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In this manuscript, an automated optimization neural network is applied in
Hadamard single-pixel imaging (H-SPI) and Fourier single-pixel imaging
(F-SPI) to improve the imaging quality at low sampling ratios which is called
AO-Net. By projecting Hadamard or Fourier basis illumination light fields onto the
object, a single-pixel detector is used to collect the reflected light intensities from
object. The one-dimensional detection values are fed into the designed AO-Net,
and the network can automatically optimize. Finally, high-quality images are
output through multiple iterations without pre-training and datasets. Numerical
simulations and experiments demonstrate that AO-Net outperforms other
existing widespread methods for both binary and grayscale images at low
sampling ratios. Specially, the Structure Similarity Index Measure value of the
binary reconstructed image can reach more than 0.95 when the sampling ratio is
less than 3%. Therefore, AO-Net holds great potential for applications in the fields
of complex environment imaging and moving object imaging.
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1 Introduction

With the rapid development of computer hardware and optoelectronic devices,
computational imaging (CI) has gained increasing attention. As a novel CI technique,
single-pixel imaging (SPI) is characterized by using a single-pixel detector (SPD) without
spatial resolution to reconstruct image. The SPD, such as avalanche photodiode or photon
multiplier, can be made of germanium, silicon and other materials with board working
waveband and low cost. Therefore, SPI can be widely applied in the non-visible waveband
imaging, such as infrared imaging [1], X-ray [2] and terahertz light [3, 4]. Additionally, the SPD
also has the advantages of high quantum efficiency and detection sensitivity, making SPI widely
used in remote sensing [5], 3D imaging [6], weak light detection [7] and other areas.

In SPI, the object is illuminated by the modulated light fields generated from a variety of
devices, including rotating ground glass plate [8, 9], Digital Micromirror Devices (DMD) [6,
10, 11], liquid crystal spatial light modulator (LC-SLM) [12–14], LED-based array [15–17],
multimode fiber (MMF) [18], Silicon-based optical phased array (OPA) [19], fiber laser
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array [20] and so on. And the transmitted or reflected light
intensities from the object are measured by the SPD. Combining
the illumination light fields and light intensities, the images can be
reconstructed by a variety of algorithms [21–24]. Therefore,
researchers improve the imaging quality and efficiency of SPI by
designing light fields with specific distributions and optimizing
reconstruction algorithms.

The earliest light field used in SPI is random speckle [25]. It often
requires a large number of samples to reconstruct an image, resulting in
very low efficiency. Subsequently, orthogonal basis patterns are
introduced into SPI as the illumination light field to improve the
sampling efficiency, such as Hadamard basis patterns [10, 26],
Fourier basis patterns [10, 11, 27], Discrete cosine basis patterns
[28], Zernike basis patterns [29, 30]. Among of them, Hadamard
single-pixel imaging (H-SPI) and Fourier single-pixel imaging
(F-SPI) are two typical SPI techniques [10]. They obtain spectral
information of the object through corresponding orthogonal basis
transformation and efficiently reconstruct the target image by
inverse transformation [31]. It has been proven that both H-SPI and
F-SPI can achieve theoretically perfect reconstruction in full sampling
without the noise or other distractions. Besides, due to the sparse
representation in Hadamard and Fourier domains of natural images,
they can obtain a large amount of low-frequency information to achieve
clear imaging in under-sampling conditions. However, it also has been
shown that when the sampling ratio is too low, both H-SPI and F-SPI
introduce observable noise and artifacts that damage image quality.
Specifically, H-SPI introduces the mosaic artifacts, while F-SPI
introduces the ringing artifacts [10]. These artifacts need to be
eliminated in the practical application of H-SPI and F-SPI.
Additionally, there are also some theoretical differences between
them. For example, H-SPI obtains the spatial information of objects
in Hadamard domain by Hadamard transform and reconstructs the
image by inverse Hadamard transform, while F-SPI extracts the image
information in the Fourier domain. Reference [10] gives a detailed
description. Moreover, it analyzed and compared the performance of
H-SPI and F-SPI, indicating that F-SPI is more efficient thanH-SPI and
H-SPI is more noise-robust than F-SPI. In practice, the difference
between the binary Hadamard and the grayscale Fourier basis will also
affect the sampling efficiency.

