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Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD)

leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however

underlying molecular mechanisms are poorly understood. Increased inflammation due

to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α)

and attenuation of anti-inflammatory cytokine such as interleukin 10 (IL-10) contributes

to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training

ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation

through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, 8

week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1 h/day

for 5 days/week for 8 weeks). The four treatment groups: normal diet (ND), HFD, HFD +

exercise (HFD + Ex) and ND + Ex were analyzed for mean body weight, blood glucose

level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by

echocardiography. Mean body weights were increased in HFD but comparatively less

in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD

but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated

by exercise in the HFD + Ex group. The percentage ejection fraction and fractional

shortening were decreased in HFD but comparatively increased in HFD + Ex. There

was no difference between ND and ND + Ex for the above parameters except an

increase in IL-10 level following exercise. Based on these results, we conclude that

exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10,

and reducing TNF-α in mice.

Keywords: obesity, heart failure, inflammation, interleukin 10, TNF-α, echocardiography, Masson Trichrome

Introduction

Sedentary lifestyle and high fat diet (HFD) are major risk factors for diabetes and heart failure
(Lopez et al., 2006; Pedersen and Febbraio, 2012; Benatti and Pedersen, 2015). HFD in associ-
ation with sedentary lifestyle increases the probability of obesity. Obesity accentuates systemic

Abbreviations:TNFα, Tumor necrosis factor alpha; IL-10, Interleukin 10;HFD,High fat diet;ND,Normal diet; Ex, Exercise;

DCM, Diabetic cardiomyopathy.
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inflammation (Lumeng and Saltiel, 2011). Inflammation is
associated with increased levels of pro- inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α), and decreased
levels of anti-inflammatory cytokines such as interleukin 10 (IL-
10). It is demonstrated that TNF-α is produced in the heart
by myocardial macrophages and cardiac myocytes and con-
tributes to myocardial dysfunction in an autocrine manner (Mel-
drum, 1998). TNF-α promotes pathological cardiac remodeling
by inducing hypertrophy and fibrosis in the heart (Sun et al.,
2007). Because of the increasing role of TNF-α in the heart
disease, TNF-α antagonists were used in clinical trials for ther-
apy for heart failure, however they had conflicting results and
were not successful (Gupta and Tripathi, 2005). TNF-α-mediated
inflammation is balanced by secretion of the anti-inflammatory
cytokine IL-10, and low IL-10/TNF-α are associated with patho-
physiology of heart failure (Dopheide et al., 2015). IL-10 has
pleiotropic effect on regulation of inflammation (Moore et al.,
1993; Wang et al., 1994b) and low levels of IL-10 is used as a
predictor of heart failure (Kirkpantur et al., 2008; Parissis et al.,
2009). It is reported that enhanced levels of IL-10 by Atorvastatin
ameliorates cardiac dysfunction inmyocardial infarction (Stumpf
et al., 2009). Therefore, inhibition of TNF-α and upregulation of
IL-10 is protective to the heart. Although IL-10 prevents HFD-
induced insulin resistance, the effect of HFD on TNF-α and IL-10
in the heart is unclear.

Exercise has many beneficial effects on cardiac function
(Petersen and Pedersen, 2005). Empirical studies and clinical
investigations demonstrate that endurance exercise improves car-
diac function in the failing heart (Gielen et al., 2015; Zilin-
ski et al., 2015). Swimming has many beneficial effects on the
heart including a decrease in pro-inflammatory markers (Geenen
et al., 1988; Cechella et al., 2014). Furthermore, exercise has been
shown to increase anti-inflammatory cytokines including IL-10
(Steensberg et al., 2003; Pedersen et al., 2007; Viana et al., 2014;
Benatti and Pedersen, 2015). IL-10 is involved in the protection
against HFD, LPS-induced inflammation, and hyper-insulinemia
(Grant et al., 2014). However, themolecular mechanism by which
aerobic exercise ameliorates cardiac dysfunction is poorly under-
stood. Here, we investigated the role of exercise training in mit-
igation of HFD-induced inflammation, pathological remodeling,
and cardiac dysfunction in female mice.

Materials and Methods

Animals
Eight week old, female C57BL/6J mice were procured from Jack-
son Laboratory (Bar Harbor, ME, USA). Animals were housed
with controlled temperature (22–24◦C) and 12 h light/dark cycle.
Mice were allowed free access to food and drinking water. All
animal procedures were reviewed and approved by the Institu-
tional Animal Care and Use Committee (IACUC) of the Uni-
versity of Nebraska Medical Center and performed under the
guidelines of the National Institute of Health (NIH). Most of
the studies related to diet and exercise are skewed toward males
therefore to bridge this gap, only female mice were used in our
study.

