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Most drugs exert their beneficial and adverse effects through their combined action on

several different molecular targets (polypharmacology). The true molecular fingerprint

of the direct action of a drug has two components: the ensemble of all the receptors

upon which a drug acts and their level of expression in organs/tissues. Conversely,

the fingerprint of the adverse effects of a drug may derive from its action in bystander

tissues. The ensemble of targets is almost always only partially known. Here we

describe an approach improving upon and integrating both components: in silico

identification of a more comprehensive ensemble of targets for any drug weighted by

the expression of those receptors in relevant tissues. Our system combines more than

300,000 experimentally determined bioactivity values from the ChEMBL database and

4.2 billion molecular docking scores. We integrated these scores with gene expression

data for human receptors across a panel of human tissues to produce drug-specific

tissue-receptor (historeceptomics) scores. A statistical model was designed to identify

significant scores, which define an improved fingerprint representing the unique activity

of any drug. These multi-dimensional historeceptomic fingerprints describe, in a novel,

intuitive, and easy to interpret style, the holistic, in vivo picture of the mechanism of

any drug’s action. Valuable applications in drug discovery and personalized medicine,

including the identification of molecular signatures for drugs with polypharmacologic

modes of action, detection of tissue-specific adverse effects of drugs, matching

molecular signatures of a disease to drugs, target identification for bioactive compounds

with unknown receptors, and hypothesis generation for drug/compound phenotypes

may be enabled by this approach. The system has been deployed at drugable.org for

access through a user-friendly web site.

Keywords: polypharmacology, molecular docking simulation, gene expression, mechanism of drug action, drug

target

INTRODUCTION

Enormous quantities of “omics” data characterizing both normal and diseased tissues continue
to accumulate, leading to the development of increasingly complex molecular biomarkers for
diseases. The majority of drugs in current clinical use were discovered by phenotypic screens,
leaving their precise mechanism of action unknown. Many if not most of these drugs likely
act polypharmacologically (on multiple receptors simultaneously). These two trends result in
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a growing knowledge gap between the efforts to mechanistically
and genomically characterize diseases on the molecular level and
the chemicals used for their treatment (Figure 1).

Polypharmacology partly addresses this gap and has gained
increasing attention in the field of drug discovery (Peters,
2011). At least some approved drugs exhibit polypharmacological
signatures by interacting with multiple targets(Ashburn and
Thor, 2004; Keiser et al., 2007, 2009; Mestres et al., 2009;
Durrant et al., 2010; Yang et al., 2011). The identification
of more of the ensemble of these targets is essential for
both understanding the mechanism of drug action and
predicting toxicity (Cereto-Massagué et al., 2015). Moreover, the
development of compounds that rationally interact with multiple
targets is appealing in the case of complex multigenic diseases,
such as cancer (Knight et al., 2010) or psychiatric disorders
(Metz and Hajduk, 2010; Allen and Roth, 2011; Brown and
Okuno, 2012). Improved polypharmacological profiles of a drug
can be identified only by a more comprehensive analysis of
drug-target interactions on a proteome-wide scale (Xie et al.,
2012).

In recent years, growing databases of compound-receptor
bioactivities have become available (Wang et al., 2009; Sharman
et al., 2011; Gaulton et al., 2012). However, the complete universe
of bioactivity scores between putative or actual drugs/compounds
and their receptors is still far from approachable. A number of
ligand-based and structure-based in silico approaches emerged to
address the off-target identification aspect of this issue (Rognan,
2013). Ligand-based approaches are based on an assumption
that chemically similar structures are more likely to have similar
pharmacological profiles. The idea behind the structure-based
off-target identification approaches is based on inverse docking
(Chen and Zhi, 2001), where a single compound is docked to
multiple targets and the potential biological targets are ranked
based on the docking (Chen and Zhi, 2001; Paul et al., 2004; Gao
et al., 2008; Yang et al., 2009; Durrant et al., 2010; Li et al., 2010a,b;
Grinter et al., 2011).

