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Short-reach optical communication networks have various applications in areas
where high-speed connectivity is needed, for example, inter- and intra-data
center links, optical access networks, and indoor and in-building communication
systems. Machine learning (ML) approaches provide a key solution for numerous
challenging situations due to their robust decision-making, problem-solving, and
pattern-recognition abilities. In this work, our focus is on utilizing deep learning
models to minimize symbol error rates in short-reach optical communication
setups. Various channel impairments, such as nonlinearity, chromatic dispersion
(CD), and attenuation, are accurately modeled. Initially, we address the challenge
of modeling a nonlinear channel. Consequently, we harness a deep learning
model called autoencoders (AEs) to facilitate communication over nonlinear
channels. Furthermore, we investigate how the inclusion of a nonlinear channel
within an autoencoder influences the received constellation as the optical fiber
length increases. Another facet of our work involves the deployment of a deep
neural network-based receiver utilizing a channel influenced by chromatic
dispersion. By gradually extending the optical length, we explore its impact on
the received constellation and, consequently, the symbol error rate. Finally, we
incorporate the split-step Fourier method (SSFM) to emulate the combined
effects of nonlinearities, chromatic dispersion, and attenuation in the optical
channel. This is accomplished through a neural network-based receiver. The
outcome of this work is an evaluation and reduction of the symbol error rate as
the length of the optical fiber is varied.
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1 Introduction

Over the last few years, there has been significant development
in optical transmission systems to meet the increasing demands of
the telecommunications sector. These advancements stem from the
numerous advantages of optical fiber, which include swifter
transmission, reduced signal loss (attenuation), smaller physical
dimensions, heightened resistance to electromagnetic interference,
and greater capacity for data transmission. Presently, there is
substantial interest in short-distance communication systems
within both industry and academia. The term “short-reach”
pertains to communication setups with transmission distances
under 100 km, which are cost-sensitive due to their widespread
deployment [1, 2]. Short-reach optical communication encounters
more intricate challenges owing to factors like the advent of 5G
technology, the envisioned developments beyond 5G (referred to as
6G), the utilization of edge-distributed cloud computing networks,
extensive machine-to-machine communications, communication
within or between data centers, and mobile front-haul setups [1,
3, 4]. For the sake of discussion, short-reach optical networks can be
classified into five categories based on their transmission distance
and function: inter-data center networks, intra-data center
networks, optical access networks, indoor and in-building optical
wireless communications, and mobile front-haul communications.
Communication requirements are becoming progressively rigorous,
and the intricacy of short-reach optical networks grows significantly
across these various types. To tackle these challenges, there is a
growing proposal and extensive study of incorporating artificial
intelligence (AI) in short-reach optical systems. AI emulates
biological processes like learning, self-correction, and
extrapolation, enabling computers to manage complex scenarios.
In recent decades, the application of AI to enhance the performance
of optical networks and systems has emerged as a prominent area of
research, encompassing network management and transmission.
Machine learning (ML), a subset of AI, empowers an agent to
enhance its future task execution by learning from past experiences.

ML techniques have garnered significant attention within the
realm of short-reach optical communication systems due to their
aptitude for problem-solving, decision-making, and pattern
recognition. Their application is widespread in various aspects of
short-reach optical systems, encompassing tasks such as optical
performance monitoring (OPM), signal processing, modulation
format identification (MFI), and indoor optical wireless systems.

In the context of short-reach optical systems that use compact and
cost-effective components, such as those utilizing direct detection
receivers, achieving desired data rates in a cost-efficient manner
requires innovative signaling and digital signal processing (DSP)
techniques. As an alternative to conventional DSP methods, ML
algorithms are emerging as effective solutions for addressing
nonlinear challenges. Neural networks can also play a role in
optimizing transmitter or receiver DSP functions [5]. In short-reach
optical networks based on intensity modulation/direct detection (IM/
DD) techniques, which are known for their cost-effectiveness,
photodiodes are used to detect nonlinear signals. The presence of
dispersion can lead to significant impairments, notably intersymbol
interference (ISI). To combat these challenges and enhance system
performance, ML techniques are gaining traction as viable alternatives
to traditional DSP approaches [1, 6]. TheseML-based techniques, such

as equalization, autoencoders (AEs), digital pre-distortion, and soft-
demapping, have been employed in various ways, encompassing
compensation for both linear and nonlinear distortions (NLDs).