Exercise and HFD
To study the effect of HFD mediated cardiac dysfunction, we
fed HFD (HarlanTD.08811) or normal diet (ND) to female mice
for 8 weeks. The HFD contained 46.1% fat, while ND had 9.8%
fat components. HFD has been shown to reduce glucose toler-
ance and increase insulin resistance mimicking type 2 diabetes
(Winzell and Ahren, 2004). To assess the effect of exercise on
HFD mediated cardiac dysfunction, both ND and HFD mice
were exposed to swimming exercise 1 h/day for 5 days/week for
a total of 8 weeks. Temperature of the water was kept ambient
(31± 1◦C). For experiment design, we selected four groups of
mice: ND, HFD, ND with exercise training (ND+ Ex), and HFD
with exercise training HFD+ Ex.

Measurement of LV Function by
Echocardiography
Details of this protocol has been described elsewhere (Mishra
et al., 2011). Briefly, mice were anesthetized by isoflurane. TheM-
Mode echocardiography was performed with Vevo2100 imaging
system by positioning the transducer on the hemi-thorax region
of the mouse. Fractional shortening (FS) was calculated from the
formula: %FS = 100 × (LVIDd—LVIDs)/LVIDd. LVIDd stands
for left ventricular internal diameter in diastole, and LVIDs
denotes left ventricular internal diameter in systole (Mishra et al.,
2011). Echocardiography was performed in the laboratory of Dr.
Suresh Tyagi at the University of Louisville.

Western Blotting
Heart proteins were extracted using RIPA lysis buffer. Total pro-
tein was quantified by Bradford assay and the expression of spe-
cific proteins was determined by Western blotting as described
previously (Chavali et al., 2014). The primary antibodies for TNF-
α (Cell Signaling, 3707s), IL-10 (EMD Millipore, ABF13), and
β-actin (Santacruz Biotech, sc-47778) were diluted 1:1000 and
blots were incubated in primary antibody overnight at 4◦C. HRP-
linked secondary antibodies against rabbit (Santacruz Biotech, sc-
2054) or mouse (Santacruz Biotech, sc-2005) were used in 1:4000
dilution. Blots were incubated in secondary antibodies for 1 h
at room temperature (RT). The membranes were exposed with
HRP substrate and imaged with BioRad ChemiDoc. Densitome-
try analyses was performed by ChemiDoc software (BioRad, CA,
USA).

Immunohistochemistry
Frozen heart tissue from different groups were cryosectioned
(5µm) using Cryostar NX50 (Thermo Scientific). Sections were
fixed in 4% paraformaldehyde for 30min and made permeable
using 0.5% Triton X-100 in PBS for 30min. Sections were then
blocked in 1% BSA followed by overnight incubation in anti-
TNF-α (1:500) and anti-IL-10 (1:500) antibody at 4◦C. The sec-
tions were washed with PBS three times for 5min and incubated
with anti-rabbit Alexa Fluor 594 (Life Technologies, A11012) for
1 h at RT. Subsequently, sections were washed, stained with the
nuclear stain DAPI and imaged with fluorescence microscope
(EVOS, Life technologies).
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Masson Trichrome Staining
To observe fibrosis in tissue sections of different groups, Mas-
son Trichrome staining was performed following company’s
protocol (Thermo Scientific cat. No. 87019). In brief, sec-
tions were placed in Bouin’s fluid at 56◦C for 1 h. Sections
were rinsed in deionized water and stained with Biebrich
scarlet-acid fuchsin for 10min. Sections were then placed
in phosphotungstic-phosphomolybdic acid solution for 15min
followed by aniline blue staining for 30min. Sections were
placed in 1% acetic acid solution for 1min, rinsed, dehy-
drated, mounted, and imaged under microscope (Mishra et al.,
2012).

Statistical Analysis
One–Way of analyses of variance (ANOVA) was used for find-
ing the difference of means among the four groups. Student t-test
was performed to calculate the significant differences in means
between the two groups. P < 0.05 was considered statistically sig-
nificant. Color intensity of the microscopic images was measured
by Image J software.