FIGURE 1 | Knowledge gap in the spectrum of public health information. While the majority of drugs in clinical use were discovered empirically, high throughput

omics technologies generate the basis for inferring targets for rational drug design. However, it remains unclear how to integrate large sets of omics data on potential

drug targets with chemicals that may interact with these targets.

The combination of in silico target identification methods
and growing databases of experimental bioactivity scores
improves the feasibility of using these methods to identify
a significant subset of the complete ensemble of receptors
for known drugs and drug-like compounds by computational
approaches. However, a gap would still remain between the
polypharmacology of a drug and its pharmacodynamics, i.e., the
distribution of its receptor targets in the human body. In order
for the affinity of a drug for a given receptor in a given tissue
to be a significant factor, the receptor has to be expressed in
this tissue. For example, no matter how high the affinity of LSD
is for the serotonin 5-HT2a receptor (HTR2A), this drug-target
interaction is not physiologically significant in uterine tissue as
HTR2A is not expressed there. The true fingerprint of drug
action is the totality (“omics”) of receptors for which a drug has
affinity, weighted by the expression levels of these receptors in the
tissues (“histos”) across human body. Hence we introduced the
term “historeceptomic fingerprint” for the holistic signature of
drug action. Thus, here, we aim to develop a novel approach for
the identification of historeceptomic fingerprints for any given
drug/compound.

METHODS

Chemical Library
Chemical structures in Drugable were obtained from three
sources: DrugBank, PubChem, and ChEMBL. 1423 approved
and 4752 experimental drugs were imported from DrugBank
2.5 via the XML format release. An additional 1,138,288
compounds were imported from the SDF format release of
ChEMBL 14. Additionally, PubChem compound identifiers
from the SDF release were assigned to 1,006,895 DrugBank or
ChEMBL compounds in Drugable on the basis of equal canonical
SMILES strings as computed from RDKit (Landrum, 2008).
Overall 1,141,434 unique chemical structures are represented in
Drugable.

Frontiers in Physiology | www.frontiersin.org 2 December 2015 | Volume 6 | Article 371

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Shmelkov et al. Historeceptomic Fingerprints for Drug-Like Compounds

Compound-Compound Associations
Compound-compound associations were evaluated as a chemical
similarity measure between two compounds and derived as
Tanimoto distance between their molecular fingerprints as
implemented in the RDKit PostgreSQL extension. Briefly, given
a molecule, all linear and non-linear fragments of different size
were enumerated and hashed into a bit string called a fingerprint.
The Tanimoto coefficient, T, for two fingerprints was calculated
as the number of bits in which they differ divided by the number
of non-zero bits they have in common. The Tanimoto distance
was defined as 1—T. Compounds are shown in the “Similar
Compounds” section of a compound page if their Tanimoto
distance is less than 0.5.

Protein Library
20,266 Human proteins were imported from the XML release of
UniProt into drugable.org.

Structure Library
3D Structures for the human proteins imported as above
were obtained from two sources, the Pocketome (Abagyan
and Kufareva, 2009) and ModBase (Pieper et al., 2006). 6857
experimental structures come from the Pocketome and 64,801
homology models are available from ModBase.

Consideration of receptor flexibility is crucial for structure-
based drug design and the conformational ensembles of protein
receptors derived from Pocketome are a practical alternative
to mimic receptor flexibility. However, blindly adding certain
conformations to an ensemble may be counterproductive (Rueda
et al., 2010). To ensure the high quality of selected conformers, we
performed retrospective virtual screening experiments and only
structures with high separation power of known ligand binders
from decoys were selected. Initially, for a benchmark screen,
pockets on Pocketome human proteins (Table 1) were screened
against a custom chemical library consisting of compounds
solved crystallographically with several proteins and 100 random
chemical decoys in order to measure the docking quality of
the pockets. Having established that only the highest quality
pockets could produce accurate docking scores, a subset of 6857
high quality X-ray conformations of 570 human protein targets
from Pocketome was imported into the data warehouse. The
4.2 billion scores generated for Pubchem Bioassay, ChEMBL,
and DrugBank compounds against these 6857 high quality
pockets on 570 protein targets from the Pocketome have been

TABLE 1 | Assessment of docking performance.

