection between levels of eNOS and
BDNF in cerebral microvessels-enriched fractions. As shown
in Figure 4B, a positive correlation was found between the
2 parameters when control and AIA rats were examined
simultaneously. By contrast, no association was found when
AIA and control rats were examined separately (data not
shown). Finally, cerebrovascular fractions were isolated from
24 additional rats (12 controls and 12 AIA). The fractions
we exposed (24 h) isolated vascular fractions to L-NAME (a
NOS inhibitor) or GTN (a slow releasing NO donor that
well mimics the continuous secretion of NO by endothelial
cells). The exposure to L-NAME (µM) of control fractions
was found to induce a significant decrease in BDNF levels
(Figure 4C), while the exposure to GTN (10µM) of AIA
fractions increased BDNF levels (Figure 4D). Collectively, these
data suggest that decreased BDNF production by the cerebral
endothelium was likely consecutive to its reduced capacity to
produce NO.

Changes in Either the Cerebral BDNF
Pathway or eNOS Levels Evoked by AIA
Did Not Proportionate with the Severity of
Inflammatory Symptoms
The severity of inflammatory symptoms was evaluated from
arthritis scores in all AIA rats (n= 35). As shown in Figure 5, the
first symptoms were seen ∼ at day 12 post-immunization. Then,
arthritis score rapidly increased to 3.5 and plateaued from ∼ day
22 post-immunization until sacrifice. Notably, arthritis score
at sacrifice differed among rats, its minimum and maximum
value being 0.7 and 4.9, respectively. However, when individual
arthritis score in AIA rats was plotted against corresponding
values of BDNF or eNOS levels in cerebral microvessels-enriched
fractions or intensity of neuronal BDNF staining on brain slices,
no correlation was observed (Table 1).

DISCUSSION

The main results of the present study are that (i) AIA alters
the cerebral BDNF/TrkB pathway at both the endothelial and
neuronal levels, (ii) activation of neuronal TrkB receptors
correlated with endothelial BDNF expression, (iii) a connection
exists between the endothelial BDNF/TrkB pathway and the
capacity of the cerebral endothelium to produce NO, (iv)
AIA-induced changes in either the cerebral BDNF pathway
or endothelial NO production did not proportionate with the
severity of inflammatory symptoms.

The impairment of the cerebral BDNF pathway is largely
involved in impaired cognition associated in animal models
of psychiatric, neurologic and neurodegenerative diseases.
However, whether changes preferentially occur at the neuronal
and/or endothelial level is not well known. In fact, levels of BDNF
and its receptors are commonly measured in brain homogenates
and their localization restricted to neurons. The new data
provided by the present study is that AIA alters the cerebral
BDNF/TrkB pathway at both the neuronal and endothelial level.
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FIGURE 4 | (A) Effect of AIA on eNOS levels in cerebral microvessels-enriched fractions. A representative immunoblot of eNOS and β-actin as internal control is

shown above the bar graphs, (B) In these fractions, eNOS and BDNF levels correlated, (C) Effect of the exposure of cerebral microvessels-enriched fractions collected

in control rats to Nw-nitro-L-arginine methyl ester hydrochloride (L-NAME) on BDNF levels, (D) Effect of the exposure of cerebral microvessels-enriched fractions

collected in AIA rats to glyceryl-trinitrate (GTN) on BDNF levels. Vascular samples were collected at day 31 ± 2 post-immunization. Values are expressed as means ±

SD, n = number of rats, *p < 0.05 vs. corresponding controls.

More precisely, neuronal as well as endothelial expression of
BDNF and activated TrkB receptors were lower in the brain
of AIA rats than in that of controls, suggesting that impaired
BDNF-dependent cognition might have both a neuronal and
endothelial component. The assessment of cognitive deficit
(memory, learning) by traditional behavioral tests in AIA rats is
challenged by the reduction of spontaneous mobility as a result
of inflammation of the two hind paws. However, learning is
impaired in animal model of RA in which only one hind paw
is damaged (Zhu et al., 2016). It is noteworthy that diseases
other than RA but combining as RA impaired cognition and
high cardiovascular risk such as hypertension and diabetes
were reported to induce BDNF downregulation in neurons
(Pietranera et al., 2010; Franco-Robles et al., 2014), endothelial
cells (Navaratna et al., 2011; Prigent-Tessier et al., 2013) or
both (Monnier et al., 2017a). Using cell culture, activation of
endothelial TrkB receptors was reported to induce myotubes

formation (angiogenesis) (Kim et al., 2004), while activation
of neuronal receptors was reported to increase the number of
synaptic connections (Park and Poo, 2013). Furthermore, BDNF
secreted by cerebral endothelial cells in culture was reported to
induce neurogenesis (Leventhal et al., 1999) and protect neurons
against cytotoxic stimuli (Guo et al., 2008, 2012). The emerging
and elusive question concerns the contribution of BDNF secreted
by cerebral capillaries to neuronal function in vivo and by
extension to cognition. Supportive such a paracrine action of
endothelial-derived BDNF in vivo, a strong positive correlation
was observed between endothelial BDNF and neuronal p-TrkB
expression even though BDNF expression by capillaries was
estimated from BDNF expression by arteriolar endothelial cells.
We are aware that endothelial BDNF expression in arterioles
and cerebral capillaries might differ. However, the difference
if present is expected to be minor since endothelial BDNF
staining/levels did not singificantly differ amoung F20, F53, and
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FIGURE 5 | Time course of arthritis score in AIA rats. Values are expressed as

means ± SD of 35 rats.

TABLE 1 | AIA-induced changes in the BDNF pathway and endothelial NO

production do not relate to the severity of inflammatory symptoms.