To tackle the challenge of compensating for both linear and
nonlinear distortions in optical networks, advanced techniques such
as maximum likelihood sequence estimation (MLSE) and equalizers
based on ML algorithms are under exploration [7]. Among these
approaches, ML-based methods, particularly those leveraging neural
networks, are gaining recognition for their effectiveness in
equalization tasks. Neural networks are being employed either to
assist other signal processing stages or directly as comprehensive
equalizers. These studies highlight that neural networks outperform
traditional equalizers, positioning them as a sought-after technology
with significant value in short-reach applications [8]. Various
architectural designs have been proposed for this purpose,
including feedforward neural networks (FFNNs) [9–11], reservoir
computing (RC) [12–18], and recurrent neural networks (RNNs)
[19, 20]. These architectures can be effectively utilized for both linear
and nonlinear equalization tasks.

Similarly, there exist signal processing methods such as
autoencoders [21–24] that facilitate the development of end-to-end
processes where the transmitter, channel, and receiver are jointly
optimized. This idea was first introduced for wireless communication
[25–27] and later quickly utilized for optical fiber communications [6,
21]. Autoencoders comprise three key components: the encoder, code,
and decoder. The encoder reduces input dimensionality, and the
decoder restores the reduced code dimension. This process retains
essential features of the input data after dimensionality reduction,
leading to reduced transmission rates and enhanced communication
reliability [21]. A proposal involving fully connected neural networks
and a bidirectional LSTM (BiLSTM)model for the channel introduces
an autoencoder for intensity modulation/direct detection (IM/DD)
systems [22]. This auto-encoder capitalizes on optical signal
characteristics in the time domain and incorporates various system
factors like nonlinearity, attenuation, dispersion, and optical-to-
electrical square-law conversion. The primary goal of the auto-
encoder is to minimize the dimensions of the input signal, thereby
enhancing system reliability and reducing transmission rates while
preserving essential features.

When addressing impairments such as linear and nonlinear
distortions in power amplifiers, a widely used technique is digital
pre-distortion (DPD), which commonly employs Volterra-based
algorithms involving intricate direct and indirect learning
architectures [28]. To offer a lower-complexity alternative to
Volterra-based algorithms, an approach using an extreme
learning machine (ELM) for DPD has been proposed. This
method enables rapid estimation and compensation of transfer
functions, including those of Mach–Zehnder modulators (MZMs)
[29]. In the realm of DPD, an ML-based approach utilizing FFNNs
has been recommended to enhance the power efficiency of radio-
over-fiber (RoF) links in analog optical front-haul applications [28].

For achieving high spectral efficiency and speed in optical
communication networks, technologies like soft decision forward
error correction (FEC) and higher-order quadrature amplitude
modulation (QAM) have been studied. When dealing with
nonlinear equalization (NLE) and soft decision de-mapping in
Volterra-based equalization, complexity can be a challenge. An
alternative approach employs a soft neural network (NN) based
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method known as soft deep neural network (SDNN) architecture.
This approach is explored for its ability to address the temporal
dynamic behavior of sequences of time, providing an effective
solution to nonlinearities [30]. Likewise, a soft de-mapper based
on bidirectional RNN techniques has been suggested [31] in the
context of improving performance compared to a soft de-mapper
based on artificial neural networks (ANNs) [30, 32]. This approach
capitalizes on the ability of bidirectional RNNs to represent infinite
impulse responses and nonlinearities, thereby effectively capturing
the temporal dynamic behavior of sequences of time.

This study focuses on employing deep learning models to reduce
symbol error rates in short-distance optical communication
configurations. We accurately simulate various channel impairments
like nonlinearity, CD, and attenuation. Initially, we tackle the task of
modeling a nonlinear channel. Subsequently, we use autoencoders, a
type of deep learning model, to aid communication over nonlinear
channels. Additionally, we examine how integrating a nonlinear
channel into an autoencoder affects the received constellation as the
length of the optical fiber increases. Another aspect of our research
involves implementing a receiver based on deep neural networks, which
operate in a channel influenced by chromatic dispersion. By gradually
increasing the optical length, we analyze its influence on the received
constellation and, consequently, the symbol error rate. Lastly, we
introduce the split-step Fourier method (SSFM) to simulate the
combined impacts of nonlinearities, chromatic dispersion, and
attenuation in the optical channel. This simulation is achieved
through a neural network-based receiver approach. The remainder
of this paper is structured as follows: in Section 2, we describe the basic
concepts of deep learning and autoencoders. The proposed architecture
of the autoencoder is presented in Section 3. Section 4 explains the
simulation scenarios based on different channel impairments along
with their effect on model performance. In Section 5, the split-step
Fouriermethod and its simulation parameters are discussed. Finally, the
conclusion and future work directions are given in Section 6.