Data set No. of pockets Mean AUC

All 7553 0.57

All TP ≥ 5 and TN ≥ 5 6017 0.569

Homology only and TP ≥ 5 and TN ≥ 5 2128 0.528

Pocketome only and TP ≥ 5 and TN ≥ 5 3889 0.591

TP and TN are the numbers of positive and negative bioactivity values available for a

given pocket on a protein. Since estimation of AUC for pockets with a very small number

of bioactivity values may not be fair, we also provide estimates obtained on pockets with

at least 5 positive and 5 negative bioactivity values.

integrated into the drugable.org historeceptomics system. Where
there are multiple conformations for a pocket, the best score
was retained. An additional complete matrix of docking scores
of 4313 unique chemotypes from drugbank against ModBase
homology model database is available in raw form from the
authors. As a complete matrix, this data can be used for routine
mathematical transformations to study symmetries and trends in
the data that relate to polypharmacology. In all, docking to the
largest possible set of pockets representing the druggable human
genome was evaluated in this study.

Pharmareceptomic (Bioactivity or Docking)
Scores
In order to score the probability of interaction of compounds to a
comprehensive set of protein targets, we used the largest available
set of experimentally obtained bioactivities and in silico predicted
compound-protein docking associations.

Source of In vitro Binding Data
1,062,908 experimental compound-protein binding affinity
measurements were downloaded from ChEMBL 14 PostgreSQL
release. We used only binding measurements annotated with
a confidence score ≥7, “assay type” field of “B,” or direct
protein-ligand binding, and “standard_type” field of “Kd,” “Ki,”
or “Potency.” All compound-protein associations obtained from
ChEMBL are linked to their original scientific publications in
PubMed where data was available from ChEMBL.

Source of In silico Docking Data
More than four billion compound-protein associations were
derived from in silico docking experiments. The AutoDock
docking program was used for the docking calculations and all
the parameters were set to default values. AutoDock addresses
the docking issue as a global optimization problem of an energy
function, implementing an iterated local search global optimizer,
using the Broyden-Fletcher-Goldfarb-Shanno criterion for local
search (Trott and Olson, 2010).

Target Structure Preparation: The approach is intended to
be proteome wide. Therefore, many targets with unknown
biological function are expected to be available from structural
genomics efforts for this approach. In order to simulate the
realistic situation wherein the specific functional site on a
new crystallographically resolved target receptor with unknown
biological function is unknown, we rendered pockets on all
receptors blindly based only on the structure coordinates and
randomly selected one pocket per receptor. This pocket was then
defined as the binding site for docking. Receptors were then set-
up by deleting the chains, heteroatoms, and prosthetic groups
not involved in the binding site definition using ICM Browser
(Molsoft LLC, La Jolla CA). Protein atom types were assigned,
and hydrogen atoms and missing heavy atoms were added. The
added or zero occupancy side chains and polar hydrogen atoms
were optimized and assigned the lowest energy. Tautomeric states
of histidines and the rotations of asparagine and glutamine side
chain amidic groups were optimized to improve the hydrogen-
bonding patterns. The cognate ligands were deleted from the
complexes only after hydrogen optimization. Following this
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receptor preparation, we used the prepare_receptor4.py script (a
part of the AutoDock Tools distribution) with default settings to
convert the PDB models produced by ICM to the native PDBQT
format of AutoDock.

Ligand Structure Preparation: For each compound, bond
orders, tautomeric forms, stereochemistry, hydrogen atoms,
and protonation states were assigned automatically by the
AutoDock chemical conversion procedure. Each ligand was
assigned the modified X-Score force field atom types and
charges implemented in Arg. Canonical SMILES of each ligand
to be screened were matched to the appropriate PubChem
3D structure (Bolton et al., 2011) to be used as a starting
conformation for AutoDock docking.