With the advancement of deep learning (DL), numerous studies
have demonstrated its effectiveness in enhancing the image quality of SPI
[9, 32–36]. In 2017, the deep learning ghost imaging (GIDL) was first
proposed by Lyu et al. [33]. They trained a deep neural network (DNN)
using reconstructed images from traditional computational ghost
imaging algorithm and ground truths which cost lots of time.
Another approach is an end-to-end deep-learning method based on
convolutional neural network (CNN) presented byWang et al. [34]. This
method takes the single-pixel detection signal sequence as the input and
directly outputs the reconstructed image, significantly improving
imaging efficiency. Recently, Ulyanov et al. introduced the concept of
deep image prior (DIP) for image processing, which has the advantages
of not requiring advance training and large data sets [35]. They
demonstrated that a randomly-initialized neural network has a subtle
focus on natural images and can be used to solve the image inverse
problem. Inspired by DIP, Liu et al. proposed a computational ghost
imaging method based on an untrained neural network [36]. They
combined DGI and DNN to obtain high-quality image without
requiring data sets. In 2022, Wang et al. improved upon this

algorithm with a method called Deep neural network Constraint
(GIDC) which achieved far-field super-resolution ghost imaging [9].
This advancement presents a new perspective for applying deep learning
in the SPI system.

Inspired by the development of DL, we introduce an automated
optimization neural network (AO-Net) intoH-SPI and F-SPI to achieve
high imaging quality at low sampling ratios. Firstly, we employ
Hadamard or Fourier inverse transformation to obtain rough images
that suffer from significant artifacts and noise due to the low sampling
ratios. Subsequently, they are fed into the AO-Net for automated
iterative optimization and obtaining high-quality images. Through
numerical simulations and experimental demonstrations, AO-Net
can effectively eliminate the introduced artifacts and noise with
better image details, outperforms other existing widespread methods.
It holds great potential for applications in fields of complex
environment imaging and moving object imaging.

2 Model and theory

Initially, a mathematical model is developed based on the
principle of SPI. The object f(x, y) is illuminated by a series of
modulated light fields Pn(x, y). And then the corresponding
reflected light intensities from object In are measured by a single-
pixel detector. The In can be represented as

In � ∫ f x, y( ) · Pn x, y( )dxdy (1)

where (x, y) is the coordinate of pixels in the object plane and the
subscript n is from 1 to N and denotes the nth field and intensity. It is
evident that SPI constitutes a classic inverse problem in image
reconstruction.

2.1 Basic model of H-SPI and F-SPI

H-SPI is an efficient single-pixel imaging technique utilizes
Hadamard transform [10]. In this approach, as mentioned in Eq.
1, the Hadamard basis patterns PH(x, y) are projected onto the
object (x, y) . The Hadamard coefficient H(u, v) is mathematically
equivalent to the intensities measured by the single-pixel detector
IH(x, y). A collection of independent coefficients forms the
Hadamard spectrum, and the image can be reconstructed using
the Hadamard inverse transform [26]. The Hadamard basis pattern
PH(x, y) is essentially a binary orthogonal matrix consisting of only
+1 and −1 elements. It can be obtained by performing the inverse
Hadamard transform on a Dirac delta function δH(u, v)

PH x, y( ) � 1
2

H−1 δH u, v( ){ } + 1[ ] (2)

where (u, v) is the coordinate in the Hadamard domain, H−1{ }
denotes the inverse Hadamard transform and δH(u, v) is expressed
as Eq. 3.

δH u, v( ) � 1, u � u0, v � v0
0, otherwise

{ (3)

Eq. 2 reveals that the presence of −1 elements in the Hadamard
matrix prevents its direct loading onto SLM in the SPI system. To
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FIGURE 1
The method of differential H-SPI.

FIGURE 2
The method of four-step phase-shift F-SPI.

FIGURE 3
The basic process of AO-Net. Uθ is the network, θ is the parameter of the network and ⊗ is the inner product.
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maintain the orthogonality of the Hadamard matrix, a differential
H-SPI approach is employed to obtain the Hadamard coefficients.
As depicted in Figure 1, the pattern PH(x, y) is divided into
P+
H(x, y) and P−

H(x, y) which contain +1 and 0, represented as
Eq. 4.

P+
H x, y( ) � PH x, y( )

P−
H x, y( ) � 1 − PH x, y( ){ (4)

The corresponding detection values are I+H(x, y) and I−H(x, y),
respectively. And the Hadamard coefficient is derived as Eq. 5.

