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The emergence of -omics technologies has allowed the collection of vast amounts of

data on biological systems. Although, the pace of such collection has been exponential,

the impact of these data remains small on many critical biomedical applications such

as drug development. Limited resources, high costs, and low hit-to-lead ratio have led

researchers to search for more cost effective methodologies. A possible alternative is

to incorporate computational methods of potential drug target prediction early during

drug discovery workflow. Computational methods based on systems approaches have

the advantage of taking into account the global properties of a molecule not limited

to its sequence, structure or function. Machine learning techniques are powerful tools

that can extract relevant information from massive and noisy data sets. In recent years

the scientific community has explored the combined power of these fields to propose

increasingly accurate and low cost methods to propose interesting drug targets. In

this mini-review, we describe promising approaches based on the simultaneous use of

systems biology andmachine learning to access gene and protein druggability. Moreover,

we discuss the state-of-the-art of this emerging and interdisciplinary field, discussing

data sources, algorithms and the performance of the different methodologies. Finally, we

indicate interesting avenues of research and some remaining open challenges.

Keywords: druggability, machine learning, systems biology, review, drug targets, sequence properties, structural

properties, network topology

INTRODUCTION

Biological systems are complex and the response to a chemical substance is often unpredictable.
When a chemical substance, like a drug, interferes with the natural biology of a system, the effect is
usually undesirable. Pharmaceutical industry has come a long way when it comes to drug discovery.
Rapid advancement in the technology over the years and the increasing understanding of biology
has led to designing drugs more efficiently. While the approved drugs increased over the past
decade, they did not match the increase in cost of drug development (Csermely et al., 2013).

Druggability is the property of a druggable molecule (i.e., a biological target) by virtue of which
it elicits a favorable clinical response when it contacts a drug-like compound. While the majority of
druggable targets today are proteins, nucleic acids are slowly replacing them (Imming et al., 2006;
Davidson and McCray, 2011). According to Gashaw et al. (2011), an ideal drug target should have
the following properties: favorable assayability for high throughput screening, capacity to modify
a disease, low impact on the modulation of physiological conditions or other diseases, differential
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expression across the body for specific targeting, the existence of
a biomarker to monitor its efficacy and freedom to operate, i.e.,
lack of competitive binding.

Experimentally evaluating all proteins or nucleic acid
fragments for their druggability is a daunting task. Our lack
of knowledge about the biology of disease at molecular level
further complicates the situation. With these uncertainties at
hand, our sample space for a potential drug target is enormous.
It is therefore impractical to clinically evaluate all drug targets
before being able to first prioritize them. Due to these facts,
computational models that can predict drug targets with high
sensitivity while maintaining a high specificity on a genome-wide
scale would be highly welcomed.

With the advancements in technology, we now have access
to a plethora of data including protein-protein interaction
(PPI), metabolic and gene regulatory networks, protein and
gene expression profiles, and other system-level data. Although
consolidating these diverse data sets is still challenging, progress
has been made in the past few years. It is now possible to
combine these system-level data with data mining tools like
machine learning to build predictive models. Such analyses have
the potential of identifying biologically relevant patterns that
confer druggability to potential drug targets (Costa et al., 2010).

In this mini-review, we discuss the current state of machine
learning-based methods for druggability prediction, specifically
those using system-level features. Despite the importance of
this subject, to the best of our knowledge, only seven papers
using machine learning approaches based on system-level data
to predict druggable proteins and genes have been published so
far (Table 1; Yao and Rzhetsky, 2008; Zhu et al., 2009; Costa et al.,
2010; Emig et al., 2013; Laenen et al., 2013; Jeon et al., 2014; Li
et al., 2015).

Usually, the development of predictive models in a machine
learning approach is accomplished by the following steps:
selection of learning instances (in this case, the druggable and
non-druggable molecules) and attributes (in this case, system-
level features), selection of learning algorithms and evaluation of
the predictive performance of models. We structured this mini-
review according to these steps: first we discuss the learning
instances, then the attributes related to the system-level-based
prediction of druggability with their performance metrics and
finally we discuss the most used machine learning algorithms
in this field. Most of the discussions are based on the papers
shown in Table 1. Some of the common terminologies used in
this mini-review are described in Table 2.