Arthritis score

r P

Vascular BDNF levels/athritis score serie 1 −0.005 0.993

Vascular BDNF levels/arthristis serie 2 −0.653 0.160

Vascular eNOS levels/arthritis score serie 1 0.445 0.376

Vascular eNOS levels/arthritis score serie 2 0.123 0.816

Neuronal BDNF staning/arthritis score −0.416 0.486

Arthritis score as reflection of the severity of inflammatory symptoms was determined

in AIA rats just before brain collection (at day 31 ± 2 post-immunization). Arthritis

score was plotted against corresponding BDNF or eNOS levels (Western blot analysis,

n = 6 for series 1 and 2) in cerebral microvessels-enriched fraction or corresponding

neuronal BDNF staining intensity (immunohistochemical analysis of brain slices, n = 5).

r= Pearson’s correlation coefficient. n= number of AIA rats. No correlation was observed

between arthritis score and other parameters.

F110 fractions (Monnier et al., 2017a). According to such a
paracrine action, BDNF secreted by cerebral capillaries into the
cerebral interstitial fluid might be recognized by and activate
neuronal TrkB receptors thereby increasing synapses strength
and cognitive abilities. Although still speculative, such a scenario
fits well with the new concept that emphasizes the importance
of endothelial health in maintaining neuronal function. Last but
not the least, our results showed that AIA-induced changes in
the cerebral BDNF pathway, either neuronal or endothelial, were
not in proportion with the severity of inflammatory symptoms.
Further studies are however needed to investigate the impact
of effective anti-rheumatoid treatment on the cerebral BDNF
pathway.

Decreased endothelial NO bioactivity is well documented in
RA patients (Steyers and Miller, 2014) and AIA rats (Haruna
et al., 2006, 2007; Prati et al., 2011, 2012; Totoson et al., 2015), at
least for the peripheral vasculature. Such alteration in endothelial
phenotype and subsequent stimulation of atherosclerosis has

been largely involved in the 2–5 times increased risk of
developing premature cardiovascular diseases in RA (Wallberg-
Jonsson et al., 1997). The new data provided by the present
study is that ED extends to the cerebral microvasculature in
AIA as evidenced by lower eNOS levels in cerebral enriched-
microvascular fractions in AIA than in control rats. A clinically-
relevant data is that vascular eNOS levels in AIA were not
in proportion with the severity of inflammatory symptoms,
suggesting that cerebral ED in RA patients cannot be predicted
from the disease severity as previously observed for peripheral
ED (Bernelot Moens et al., 2016). We are aware that decreased
eNOS levels is only one of the multiple mechanisms that can lead
to decreased endothelial NO bioactivity in AIA. Unfortunately,
additional mechanisms cannot be explored in the present
study because the amount of vascular material that can be
purified from each rat forebrain was too low (250 µg total
protein). We prefer to give the priority to the simultaneous
measurement of eNOS and BDNF protein levels in the same
sample, thus offering the opportunity to explore the link between
endothelial NO and BDNF production. It is noteworthy that
a positive correlation was observed between vascular eNOS
and BDNF levels. These data combined with our ex vivo
experiments showing that eNOS inhibition reproduced while
NO supplementation reversed the effect of AIA on endothelial
BDNF levels strongly suggest that decreased endothelial BDNF
synthesis observed in AIA might be due to decreased capacity
of the cerebral endothelium to synthesize NO. Notably, a
positive control by endothelium-derived NO of BDNF synthesis
by cerebral endothelial cells is not surprising. Indeed, the
exposure of cultured brain-derived endothelial cells to inhibitors
of NO production including the peptide A beta (a compound
largely involved in the physiopathology of Alzheimer disease)
and ADMA (an endogenous eNOS inhibitor) was reported to
decrease BDNF production (Guo et al., 2008; Ma et al., 2015).
In the same vein, incubation of isolated cerebral microvessels
with advanced glycation-end products (Navaratna et al., 2011)
that act as NO scavengers (Bucala et al., 1991) resulted in BDNF
downregulation whilst their incubation with a slow releasing NO
donor was recently reported by our laboratory to increase BDNF
production (Monnier et al., 2017b). The new data provided by
the present study is that a NO supplementation is efficient to
stimulate endothelial BDNF production even when ED is present.
A therapeutic perspective is that impaired cognition in RAmight
be improved by the restoration of endothelial NO production.
However, even though our ex vivo experiments support a causal
link between decreased endothelial NO production and BDNF
production in AIA, a contribution of other factors cannot
be excluded. In addition, whether neuronal BDNF expression,
which is mainly controlled by neuronal activity (Balkowiec and
Katz, 2000), is dependent on endothelial-derived BDNF remains
an open question (Banoujaafar et al., 2016). An unresolved
point concerns the role of pro-inflammatory in AIA-induced
changes in BDNF. However, against their involvement the
exposure to tumor necrosis factor alpha (TNFα), a cytokine
relevant in RA, was previously reported to induce BDNF
upregulation either by cultured cerebral endothelial cells (Bayas
et al., 2002) or neuron-enriched dissociated culture of trigeminal
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ganglion (Balkowiec-Iskra et al., 2011). Nevertheless, assuming
that cognition may be dependent on endothelial-derived BDNF
(Katusic and Austin, 2014), a therapeutic perspective of the
present study is that impaired cognition in RA might be
improved by the restoration of endothelial NO production.
Consistent with this new approach, prevention of ED was
recently reported to translate into brain BDNF levels elevation
in AIA rats (Pedard et al., 2017).

In conclusion, the present study supports the exciting
hypothesis that decreased BDNF production by the cerebral
endothelium as a result of decreased endothelial NO synthesis
might account for AIA-associated decreased activation of
neuronal TrkB activation. These data open new perspectives
in the comprehension of the link between endothelial function
and cognition and in the management of impaired cognition in
patients at high risk for cardiovascular diseases.
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