H u, v( ) � I+H x, y( ) − I−H x, y( ) (5)

Therefore, to reconstruct an image with N pixels, it is necessary
to acquire 2N measurements. Besides, H-SPI can employ a specific
sampling sequence to enhance the sampling efficiency and prioritize
important coefficients. This method makes the more important
coefficients are ranked in front to obtain most of the information
of target image in real time, such as zigzag [10], Russian Doll [26],
Cake Cutting [37] and so on.

F-SPI is another efficient method based on Fourier transform [10].
Similarly, this method obtains the Fourier spectrum of object and
reconstruct the image using inverse Fourier transform [11]. Themethod

generates Fourier basis patterns PF(x,y) by implementing phase
shifting. After illuminating the object, the measured detection
intensities IF(x,y) are equivalent to the Fourier coefficients, which
form the Fourier spectrum. The Fourier basis pattern PF(x, y) is a gray
orthogonal basis that can be obtained by applying the inverse Fourier
transform to the delta function δF(u, v,φ), expressed as Eqs 6 and 7.

PF x, y( ) � 1
2

real{F−1 δF u, v,ϕ( )}{ } + 1[ ] (6)

δF u, v,ϕ( ) � e jϕ, u � u0, v � v0
0, otherwise

{ (7)

where real{ } indicates the real part, the F−1{ } denotes the inverse
Fourier transform and ϕ is the phase. Specifically, in order to obtain
the Fourier coefficients, different phase values need to be set at the
same frequency to solve the spectrum. Depending on the number of
equidistant phases used from 0 to 2π, F-SPI can be implemented
using differential measurement methods of 4-step phase shift and 3-
step phase shift [11]. In this paper, we adopt 4-step phase shift and
introduce it in detail as shown in Figure 2. This method requires four
Fourier basis patterns PF(x, y, 0), PF(x, y, π2), PF(x, y, π),
PF(x, y, 3π2 ) with different phases and the same spatial frequency
to modulate the object. These patterns correspond to the single pixel

FIGURE 4
The architecture of the U-net. It contains encoder, decoder and skip connection. The input is a rough image and a high-quality image is used as
the output.

Frontiers in Physics frontiersin.org04

Lei et al. 10.3389/fphy.2024.1391608

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1391608


detection values IF(x, y, 0), IF(x, y, π2), IF(x, y, π), IF(x, y, 3π2 ) and
the Fourier coefficient is expressed as Eq. 8.

F u, v( ) � IF x, y, π( ) − IF x, y, 0( )( ) + j IF x, y,
3π
2

( ) − IF x, y,
π

2
( )( )

(8)
Due to the conjugate symmetry of the Fourier spectrum of real-

valued images, PF(x, y, 0) is the inverse of PF(x, y, π) and
PF(x, y, π2) is the inverse of PF(x, y, 3π2 ). Therefore, it requires
2 × M × N measurements to reconstruct an image containing
M × N pixels. The 3-step phase shift method adopts similar
ideas, which are described in Ref. [31]. Its performance is not as
good as the 4-step phase shift due to its asymmetry. Besides, for
Fourier basis, the frequency distribution of natural image can be
used as prior knowledge to reduce the sampling quantity. Since the
majority of the energy in a natural image is concentrated in the low-
frequency region, the sampling ratio can be significantly reduced by

sampling only the low-frequency coefficients and ignoring the high-
frequency coefficients [31].

2.2 The process of AO-Net

Based on the above model, we introduce an automated
optimization neural network into H-SPI and F-SPI which is
called AO-Net. It combines the powerful feature extraction
capabilities of DNN and SPI physical model to obtain high-
quality images at low sampling ratios. The reconstruction process
is illustrated in Figure 3 and the details are expressed as follows:

[1] Reconstructing the rough images R by using the inverse
transformation in H-SPI (H−1 ·{ }) and F-SPI (F−1 ·{ }) with the
patterns Pn(x,y) and real detection values Ir at a sampling
ratio less than 10%, as shown in Eq. 9.

FIGURE 5
Simulation results with Hadamard patterns for binary and grayscale objects with different SPI reconstruction methods at low sampling ratios. The
resolution of images is 128 × 128 pixels and the iterations of AO-Net are 100.
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R � H−1 Ir{ } or R � F−1 Ir{ } (9)

[2] Loading the rough images R into the randomly initialized
automated optimization neural networkUθ and obtaining the
output image O (x,y), as shown in Eq. 10.