After each docking simulation a stack of diverse binding poses
was generated, and their respective docking scores were evaluated
using the AutoDock scoring function (Trott and Olson, 2010).
Three docking runs were performed for each compound-pocket
pair; all binding poses accumulated after each run weremerged in
a single conformational stack and ranked based on their binding
scores; finally, the conformation with the best docking score was
retained.

Predicted Pharmareceptomics Score
(Probability) of Compound-Target
Interaction
In our approach, the pharmareceptomics score is equivalent
to the estimated probability that the compound will interact
with the target at a physiologically significant level. For
experimental bioactivities, the pharmareceptomics score is set
equal to experimental affinity. For docking scores, we used
the relationship between binding affinity and docking score
published in Husby et al. (2015) to estimate a pharmareceptomics
score from a docking score.

Protein Target–Gene Expression
Associations
Gene expression patterns of protein targets from a diverse set of
tissues and cell types were derived from the “GeneAtlas U133A,
gcrma” dataset (Su et al., 2004) via the BioGPS web-tool (http://
biogps.org/, accessed on 5/7/2013; Wu et al., 2009, 2013). If
for a given gene, data from multiple probes/experiments were
available, the mean of those values was used. For each target
protein, the level of expression in each tissue was normalized with
regard to its level of expression in all tissues of the dataset and
projected into the Z-score.

Data Access
The system (“Drugable”) is accessible via user-friendly interface
at http://drugable.org/. A flexible free-text search index is
available for common names of compounds and targets, medical
conditions, etc. Chemical drawer allows user to search by
chemical similarity or substructure.

For example when searchingDrugable by compound common
name, the user is presented with compound chemical structure,
compound information (Number of Hydrogen BondDonors and
Hydrogen BondAcceptors, Number of Rotatable Bonds, Number

of Rings, Walden-Crippen LogP, Indication, Pharmacology,
Mechanism of Action etc.), and a table of compound-protein
associations (experimentally derived and/or predicted by in silico
docking experiments) available for this specific compound. The
resulting table gives a list of protein targets of the compound
of interest with reported or predicted affinity, including protein
target UniProt accession ID, the measured activity value and
type or docking score. Note that all the experimentally obtained
activities are displayed in nM. In addition, a list of compounds
that are chemically similar to the compound of interest is also
presented. Furthermore, tissue-specific levels of expression for
all genes, correspond to the protein targets of the compound of
interest, are presented as a heat map.

Alternatively, a user may want to search for a particular
protein of interest. In this case, the user is presented with details
of the protein target, such as X-ray structure (if available), protein
name synonyms, gene names, organism this protein belongs to,
and UniProt accession ID.

Furthermore, users may search for a medical condition of
interest. In this case user is presented with a list of drugs/drug-
like compounds as well as protein targets associated with this
medical condition.

RESULTS

Generation of Bioactivity Scores
First, we generated bioactivity probability scores for the
compound-receptor pairs by executing the largest computational
molecular docking reported to date (see Section Methods). A
benchmark docking screen was performed against 3D structural
models of human proteins (Table 1). The mean area under the
receiver operating curve (AUC) for benchmark docking was
0.59 (with about 23% of structures having separation power
above 0.7) when performed on 3D structural models from
Pocketome (Kufareva et al., 2012), but only 0.53 (with 8.5% of
structures above AUC of 0.7) on ModBase (Pieper et al., 2006)
homology models proteins (Table 2 and Supplementary Table 1).

TABLE 2 | Number of receptors from the benchmark study with AUC

above a certain threshold.