2 Background

This section introduces the DNNs [33, 34] and AEs.

2.1 Fully connected deep neural networks

A feedforward model, such as a N-layer fully connected DNN,
maps an input vector v0 to an output vector vN = fDNN(v0) through
repetitive steps of the form is given by

vn � αn Wnvn−1 + bn( ), n � 1, 2, . . . .N, (1)
where vn−1 is the output of (n − 1)th layer, vn is the output of nth
layer,Wn is the weight matrix, bn is the bias vector of nth layer, and
αn is the activation layer [21]. The parametersWn and bn of the layer
are represented by

θn � Wn, bn{ }. (2)
The network is capable of approximating nonlinear functions

through the use of the activation function αn, which establishes
nonlinear relationships between the layers. The rectified linear unit
(ReLU) is a frequently used activation function inmodernANNs. It acts

separately on each of its input vector elements by maintaining the
positive values and equating negative to zero [35], i.e., z = αRelu(k) with

zi � max 0, ki( ), (3)
where z and k are vectors whose ith elements are represented by zi
and ki, respectively. The ReLU function has a continuous gradient
when compared to other well-known activation functions like the
hyperbolic tangent and sigmoid, which makes training
computationally less expensive and prevents the effect of
vanishing gradients. This impact happens for activation functions
with asymptotic behavior because the gradient can shrink and slow
the learning algorithm’s convergence.

The softmax activation function is frequently used in the last
(decision) layer of an ANN, and the elements zi of the output z =
softmax k) are provided by

zi � exp ki( )∑jexp kj( ). (4)

By labeling the training data, the neural network training may be
performed under supervision. This establishes a pairing between the
intended output vector v̂N and input vector v0. As a result, the
training goal is to minimize the cost function C(Wn, bn) as a
function of the weight matrix, Wn, and bias vector, bn, of all N
layers. The cost function over the set of training inputs M between
the DNN output, vN, and intended output,v̂N, is given by

C Wn, bn( ) � 1
|M| ∑Mi�1 L v0, v̂N( ). (5)

In Eq. 5, L (z, k) represents the loss function and |M| is the
training example number. Cross-entropy is the loss function that we
used in this work, represented as

L k, z( ) � −∑
i

ki logzi. (6)

In modern deep learning, error backpropagation allows for
efficient computation of the gradient [33]. Adam optimizer, a
cutting-edge algorithm with improved convergence, dynamically
changes the learning rate η [36]. In this work, training process
optimization is carried out using the Adam algorithm, and PyTorch
and Keras [37] were used to create all of the numerical results.

2.2 Basics of autoencoder

An AE is a concept in which data are first encoded into a
compressed form and subsequently decoded to revert it to its
original shape. This technique, employed in unsupervised
learning, involves acquiring a condensed representation of input
data through the utilization of an NN. This acquired representation
can then be effectively applied to tasks such as reducing noise,
compressing data, or extracting features. The autoencoder is
composed of three primary components: the encoder section, a
code, and the decoder section. The encoder element takes the input
data and compresses it into a lower-dimensional form referred to as
the encoded data or code. This compressed representation is usually
presented as a vector of numerical values, serving as a compact
summary of the input data. This implies that the encoder’s function
is to compress the data. Within the encoder, one or more hidden
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layers exist that apply nonlinear transformations to the data,
generating the encoded version. The structure of an autoencoder
is depicted in Figure 1. Subsequently, the code is input into the
decoder phase, which effectively reconstructs the initial data,

namely, the input data, from the dimensionally reduced code.
This decoder is comprised of one or more concealed layers that
undertake the task of transforming the condensed representation
back into the original data form. The objective of the decoder’s
output is to closely mirror the input data. The primary aim is to
restore the original data with minimal loss of information from the
compressed representation.