O x, y( ) � Uθ R( ) (10)

[3] Calculating the estimated values sequence Ii (as shown in Eq.
11, i is the iteration number) with the network output O (x,y)
and the basis patterns Pn(x,y) according to Eq. 1.

Ii � ∫O x, y( ) · Pn x, y( )dxdy (11)

[4] Evaluating the root-mean-square error (RMSE) between Ii
and Ir as the loss function to automatically guide network

parameter θ optimization, aiming to obtain the optimal AO-
Net model U*

θ and best image quality O*(x, y), as shown in
Eqs 12 and 13.

U *
θ � arg min

��������
Ii − Ir‖ ‖2

√( ) (12)
O* x, y( ) � U *

θ R( ) (13)

Moreover, the network Uθ is based on the U-net deep neural
network architecture, which consists of encoder, decoder and skip
connection [38], as depicted in Figure 4. The input image has a
resolution of 128 × 128 pixels. This structure includes four
downsampling layers, one double convolutional layer and four
upsampling layers. The downsampling layer involves two
convolutional layers (Conv2D) to extract image features with a
3 × 3 kernel size of filters, one max-pooling layer to reduce
dimensions and remove redundant information, batch

FIGURE 6
Simulation results with Fourier patterns for binary and grayscale objects with different SPI reconstruction methods at low sampling ratios. The
resolution of images is 128 × 128 pixels and the iterations of AO-Net are 100.

Frontiers in Physics frontiersin.org06

Lei et al. 10.3389/fphy.2024.1391608

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1391608


normalization and the active function leaky_relu with the alpha =
0.2 to prevent the “vanishing gradient” problem. The upsampling
layer contains one transposed convolutional layer to restore the
image resolution, two convolutional layers, batch normalization and
the active function leaky_relu. Additionally, the skip connection
connects the downsampling path features with the corresponding
upsampling layers to address the boundary pixel loss issue.
Furthermore, the “Adam” optimizer [39] is used to better
optimize the neural network parameters, which are initially set as
follows: beta1 = 0.5, beta2 = 0.9 and epsilon = 1e-8. We also use the
dynamic learning rate to make the algorithm can converge quickly,
the initial learning rate is set to 0.01. Ultimately, the output is a high-
quality image with a resolution of 128 × 128 pixels. The processes are
run in Python environment and accelerated by NVIDIA GeForce
GTX4060 GPU.

3 Numerical simulation

In this section, without loss of generality, we consider two binary
images (a number symbol and a Chinese character) and a typical

grayscale image called ‘Peppers’ (128 × 128 pixels) as objects for
analysis. Normally, if an N-pixel image is reconstructed with M
measurements, then β = M/N is defined as the sampling ratio.
Firstly, the rough images of objects are reconstructed by using H-SPI
and F-SPI at various sampling ratios (specifically, 1%, 3%, 5%, 8%,
and 10%). Besides, in the process, we adopt “zigzag” sampling
strategy in H-SPI and “circular” sampling path in F-SPI to
improve sampling efficiency [10]. The rough images and
corresponding basis patterns serve as the prior information for
AO-Net. And the one-dimensional detection values obtained
from the inner product of the basis patterns with the object are
used as data-driven model. AO-Net outputs high-quality images
through iterative optimization. Figure 5 shows the reconstructed
images of H-SPI and AO-Net (H-SPI). Figure 6 depicts the F-SPI
images and corresponding AO-Net (F-SPI) images. As the sampling
ratio increases from 1% to 10%, a common feature observed is that
the reconstructed images exhibit clearer details and improved image
quality. However, the H-SPI introduces numerous mosaic artifacts
and the F-SPI introduces obvious ringing artifacts and noise, which
compromise image quality and reduce resolution. In contrast, AO-
Net can effectively eliminate the introduced artifacts and noise. The

FIGURE 7
The SSIM values of simulation results with different SPI methods. (A) H-SPI; (B) F-SPI.