Results

HFD Increases Mean Body Weight and Blood
Glucose Levels
To validate HFD- induced obesity, C57BL/6J mice were fed
a HFD. Physical appearance of mice, body weights, and ran-
dom blood glucose levels were measured to confirm the HFD
induced an obese phenotype (Figure 1). Mice fed with HFD
showed a significant increase in mean body weight as compared

to other groups (P < 0.05), whereas exercise maintained the
body weight in the HFD + Ex group similar to the group fed
with ND (Figure 1B). Although exercise is reported to reduce
blood glucose level (Correa et al., 2015), we did not find signif-
icant decrease in the level of blood glucose in HFD + Ex group
(Figure 1C). It could be due to less duration and/or intensity of
exercise.

Exercise Mitigates Inflammation in Mice Fed with
HFD
To determine the role of HFD inducing inflammation, the
expression of TNF-α and IL-10 was measured in heart tis-
sue. The levels of TNF-α and IL-10 were different among the
groups. HFD increased levels of TNF-α, a known hallmark of
diabetic inflammation, in cardiac tissue, which was alleviated
by exercise (Figure 2). The anti-inflammatory cytokine, IL-10
was found to be upregulated in both exercise groups compared
to sedentary controls (Figure 3). These data suggest that HFD
increases inflammation, whereas exercise mitigates inflammation
by inducing anti-inflammatory IL-10 in cardiac tissue.

Exercise Mitigates HFD- Induced Cardiac
Fibrosis and Cardiac Dysfunction
Masson Trichrome staining and echocardiography were done
to assess the effect of HFD on cardiac tissue fibrosis and car-
diac dysfunction. Mice fed with HFD showed significant fibro-
sis in perivascular as well as interstitial regions in heart tissue
(P < 0.05) (Figure 4). Increased fibrosis in extracellular tis-
sues impairs the cardiac function and leads to cardiomyopathy
(Huynh et al., 2014). HFD + Ex mice showed decreased fibrosis

FIGURE 1 | High fat diet (HFD) induces obesity in female mice. (A)

Photographs of representative mice of each group (ND, HFD, ND + Ex,

HFD + Ex) after 8 weeks. (B) Mean body weight in each group over a period

of 8 weeks. (C) Blood glucose levels in each group before and after 8 weeks

of HFD. All the data have been represented as mean ± SE. *P < 0.05

compared to ND.
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FIGURE 2 | (A) Expression of TNF-α protein levels in different groups. β-actin

was used as a loading control. Bar diagram shows fold changes (N = 6) in

TNF-α expression. (B) Microscopic images of tissue sections of different

groups stained with rabbit anti-TNF antibody and anti-rabbit alexa flour 594.

Bar diagram shows the fold changes (N = 6) in TNF-α expression relative to

normal diet. Values are represented as a mean ± SE (N = 5–6). *P < 0.05

compared to ND; 9P < 0.05 compared ND and HFD; #P < 0.05 compared

HFD.

FIGURE 3 | (A) Expression of IL-10 protein levels in different groups of

animals. β- actin was used as a loading control. Bar diagram shows

fold change (N = 4) in IL-10 expression relative to normal diet. (B)

Microscopic images of tissue sections of different groups stained with

rabbit anti-IL-10 antibody and anti-rabbit alexa flour 594. Bar diagram

shows fold changes in IL-10 expression relative to normal diet. Values

are represented as a mean ± SE (N = 4–5). *P < 0.05 compared to

ND; #P < 0.05 compared HFD.
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FIGURE 4 | (A) Masson Trichrome staining assessing fibrosis in heart

sections of each group. Arrows denote examples of fibrosis (blue

stain). (B) Bar diagrams represent the quantification of fibrotic

collagen (blue) content of image. Data represents mean ± SE

(N = 4). *P < 0.05 compared to ND, and #P < 0.05 compared

to HFD.

FIGURE 5 | (A) Representative M-mode echocardiography after 8 weeks of treatment. (B) The bar graphs represent percentage of ejection fraction (%EF) and (C)

percentage fractional shortening (%FS). Data represents mean ± SE (N = 4). *P < 0.05 compared to ND, and #P < 0.05 compared to HFD.

and improved cardiac function compared to HFD (Figures 4, 5)
suggesting that exercise mitigates HFD-mediated pathological
cardiac remodeling. Echocardiogram results showed significant
decrease in the %FS and %EF in HFD (Figure 5). However, exer-
cise prevented the HFD induced decrease in %EF and %FS in
HFD + Ex mice. There was no significant difference in car-
diac function as measured by %EF and %FS in the ND and
HFD + Ex (Figure 5). These data suggest that exercise miti-
gates HFD-mediated myocardial fibrosis and ameliorates cardiac
dysfunction.