A loss function is employed to minimize disparities between the
input and reconstructed data, often using metrics like mean squared
error, during the training process of the AE. The weights of both the
encoder and decoder are updated through the utilization of
backpropagation and optimization algorithms like stochastic
gradient descent. Figure 2 illustrates the sequential progression of

FIGURE 1
Structure of an autoencoder.

FIGURE 2
Flow process of an AE.

FIGURE 3
Illustration of the proposed autoencoder.

TABLE 1 Autoencoder parameters for M = 16.

Transmitter Receiver

Layers 1 2 1 2–3 4

Neurons 16 2 2 50 16

Activation function - Identity ELU ELU ELU
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the autoencoder. Beginning with the input data, the autoencoder
undertakes the task of learning how to extract the most pivotal
features and subsequently encapsulate them in a streamlined
manner. This is achieved by implementing a bottleneck layer
within the network’s core, housing fewer neurons in comparison
to the input and output layers. Through this method of data
compression, the autoencoder gains the ability to understand the
process of discarding irrelevant information while concentrating on
the most significant and critical features. Upon the successful
training of the autoencoder, the code generated by the encoder
can be harnessed for various purposes, such as data compression or
feature extraction. For instance, if the autoencoder has been trained
on images, the compact representation of the image, i.e., the code
produced by the encoder, can be applied for tasks like image retrieval
or classification.

Autoencoders possess the remarkable capacity to acquire
valuable data representations devoid of the necessity for labeled
data, which stands out as a significant advantage. This attribute
renders them particularly advantageous for tasks where acquiring
labeled data is resource-intensive or challenging. Moreover,
autoencoders exhibit proficiency in handling high-dimensional
data, a domain often fraught with challenges for other categories
of machine learning algorithms. Nonetheless, grappling with
overfitting remains one of the principal hurdles associated with
autoencoders. This occurs when the autoencoder predominantly
learns the intricacies of the training data features rather than

cultivating valuable, generalizable features suitable for new data
instances. To counteract the menace of overfitting, regularization
approaches such as dropout techniques and weight decay methods
can be harnessed. These strategies serve to maintain the
autoencoder’s focus on salient and broadly applicable features,
curbing the inclination toward excessive adaptation to training
data specifics.

3 Proposed end-to-end
communication system

We put into practice a fiber optic communication system and
transmission chain, including the transmitter, receiver, and channel,
as a full end-to-end ANN, as suggested in [26, 27]. The above-stated
concept has been extended to the interpretation of communication
system components, consisting of the transmitting part, channel,
and receiving part. Figure 3 shows the basic components of the
communication system, which consists of the transmitter, channel,
and receiver.

The proposed autoencoder structure is shown in Figure 3. A
message s is sent, which is chosen from a pool of M possible
messages {1, 2, . . . , M}≜M. For every message, log2M bits are
represented. In accordance with (30), first the messages are
converted into “one hot encoded” vectors of dimension M,
where 1 is the sth element and the other remaining elements

FIGURE 4
Nonlinear fiber channel 16-point learned constellations for different Pin values. (A) Pin = −11 dBm. (B) Pin = −1 dBm. (C) Pin = 6 dBm. (D) Pin = 12 dBm.
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are represented by 0. These vectors are fed as an input to
transmitter NN, which contains numerous layers of densely
connected neurons. Every neuron receives inputs from the
layer before it and produces an output based on zout = f
(wTzin + b), where w represents a vector of weights, b ∈ R
denotes a bias, and f (·) is the activation function, which is
assumed to be linear in this case.

The transmitter’s two outputs zi and zr are used as inputs to
the channel. To satisfy the constraint of average power, the NN is
normalized by the use ofM different training inputs. The input of
the channel, denoted as x, is selected randomly by a constellation
consisting of M points with a second moment E [|x|2] = Pin, where
Pin is equivalent to the input power. After that, the normalized
output is transmitted through the channel, and y output is
produced. The channel output y consisting of real yr element
and imaginary yi element are fed to a receiver NN as an input. The
receiver NN outputs a probability distribution fy (s′) in [0,1], s′ ∈
M over all possible transmitted messages represented by set M.
The output is normalized to ensure that the sum of all
probabilities should be equal to 1. The estimated transmitted
message ŝ is then obtained by selecting the message with the
highest probability from the output distribution, given by s =
argmaxs′, fy (s′) [38].