FIGURE 8
Comparison of simulation results based on Hadamard patterns by GIDC and AO-Net.
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reconstructed images of AO-Net with enhanced resolution
approximate the original image. When the sampling ratio is
about 10%, the image quality obtained by the two methods is
similar, and the advantage of AO-Net is not obvious. However,
when the sampling ratio is less than 3%, the image obtained by AO-
Net has more clearer details, higher resolution and better quality
than the traditional method, showing obvious advantages.
Therefore, AO-Net demonstrates significant improvement in the
quality of H-SPI and F-SPI images at extremely low sampling ratios.

To further quantitatively analyze the advantages of the AO-Net
over the traditional H-SPI and F-SPI, we employ the Structure
Similarity Index Measure (SSIM) as an evaluation parameter. A
larger SSIM value indicating that the reconstructed image is closer
to the original image and has better image quality. Typically, the
SSIM values of grayscale image “Peppers” are analyzed and
compared. Figures 7A,B respectively show the change trend of
SSIM values of H-SPI, F-SPI and AO-Net reconstructed images
with the increasing of sampling ratios. The black and blue lines
represent H-SPI and F-SPI respectively, and the red lines represent
AO-Net. Generally, as the sampling ratio increases, the SSIM
values of the images also increase. Moreover, all AO-Net images
exhibit higher SSIM values compared to the corresponding H-SPI
and F-SPI images at the same sampling ratio, indicating better
image quality. This demonstrates the effectiveness of AO-Net and
the significant improvement in reconstruction efficiency. The
above results illustrate that AO-Net can obtain high-quality
clear images at low sampling ratios, outperforms the existing
traditional methods. Besides, F-SPI has better image quality
than H-SPI. And AO-Net results based on Fourier patterns
have highest SSIM values and best image quality at each
sampling ratio.

On the other hand, we make a simple comparison with other
deep learning algorithms. Firstly, compared with the traditional
training-based deep learning methods, in theory, this algorithm
has stronger generalization and adaptability without large data sets
and pre-training, which has been expressed in part of introduction.
It has unique advantages in terms of applicability. Additionally, we
also add a comparison to the simulation results based on
Hadamard patterns of a typical untrained reconstruction
algorithm (GIDC) proposed by Wang et al [9]. Figure 8 shows
the comparison results. The number of iterations of both
algorithms is 100. The object is grayscale image “peppers” and
the reconstruction algorithm are GIDC and AO-Net, respectively.
We also calculate the SSIM value of each image. The part marked
in red shows that the image has a larger SSIM value at the same
conditions, indicating the better image quality. Visually, the AO-
Net images have clearer details, less noise and artifacts. The results
show that the proposed AO-Net has greater potential to solve the
above problems than GIDC. Therefore, we only verify the
performance of AO-Net in the follow-up experiment
comparison. And in the future, we will carry out more in-depth
research and comparison.

4 Experimental results

In order to further validate the feasibility of the aforementioned
method, a SPI system was assembled as depicted in Figure 9. The
setup involved the emission of laser light from a solid-state laser with
a wavelength of 532 nm (LSR-532NL). Subsequently, the laser was
collimated and expanded by using a beam expander (BE), resulting
in a spot size ten times larger than the original. The expanded laser

FIGURE 9
The diagram of experimental setup. BE (beam expander), PL (projection lens), CL (collecting lens), SPD (single-pixel detector), DAC (data
acquisition card).
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was directed onto the DMD 1 screen, and its reflected light was then
projected onto DMD 2 through a projection lens (PL) with a focal
length of 200 mm. Both DMDs (Texas Instruments DLP V-650L)
featured a 1280 × 800 micro-mirror array for loading modulation
patterns. DMD 1 was utilized to load the generated basis pattern
sequence (Hadamard basis patterns and Fourier basis patterns),
while DMD 2 was employed to load the object (binary and grayscale
images). Furthermore, DMD 1 and DMD 2 needed to be positioned
at conjugate positions of PL to obtain a clear image. Therefore, based
on the focal length of PL and the Gaussian imaging formula, the
distance from DMD 1 to PL and the distance from PL to DMD
2 were both set to 400 mm. Subsequently, the reflected light from
DMD 2 was collected by the single-pixel detector (SPD, Thorlabs
PDA-10A2) after passing through the collecting lens (CL). The light
intensities were recorded by a data acquisition card (DAC, ART
USB-2872D) connected to a computer. This entire process was

facilitated by self-developed data synchronization acquisition
software (LABVIEW).