LEARNING INSTANCES: DRUGGABLE AND
NON-DRUGGABLE PROTEINS

It is critical to efficiently store information pertaining to drugs
and their targets, i.e., druggablemolecules. There is an abundance
of biochemical data available in the literature that can be used
to formulate hypotheses about how a phenotypic condition can
be targeted. According to the Pathguide, a pathway resource
list that contains information about hundreds of biological
databases dedicated to molecular interaction (Bader et al., 2006),

several resources specific to drugs and drug targets have been
developed to help address this issue. Among these resources,
the following were used in the papers commented in this
mini-review: DrugBank (Knox et al., 2011), Therapeutic Target
Database (TTD, Chen et al., 2002), ChEMBL (Bento et al., 2014),
PubChem (Bolton et al., 2008), BindingDB (Liu et al., 2007),
and Integrity1. From the Table 1 it is clear that DrugBank has
been the most popular database among the investigators willing
to predict druggable proteins based on system-level data: of the
seven papers discussed in this mini-review, four used drug-target
data from DrugBank (Yao and Rzhetsky, 2008; Zhu et al., 2009;
Jeon et al., 2014; Li et al., 2015).

Interestingly, the preference for DrugBank as a source of drug-
protein interactions among the dozens of databases dedicated to
the storage of this type of data is not clearly explained in the
papers discussed here. The fact that most of the data in DrugBank
are expertly curated from primary literature sources would be the
reason that makes this database so popular. However, all other
drug-protein interactions databases cited in this mini-review are
similar to DrugBank in this sense. So, one possible explanation
for the popularity of DrugBank is that, in comparison to other
databases, its collection of drug-protein interactions can be easily
obtained.

Even with the presence of high-quality data and completeness
of above-mentioned databases, they lack quantitative
information about the binding affinity that could be used
to evaluate the reliability of the interactions, except for the
BindingDb that reports some of these quantitative measures
(Liu et al., 2007). Ideally, the prediction of druggable proteins
would be more realistic if interaction affinities measured by
bioactivity assays were taken in consideration. As none of
the studies analyzed here report the utilization of quantitative
features to construct prediction models of druggable proteins,
so the prediction performances reported in Table 1 are likely to
be overoptimistic due to the oversimplified formulation of the
drug–target prediction problem as a binary problem (Pahikkala
et al., 2014).

LEARNING ATTRIBUTES AND
PREDICTION PERFORMANCE

Many different attributes have been used to generate models able
to predict druggability such as sequence and structural properties
(Li and Lai, 2007; Bakheet and Doig, 2009; Fauman et al., 2011).
Here we focus solely on system-level properties like topological
features of networks and gene expression profile.

To calculate the topological features of networks (henceforth
called network measures) to be used as learning features in
a machine learning approach, first it is necessary to build
the PPI networks from which these measures are calculated.
PPIs can be obtained from a multitude of databases, such
as String (Jensen et al., 2009), Human Integrated Protein-
Protein Interaction rEference (HIPPIE; Schaefer et al., 2012),
BioGrid (Breitkreutz et al., 2008), and Human Protein Reference
Database (HPRD; Peri et al., 2004), among others. Different

1http://integrity.thomson-pharma.com.
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TABLE 2 | Brief description about the common terminologies used in this mini-review.

Concept Description

Druggability The property of a druggable molecule (i.e., a biological target) by virtue of which it elicits a favorable clinical response when it contacts

a drug-like compound

Systems Biology Study of the complex biological systems using mathematical and computational modeling

Machine Learning Subfield of computer science devoted to the development and utilization of algorithms that can learn from and make predictions on

data

Network Measures Numerical attributes used to describe the role and position of every node in a network

Ensemble algorithms Collection of machine learning algorithms in which the final consensus prediction is made using results from each component

algorithm

Support Vector Machines (SVM) A model that takes the input training data and maps the data points in space and then tries to find a hyperplane that can be used to

distinctly classify the data into their respective classes

Decision Tree Machine learning algorithms based on decision support tools that make use of a graph of conditions and their possible consequences

Random Forest Ensemble learning algorithm that combines results from multiple decision trees and output the consensus predictions

Closeness Centrality Network measure that indicates how close each node is to every other node in the network

Betweenness Centrality Fraction of shortest paths between all nodes passing through the given node

from the drug-target-dedicated databases in which DrugBank
is the preferred database, there is no preferred PPI database
among investigators involved in the prediction of druggable
proteins by system-level data-basedmachine learning approaches
as can be seen in Table 1. This reflects on the need to develop a
standardized resource that can harbor PPI information, similar to
DrugBank for drug-targets. The IntAct (Orchard et al., 2014), an
open-source, open datamolecular interaction database populated
by data either curated from the literature or from direct data
depositions, for example, is one of the promising initiatives in
this regard.