4 Simulation scenarios and results

In this section, different channel impairments have been
modeled and their effects on the communication system have
been explained.

4.1 Nonlinearity based channel

First, we consider the effects of nonlinear phase noise in
single-mode optic fiber models. The nonlinear Schrödinger
equation (NLSE) is used for modeling the propagation of
signals in an optical fiber employing distributed amplification
as follows [39]:

∂k d, t( )
∂d

� iγ‖k d, t( )‖2 − i
β2
2

∂2x d, t( )
∂d2

− p d, t( ). (7)

Here, k (d, t) is the signal, which is transmitted, t is the time
coordinate, and d is the distance coordinate; the nonlinearity
parameter is represented by γ, β2 is the group velocity dispersion
(GVD) coefficient, and the Gaussian noise is represented by p (d, t).
The right side of the equation has two terms. The equation’s first
term shows the Kerr effect, which induces a shift in the phase that is
proportional to the signal’s power and leads to a substantial
distortion in optical fiber systems. The second term shows
dispersion. As the channel likelihood function in [Eq. 7] is
unknown, a simple dispersionless channel is considered by
ignoring β2 in [Eq. 7]. The equation of the model based on
recursion is given as follows [40]:

ki+1 � kie
jLoγ|k|2/S + pi+1, 0≤ i≤ S. (8)

Here, k0 = k is the input to the channel consisting of complex
values, r = kS is the output of the channel, pi+1 ~ CN(0, PN/S), fiber
link length is represented by Lo, γ is the nonlinearity parameter, and
PN is the noise power. Ideal distributed amplification is assumed by
the model and S → ∞.

FIGURE 5
Training loss curves for different optical fiber lengths.
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4.2 Learned constellations

To obtain numerical results, the fiber model in [Eq. 8] is
assumed to have an optical fiber length of Lo = 100 km, a
nonlinearity coefficient of γ = 1.27, and a noise power of
PN = −21.3 dBm. The model is iterated S = 50 times for
simulation, providing a good approximation of the true
asymptotic channel PDF [41].

Using PyTorch’s random number generator, the dataset gets
generated inside the network on the fly. The training dataset size is
1.104. The number of Epochs = 120, and the batch size is varied
during the training. The size of the validation dataset is 1.105. The
cross-entropy loss function and Adam optimizer [36] in PyTorch
are used for training the AE separately for various values of Pin. The
AE structure parameters for M = 16 are summarized in Table 1.

In Figure 4, the 16-point constellation that has been learned
under different Pin for nonlinearity-based fiber optic channels is
shown. The points in the learned constellation are equally spaced
and pentagonal-shaped at −11 dBm, as shown in Figure 4A. In
highly nonlinear regimes, the constellations appear to be random.
The constellation points with high energy have varying radii. As a
result, after propagation through the nonlinear fiber channel, these
points do not overlap with other points. Additionally, the farther the
point is from others, the larger its radius.

4.3 Effect of the nonlinear channel on
fiber length

In a nonlinear channel, when the length of the optical fiber
increases, the nonlinearity of the fiber increases as well, leading to
signal quality degradation, which can limit the achievable transmission
distance and data rate. For obtaining different numerical results,
consider the optic fiber model in [Eq. 8] with a nonlinearity
coefficient of γ = 1.27, noise power of PN = −21.3 dBm, and input
power of Pin = 2 dBm. Table 1 shows the autoencoder parameters used
for different lengths. For training the model, the number of Epochs =
120, and the batch size is varied during the training. In the initial
iteration, the batch size is kept small to obtain a working solution. The
size of the batch increases as the training nears completion. If the size of
the batch is kept small, there will be no misclassifications, and the
training will not improve. If the batch size is large, there are higher
chances of error in the batch; hence, there will be a reason for the
training to keep on improving. The results of training loss curves are
shown for different fiber lengths in Figure 5. The loss function called
cross-entropy and the optimizer known as Adam [36] are used during
the training in PyTorch.