In this experiment, the resolution of 128 × 128 pixels basis
patterns were sequentially loaded into DMD 1 to implement SPI.
When loading the binary Hadamard basis patterns, the refresh rate
of DMD could reach up to 22.4 kHz. Therefore, the projection
interval was set to 2 ms, with each frame being projected for 1 ms to
accommodate the response rate of the detector and acquisition card.
When the grayscale Fourier basis patterns were loaded, the DMD
refresh rate was only 258 Hz, so the projection internal was set to
20 ms and the projection duration of each frame was 10 ms.
Additionally, DMD 2 loaded binary images representing a simple
“drone”, the letter combination “NUDT”, and the grayscale image
“Peppers” as imaging objects. All of them were also 128 × 128 pixels.
Moreover, in order to achieve optimal modulation, the 128 ×
128 pixels images were enlarged to 512 × 512 pixels, occupying

FIGURE 10
Experimental results with Hadamard patterns for binary and grayscale objects with different SPI reconstruction methods at low sampling ratios. The
iterations of AO-Net are 300.
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the central portion of the DMD by combining each set of 4 × 4 pixels
into a single resolution cell. The images were reconstructed by
H-SPI, F-SPI and AO-Net. And the SSIM was employed for
quantitative and comparative analysis. The sampling ratios were
also set to 1%, 3%, 5%, 8% and 10% to align with the simulations.

Figure 10 and Figure 11 show the experimental results of
H-SPI, F-SPI and AO-Net at different sampling ratios,
respectively. As the sampling ratio increased, the details of the
reconstructed images became more discernible. However, a
notable difference was observed in the images generated by
H-SPI, which exhibited numerous noise points and mosaic
artifacts. And there were also obvious ringing artifacts and
noise in F-SPI reconstructed images. On the contrary, the AO-
Net results could eliminate these interferences, resulting in
higher-quality images that were closer to the original more

than traditional methods. For binary images, it could be
intuitively seen that the advantage of AO-Net was particularly
pronounced, enabling clear imaging at a low sampling ratio less
than 3%. And the AO-Net results based on Fourier patterns were
best among these images.

In order to further illustrate the advantages of AO-Net, we
analyzed the SSIM value of the grayscale reconstructed images.
Figures 12A,B respectively depict the SSIM values of H-SPI, F-SPI
and AO-Net reconstructed images. Similarly, the black and blue
lines represented H-SPI and F-SPI results respectively, and the red
lines represented AO-Net. Intuitively, the SSIM values increased
with the increase of sampling ratio for every method, indicating
better image quality. It was apparent that the SSIM values of the
AO-Net images were noticeably higher than those of the H-SPI
and F-SPI images, suggesting a closer resemblance to the original

FIGURE 11
Experimental results with Fourier patterns for binary and grayscale objects with different SPI reconstruction methods at low sampling ratios. The
iterations of AO-Net are 300.
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image. The above results showed that AO-Net can achieve higher-
quality imaging at low sampling ratios. Therefore, combined with
simulation results, we could choose the appropriate basis patterns
according to different application scenes to ensure
maximum efficiency.

5 Discussion and conclusion

In conclusion, we introduce an automated optimization
neural network into H-SPI and F-SPI called AO-Net to obtain
high-quality reconstructed images at low sampling ratios. One-
dimensional detection values are obtained by SPI process and fed
into the designed AO-Net. The network parameters are
automatically optimized and outputs high-quality images
without pre-training and datasets. Through the numerical
simulations and experimental demonstrations, we validate that
H-SPI and F-SPI introduce unavoidable artifacts and noise in the
reconstructed images at low sampling ratios. On the contrary,
AO-Net can effectively eliminate these disturbances for both
binary and grayscale objects. Consequently, the reconstructed
images of AO-Net have better image quality, enhanced contrast
and clearer details. Furthermore, the advantages for binary
reconstructed images are particularly evident. It is obvious
that the reconstructed images have clearer details and higher
image quality which are close to the original image at a sampling
ratio less than 3%. For grayscale images, the ability of the
algorithm to extract image information needs to be improved.
Meanwhile, the process of synchronous data acquisition in the
experiment needs to be further optimized. The above results
indicate that the proposed AO-Net has the potential to solve the
above problems. Therefore, by leveraging the high detection
efficiency of SPD and the fast modulation speed of DMD, AO-
Net can find applications in the fields of moving object imaging,
recognition and tracking.
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