The immediate consequence of the utilization of different
PPIs databases in the different studies is the inability to compare
the prediction performances of the models constructed in these
studies: from different PPI networks, distinct values for network
measures are obviously obtained. Moreover, in addition to the
oversimplification of the drug-target interactions problem as
discussed above, it is also worth to mention that all prediction
performances shown in Table 1 should be cautiously considered
as PPIs used to construct the networks are biased toward well-
studied genes and proteins despite the fact that the PPI databases
provide hundreds of thousands of interactions. Recent studies on
the construction of interactomes are however believed to better
capture unbiased molecular interactions (Rolland et al., 2014).

Regardless of the constraints discussed above, we analyze
and compare here the prediction performances of the models
based on network measures alone or in combination with
gene expression data. We cannot determine how accurate these
comparisons are, but at least they can indicate trends toward the
predictability of druggability by these learning attributes.

Researchers sought to investigate whether druggable proteins
occupy certain regions in a PPI network—thus implying network
measures distinct from other proteins—since, many studies had
already been demonstrated that disease and essential proteins
occupy specific regions in a network and, as a consequence,
exhibit network measures distinct from other proteins. In fact,
as observed for essential and disease proteins, druggable proteins

seem to be located in specific regions in a PPI network. Yildirim
et al. (2007), in their pioneering study on drug-target network
and, later on, Yao and Rzhetsky (2008) and Jeon et al. (2014),
found that druggable proteins show some network measures
significantly different from other proteins in the PPI network.

Hence, network measures could also be potential predictors
of druggability in machine learning approaches in the same way
that they have been demonstrated to be potential predictors of
essential and disease genes. Indeed, as shown in Table 1, machine
learning approaches based on a variety of combinations of
network topological features seem to be promising for predicting
druggable proteins and genes. Prediction models constructed
based solely on network measures achieved values of area under
the receiver operating characteristic curve (AUC) of 69.21% and
∼68% as demonstrated, respectively, by Zhu et al. (2009) and
Jeon et al. (2014). On integration of genomic properties like
GARP score, RMA intensity, row chromosomal copy number,
and mutation occurrence to closeness centrality, Jeon et al.
(2014) were able to improve the AUC to 78%. These figures
suggest that network measures alone are moderately predictive
of druggable proteins. However, more comprehensive studies in
which network measures are individually and collectively used
as learning attributes will be required to measure the level of
predictability of druggable proteins by network measures.

Although, the other papers commented here report the
creation of prediction models based on various and diverse
network measures, it is not possible to evaluate the prediction
performance of druggable proteins by considering only network
measures since in these models they were combined with other
features, mostly being gene expression profile, as shown below.

Using connectivity and betweenness in addition to other
systems-level properties, including gene expression profile, Yao
and Rzhetsky (2008) achieved AUCs 60–72% using different
machine learning algorithms. The prediction models of Costa
et al. (2010), based on various networkmeasures, gene expression
profile and subcellular localization, achieved a median AUC of
82% while correctly recovering 78.2% of known targets with a
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precision of 74.8%. Upon analysis of the features important to
discern druggable from non-druggable genes, they found that
genes encoding proteins located centrally in a transcriptional
regulatory network are more probable of being a drug target.
The centrally located genes were found by calculating the
betweenness centrality of all genes within the transcriptional
regulatory network. While all studies use different network
topological features, there is an indication that drug-targets are
better connected and centrally located than an average gene.

Other papers commented here also showed that the global
expression profile of genes along with network measures can
be potential predictors of druggability in a machine learning
approach. Emig et al. (2013) achieved median AUCs in the
range of 63–93% using gene expression signatures for 30 diseases
along with random walk, interconnectivity, network propagation
and neighborhood scoring. Laenen et al. (2013) evaluated their
methods by means of assessing the AUC from predictions on
235 gene expression datasets. Using only the gene expression
data, they obtained AUC in the range 64–66%. However, the
combination of these expression data with network measures
improved the prediction performance: while the combination
of expression data with kernel diffusion achieved AUC in the
range of 76–91%, the combination with the correlation diffusion
method achieved AUC in the range of 89–92%.

The study conducted by Li et al. (2015) is a special case
to be analyzed since they combined network and sequence
features of proteins to construct predictors of druggable proteins.
In spite of the fact that the process of integration between
network and sequence features was not clearly showed in this
paper, the constructed predictor based on eight different types of
network distance-based measures obtained a sensitivity of∼90%
and a precision of ∼85%. According to authors, the influence
of sequence features on this high prediction performance is
negligible due to the low amount of sequence features among all
used learning features, but this is still a matter of debate.