The effect of nonlinearity for different optical fiber lengths, Lo, is
shown in Figure 6. The effect of the nonlinear channel on Lo = 5,000 km
is shown in Figure 6A. The received constellation is affected by phase
noise or phase rotation. The right side of the figure shows the decision
regions formed on the basis of the received constellation. When the
length is decreased to Lo = 100 km, the nonlinear channel has less
impact on the received symbols as compared to Lo = 5,000 km. In other
words, the received constellation has less phase noise, and decision
regions can easily segregate the received symbols, as shown in Figure 6B.
Length is reduced further to Lo = 50 km and Lo = 15 km, as shown in
Figure 6C and 6D. The received signal is less affected by the phase noise,
and more accurate information is obtained at the receiver side with a
reduced symbol error rate. This effect can also be seen in the decision
boundaries formed on the received constellation. Therefore, when the
fiber length is increased, nonlinearity will affect the received
constellation by increasing the phase noise. In other words, received
information will be degraded, and the symbol error rate will increase,
making it difficult for the receiver to recover the signal information. The
symbol error rate on the validation dataset for different optical fibers is
shown in Figure 7.

4.4 Chromatic dispersion based channel

We consider the effects of chromatic dispersion-based channels
on the fiber length. First, a discrete Fourier transform (DFT) is used

FIGURE 6
Received constellations and decision regions for different optical
fiber lengths. (A) Lo = 5,000 km. (B) Lo = 100 km. (C) Lo = 50 km. (D)
Lo = 15 km.
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to convert the original signal into the frequency domain. 16-QAM is
used as input. It is fed into the channel, and chromatic dispersion is
applied to it. To shift to the time domain (TD), the inverse discrete
Fourier transform (IDFT) of the signal is taken. The chromatic
dispersion in the TD is given as

h Lo, t( ) �
������������

c

jDλ2Lo

e
j πc
Dλ2Lo

t2
√

. (9)

In the frequency domain, chromatic dispersion will be

H Lo,ω( ) � e−j
β2Lo
2 ω2 � ej

Dλ2Lo
4πc ω2

, (10)
where λ is the light’s wavelength,D is the dispersion coefficient of the
optical fiber, β2 is the group velocity dispersion coefficient, ω is the
angular frequency, c is the speed of light, and Lo is the optical
fiber length.

To obtain the numerical results, consider D = 17 ps/nm − km, c =
3 × 108 m/s, and Pin = 2 dBm. Table 2 shows the parameters of the
NN-based receiver used for the chromatic dispersion-based channel.
The model is trained using Keras. During training, the number of

Epochs = 50. The loss function known as sparse categorical cross-
entropy and optimizer known as Adam [36] are used during
the training.

Chromatic dispersion broadens the signal due to which ISI
occurs for different optical fiber lengths, Lo, as shown in
Figure 8. The effect of chromatic dispersion when Lo = 100 km is
shown in Figure 8A. The received 16-QAM constellation is spread
out, and the symbol error rate will increase. When fiber length
decreases, the effect of chromatic dispersion on the signal is reduced,
as shown for Lo = 75 km in Figure 8B. The signal constellation is less
spread out, and ISI is lower. Therefore, the symbol error rate will
reduce as the fiber length is reduced. Figures 8C and 8D represent
the effect of chromatic dispersion when the propagation distance is
further reduced to Lo = 50 km and Lo = 20 km, respectively. It can be
seen that the received constellation is slightly affected by the effect of
chromatic dispersion. Hence, the spreading of the signal
constellation is reduced further, which results in a reduction of
the symbol error rate, as compared to Lo = 100 km and Lo = 75 km.
To conclude, ISI is reduced by decreasing the fiber length in a
chromatic dispersion-based channel, resulting in a reduction of the
symbol error rate.

5 Split-step Fourier method

SSFM is a technique used for simultaneous simulation of self-
phase modulation (SPM) and CD in optical fibers. First, nonlinearity
alone is applied to the signal in the time domain. After that, the
signal is converted into the frequency domain, and CD is applied.

FIGURE 7
SER on the validation dataset for different optical fiber lengths. (A) Lo = 5,000 km. (B) Lo = 100 km. (C) Lo = 50 km. (D) Lo = 15 km.

TABLE 2 NN receiver parameters for the chromatic dispersion-based
channel.

Input signal Receiver

16-QAM Layers 1 2–3 4

Neurons 2 50 16

Activation function ELU ELU ELU
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Therefore, ∂/∂t in the NLSE is replaced with iω. The signal is
converted back into the time domain by taking IDFT. The steps
involved in this process can be described as follows [42]:

X l + k, t( ) � F−1 ekD iω( )F ekNX l, t( )[ ][ ], (11)

where ‘k’ is the small incremental distance and ‘F’ is the fast
Fourier transform.