AUC threshold Source No. of receptors % of receptors

0.9 All 77 1.3

Homology 20 0.9

Pocketome 57 1.5

0.8 All 389 6.5

Homology 55 2.6

Pocketome 334 8.6

0.7 All 1090 18.1

Homology 180 8.5

Pocketome 910 23.4

0.6 All 2575 42.8

Homology 551 25.9

Pocketome 2024 52.0
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FIGURE 2 | Pharmareceptomics: a tool for connecting proteome with the chemical universe. Pharmareceptomic or bioactivity “score,” a measure of

compound-target interaction, was derived from either compound-protein bioactivity data or binding energy data estimated by in silico docking.

This result suggests that only the docking scores achieved with
the highest quality Pocketome pockets should be included in
our “omics” set of compound-receptor scores, which are used
to predict mechanistic signatures solely from chemotype. The
Pocketome currently includes 6857 pockets derived from high
quality crystallographic structures of 570 target human proteins.
Therefore, for our “omics” set we docked over 600,000 unique
non-overlapping chemical structures from PubChem Bioassay,
ChEMBL, and DrugBank against these 6857 pockets for a
total of 4.2 billion pairwise docking scores between compounds
and targets. These “omics” in silico docking scores together
with the compound–receptor affinities obtained experimentally,
constitute the bioactivity scores data set (Figure 2), which
comprise a significant fraction of the druggable targets encoded
in the human genome, by one estimate to be around 4000 targets
(Reardon, 2013).

Generation of Historeceptomic Scores
To address the issue of physiological significance of drug
targets detected in the first step, we endeavored to calculate
a tissue-specific (historeceptomic) compound-receptor score
(Figure 3A). Tissue-specific gene expression data on protein
targets were obtained from the BioGPS database. The level of
expression of each receptor in every tissue was normalized with
regard to its expression level in all tissues of the dataset by
calculating its standard score (Z-score, see Section Methods).
Each compound-receptor association in each tissue was scored
by integrating their bioactivity with the receptor expression in a
given tissue as follows:

Hs = −log10 Ps× Z,

where Hs is a historeceptomic score, Ps is a bioactivity score, and
Z is the gene-expression Z-score.

By this method, for any given drug/compound, thousands of
historeceptomic scores can be generated, but only a tiny fraction
of these, which measure the probability that the compound
will affect the receptor in a physiologically significant way, are
important. The average drug may have hundreds of low affinity
receptors, resulting in a set of scores numbering in the tens
of thousands across all tissues in the human body. To identify
the physiologically significant compound-receptor interactions
out of the large number of all on-/off-target interactions of a
given compound, we used the generalized extreme Studentized
deviate test as a statistical novelty detection approach using
the α = 0.0001 level of significance (Figure 3B). Statistically
significant historeceptomic scores of a given drug/compound
form its historeceptomic fingerprint.

Fingerprints were pre-calculated for all known drugs into
an integrated system suitable for searching with any chemical
structure to find its historeceptomic fingerprint. The system
includes the 4.2 billion docking scores with experimental affinity
scores in a graph linking drugs/compounds to protein targets in
order to maximize the sensitivity of target detection for any drug.

Illustrative Use Case
Historeceptomics fingerprints may specifically localize in vivo
significant mechanisms of action of a polypharmacologic drug,
translating purely molecular data into a clinically interpretable
profile. An example is shown in Figure 3A. Lysergic acid
diethylamide (LSD) is a hallucinogenic drug in humans,
which makes it difficult to study in animal models, as many
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FIGURE 3 | Generation of historeceptomic profile of a drug/compound. (A) Calculation of historeceptomic scores. The arrow thickness represents the strength

of affinity between a drug/compound and the protein targets. Left heatmap displays gene expression data of protein targets. Right heatmap represents

historeceptomic scores calculated using the formula shown, where Ps—pharmareceptomic scores and Z—normalized gene expression level. (B) Historeceptomic

profile of a drug/compound. The majority of the tissue-specific drug: receptor interactions are physiologically insignificant and their combined scores are normally

distributed, while a few outlier interactions with significantly larger scores constitute the true historeceptomic profile of the drug/compound. These tissue-specific

interactions are characterized by both high compound-target affinity and high target expression in that specific tissue.