Discussion

Our results suggest that exercise ameliorates HFD-mediated car-
diac dysfunction in female mice. HFD induced obesity and
inflammation (TNF-α) resulting in fibrosis and decreased per-
centage ejection fraction. Exercise increased levels of IL-10 in
cardiac tissue, reduced the pro-inflammatory TNF-α, mitigated
fibrosis and ameliorated cardiac dysfunction (Figure 6). Our
results support previous literature that exercise has beneficial
effects in healthy, as well as in pathological conditions such as
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FIGURE 6 | A schematic representation of the cardioprotective role of

exercise on high fat diet mediated cardiac dysfunction. High fat diet

leads to obesity, which enhances the systemic inflammation (TNF-α) and

causes fibrosis leading to cardiac dysfunction. Exercise decreases high fat diet

induced obesity, upregulates anti-inflammatory IL-10, which reduces

inflammation, mitigates fibrosis, and ameliorates cardiac dysfunction.

diabetes and obesity (DeBlieux et al., 1993; Broderick et al., 2005;
Petersen and Pedersen, 2005; Mishra et al., 2011).

Obesity is a risk factor for type 2 diabetes, therefore a HFD
was used to simulate an obese condition (Schilling and Mann,
2012). Consistent with a previous study, our data show that the
HFD increased blood glucose levels and mean body weights, sug-
gesting a diabetic phenotype was induced (Winzell and Ahren,
2004). In the diabetic condition, high blood glucose and free
fatty acids induce inflammation in cardiac tissues (Schilling and
Mann, 2012). The level of TNF-α is increased whereas that of
IL-10 is decreased in the diabetic heart (Chavali et al., 2013).
Excessive TNF-α leads to increased fibrosis and apoptosis of car-
diomyocytes (Sun et al., 2007; Chiong et al., 2011). We observed
an increased level of TNF-α in HFD group compared to ND
group (Figure 2). TNF-α is pro-inflammatory and causes a risk
lipid profile by increasing the level of triglycerides and LDL
(Popa et al., 2005), suggesting that TNF-α is associated with
obesity. TNF-α induces the expression of matrix metallopro-
teinase, which is involved in activation of TGFβ1 secreted by

myocytes and macrophages (Sun et al., 2004). TGFβ1 increases
synthesis of collagen I and III and deregulates collagen turnover.
Increased collagen changes the stiffness of ventricle walls and
interferes with normal cardiac function, resulting in increased
fibrosis and heart failure (Searls et al., 2004). Exercise training
attenuated cardiac fibrosis (HFD + Ex) that was induced by the
HFD (Figure 4) consistent with an earlier study that found exer-
cise reduced fibrosis by keeping inflammatory stress low (Searls
et al., 2004).

During exercise, muscles release myokines that are involved in
tissue growth, repair, and anti-inflammatory responses (Petersen
and Pedersen, 2005; Benatti and Pedersen, 2015). IL-6 is the pri-
mary myokine released in response to exercise and has been
shown to increase levels of the anti-inflammatory IL-10 and

decrease levels of the pro-inflammatory TNF-α (Steensberg et al.,
2003; Petersen and Pedersen, 2005; Benatti and Pedersen, 2015).
IL-10 has been shown to mitigate cardiac dysfunction by decreas-
ing cardiac fibrosis (Petersen and Pedersen, 2005). The HFD
decreased cardiac IL-10 protein levels compared to ND controls
suggesting IL-10 as an important cytokine for mediating fibrosis.
Exercise training significantly increased levels of IL-10 in car-
diac tissues (Figure 3) and previous reports show IL-10 inhibits
TNF-α (Wang et al., 1994a,b; Pretolani, 1999).

In conclusion, swimming exercise reversed the pathological
remodeling induced by a HFD by increasing cardiac IL-10 levels
and decreasing TNF-α levels. Shifting the cytokine profile from
pro-inflammatory (TNF-α) to anti-inflammatory (IL-10) mea-
sured in cardiac tissuemay be the link in attenuating fibrosis. Fur-
ther, exercise mitigated the decline in the % FS and % EF induced
by the HFD, confirming the cardioprotective role of exercise.

Future Direction

Our results show that exercise induces IL-10 and mitigates HFD-
induced cardiac dysfunction in mice. Future studies on adminis-
tration of IL-10 in HFD fed mice will reveal the cardioprotective
effect of IL-10 in HFD-mediated cardiac dysfunction.
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