Taken together, despite all limitations concerning the
databases of drug-protein interactions and the construction of
PPI networks as previously discussed, the findings reported
in these papers indicate the importance of integrating other
types of systems-level data to network measures to improve the
prediction of druggable proteins. It seems that only network
measures are not enough to distinguish druggable from non-
druggable proteins, although a large-scale study for evaluating
how well-druggable proteins can be predicted solely by network
measures is necessary to confirm this moderate prediction
performance as previously discussed.

MACHINE LEARNING ALGORITHMS

The advent ofmachine learning algorithms has furthered the field
of drug discovery. There are many different types of machine
learning algorithms that have been used to distinguish the
specific properties of two or more functional classes (druggable
vs. non-druggable; enzyme vs. non-enzyme etc.) as shown in
Table 1. Algorithms based on SVMs, decision trees, ensemble of
classifiers, logistic regression, radial basis function, and Bayesian
networks have been commonly used.

Zhu et al. (2009) and Jeon et al. (2014) both used SVM to
construct their prediction model. SVMs are a set of models that
maps the data points in space and then constructs a hyperplane
that can be used for classification. The larger the distance of the
hyperplane from the nearest data-point, better the model is. Li
et al. (2015) and Costa et al. (2010) used decision-tree based
ensemble algorithms. Decision trees are simple, yet powerful way
to perform classification. They use decisions tree as a predictive
model for classifying an object (a gene in this case) into its
target class (druggable/non-druggable). The ensemble algorithms
used by Li et al. (2015; Random Forest) and Costa et al. (2010;
decision-tree based meta classifier) combine the prediction of
multiple decision trees. The results from individual trees are
combined by means of a voting strategy to produce higher
confidence predictions.

Logistic regression was used by Emig et al. (2013) and Yao and
Rzhetsky (2008) for their predictive modeling studies. Besides
logistic regression, Yao and Rzhetsky (2008) also used other three
classifiers (Bayesian network, naïve Bayes, and RBF network).
Finally, Laenen et al. (2013) used a ranking method instead of
an explicit machine learning algorithm to prioritize druggable
proteins.

DISCUSSION

Drug development is a long, expensive and laborious process
with a very low success rate. It is therefore critical to ensure
high confidence of each step. Identifying a potential target is
amongst the most preliminary stages and is therefore a necessity
to ensure success during later stages. In the past few years we have
seen a shift of pharmaceutical industry to employ computational
prediction models early during the process.

With the explosion of high quality “omics” data and
improvements in computational efficiency, large number of
prediction methods has been proposed for target prioritization.
Machine learning algorithms constitute the major proportion
of such strategies. These methods have tried to capture the
characteristics of successful drug targets to identify new targets
with similar properties. Among the most commonly used
features include sequence properties, role in biological networks,
structural properties, gene expression profiles, and subcellular
locations.

The most fundamental sequence property used for any
protein function prediction is its sequence composition.
Composition of the 20 amino acids has been repetitively
used for predicting potential drug targets. Other commonly
used properties derived from sequence include physicochemical
properties like hydrophobicity, polarity, solvent accessibility,
and charge etc. Structure based methods make use of the
information taken from protein structures. Some commonly
used structure derived properties include the characteristics
of surface area, binding-sites and cavities, pockets, and
volume etc.

Several prediction methods identify potential drug targets;
however, they suffer limitations already known. Sequence
properties alone are unable to capture the global information
of a protein target and do not take into account its functional
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role. While the sequence can be used to predict the functional
domains, it gives no information regarding the accessibility
of these domains to a drug, gene expression level and
its importance in the interactome. Targeting an otherwise
potential target may have undesirable impact on its functional
neighbors. Structural methods suffer from the sparsity of
information in protein data bank (PDB). Functional networks
and expression profiles are dynamic and prone to changes across
conditions.

While the improvement in current technology will help
better capture the global properties of all proteins, establishing
data standards will be critical for evaluating diverse prediction
methods.

FUTURE DIRECTIONS

Given these limitations and strengths of the current methods
and the incomplete and unbalanced nature of data sets on target

druggability, next generation of methods should utilize the vast
biological information regarding role in functional networks,
expression profiles, subcellular locations, and quantitative
features of drug-protein interactions with ensemble methods
in machine learning approaches to capture a more universal
view of a potential target. Advances in both functional and
structural genomics along with improvements in computational
algorithms are a key to developing more accurate methods for
target identification.
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