hallucinations are only represented internally and can only
be communicated verbally. We calculated the historeceptomics
profile for LSD. In this case, the inputs into our system were only
molecular in nature: the affinity scores and the expression data.
We did not use docking in this example. Our historeceptomics
approach identified the 5HT2A receptor in the prefrontal
cortex (PFC) as the most significant of tissue-target pair
associated with the phenotype induced by LSD. Independently,
we analyzed the preclinical and clinical literature on LSD
targets, which is exclusively non-molecular data. The textbook
and literature consensus from animal neuroperturbation studies,
pharmacologic studies and clinical neuroimaging is that 5HT2A
is the primary molecular target of LSD, and that, specifically,
its activity in the PFC is responsible for its effects. Thus, there
are many non-molecular clinical and translational papers in
the literature, none of which were input to our system, that
clearly establish 5HT2A specifically in the PFC not only as a
key pathway for LSD psychosis, but also as the epicenter of the
very similar psychoses seen in human schizophrenia (Arvanov
et al., 1999; Vollenweider and Geyer, 2001; Muschamp et al.,
2004; Nichols, 2004). The historeceptomics approach predicts
this finding independently of animal or clinical studies.

DISCUSSION

This report takes on the two major challenges of precisely
describing the holistic pharmacodynamics of drugs. First,
we expanded the graph of experimental scores linking
drugs/compounds to protein targets, which has been used
in prior methods such as SEA (Keiser et al., 2007), to include
the data from the largest computational molecular docking of
compounds to protein pockets yet reported. This should increase
the sensitivity of target detection. Second, we addressed, for
the first time, the systematic integration of bioactivity/docking
scores between drugs/compounds and proteins with the
expression patterns of those proteins in human tissues, thus
mapping the pharmacology of drugs into human physiologic
space.

The integration of bioactivity/docking scores of compound-
receptors with the expression patterns of those receptors
in human tissues increases the specificity of the results
by eliminating noise and selecting only physiologically
significant drug-target interactions. Thus, although for many
models/pockets the docking scores correlate only moderately
with affinity due to the limited ability to take induced fit into
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account, this lack of specificity is abrogated by our integration of
the gene expression such that many false positives are likely to be
culled. While sensitivity is low, it can be steadily improved from
our pioneering prototype by (1) improved binding site (pocket)
selection methods and (2) natural growth and improved curation
of the crystallographic and bioactivity databases.

There are 20,198 reviewed human proteins in UniProt,
of which 4300 have human crystal structures in the PDB
(21.3% of total). An additional 20–30% of these can likely
be modeled reliably by homology. Thus, up to 50% of the
“proteome” might already be surveyed by docking. Estimates
of the druggable genome range from 8 to 12 thousand targets.
The existing structures are probably highly enriched in these
targets so, one can speculate that 40–50% of the druggable
genome is already accessible by docking. These are highly
speculative estimates, but since the number of crystal structures
and the power of computation is growing rapidly, it is not
unreasonable to speculate that a low resolution representation
of the majority of the druggable genome could be available for
docking soon.

The system has been deployed for access through a user-
friendly web site: drugable.org. For compounds resulting from
phenotype screens, where their mechanism of action is not
known, searching the site can identify possible mechanisms
of action. Similarly, where the tissue pattern of a disease is
known, drug activity detected by our approach in tissues not
included in the pattern could be suggestive of the mechanism
of the adverse effects of a drug. Since the historeceptomic
fingerprints contain both a specific pattern of targets and a
specific pattern of tissues, they could potentially be matched
to complex biomarkers of disease derived from exhaustive
molecular profiling, which can have a similar gene-tissue
signature. Our novel approach thus potentially fills a currently

existing gap between burgeoning “omics” data and drugs/drug-
like compounds (Figure 1).
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