5.1 Iterative and symmetric SSFM

In this technique, dispersion is applied to the signal through half
of the distance ‘k’, then nonlinearity acts on the middle of the
distance, and finally, dispersion acts again on the remaining half of
the distance. The operation is shown as [43]

X l + k, t( ) � exp
k

2
D( )exp N l( ) +N l + k( )

2
( )exp k

2
D( )X l, t( ).

(12)
Several iterations have to be performed by considering an

amplified optical communication system. For each span of the
amplifier, dispersion and nonlinearity are mitigated, which leads
to high complexity.

5.2 Noniterative asymmetric SSFM

To simplify iterative and symmetric SSFM, an assumption is
made that nonlinearity acts only at the beginning of every
amplifier. So, for each span, only one iteration is performed.
Due to this, the complexity of the system is reduced
significantly for the mitigation of nonlinear phase noise [44].
However, the performance of noniterative asymmetric SSFM is
2–3 dB poor compared to iterative SSFM. SSFM has a high
computational cost of approximately 105 multiplications per
symbol per channel. On the other side, it is a quite powerful
simulation technique for mitigating both dispersion and
nonlinearity [45].

5.3 Numerical results and discussions

For our numerical simulations, we consider iterative and
symmetric split-step Fourier method under different fiber
lengths. Consider β2 = −20 × 10−24 s2/km, α = 0.2 dB/km, γ =
1.27 W/km, h = 1 km, and Pin = 1 dBm. Here, β2 represents the
GVD coefficient, nonlinearity coefficient is represented by γ, h is the
step size, Pin is the input power, and α is the attenuation. The neural
network-based receiver parameters are shown in Table 3. The model
is trained using Keras with number of Epochs being 120. A loss
function known as sparse categorical cross-entropy is used. Adam
optimizer [36] is used for training of the model. The results of
different optical fiber lengths, Lo, used in the SSFM-based channel
with 16-QAM input, and their decision regions formed are shown
in Figure 9.

Figure 9A shows the effect of the SSFM-based channel for Lo =
100 km. A small portion of the received symbols are intermixed
with each other; hence, the symbol error rate will be high. For
Figure 9B, the received constellations for Lo = 50 km are forming
a boundary with each other, and there is little interference

FIGURE 8
Effect of the chromatic dispersion-based channel for optical
fiber lengths. (A) Lo = 100 km. (B) Lo = 75 km. (C) Lo = 50 km. (D)
Lo = 20 km.

TABLE 3 NN receiver parameters for the SSFM-based channel.

Input signal Receiver

16-QAM Layers 1 2–5 6

Neurons 2 50 16

Activation function ELU ELU ELU
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between the received symbols. In Figure 9C, the length is reduced
to Lo = 25 km. For this length, the received constellation symbols
do not interfere with each other and are some distance apart.
Figure 9D shows that for Lo = 5 km, the symbol error rate is

minimum compared to other lengths, and received symbols are
far apart from each other. Therefore, for short propagation
distances, the channel effect on the received constellation is
small and the symbol error rate is reduced.

FIGURE 9
Effect of the split-step Fourier method-based channel for different optical fiber lengths. (A) Lo = 100 km. (B) Lo = 50 km. (C) Lo = 25 km. (D)
Lo = 5 km.
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6 Conclusion and future work

The realm of short-reach optical communication has attracted
significant attention both within academic circles and industry. Our
focus has been on utilizing deep learning models to minimize
symbol error rates in these types of optical communication
setups. Various channel impairments, such as nonlinearity, CD,
and attenuation, need to be accurately modeled. Initially, we
addressed the challenge of modeling a nonlinear channel.
Although conventional methods exist to tackle this issue, they
tend to be intricate. Consequently, we harnessed a deep learning
model called autoencoders to facilitate communication over
nonlinear channels. This approach enabled the creation of an
end-to-end system, yielding promising constellations.
Furthermore, we investigated how the inclusion of a nonlinear
channel within an autoencoder influences the received
constellation as the optical fiber length increases. Another facet
of our work involved the deployment of a deep neural network-
based receiver utilizing a channel influenced by chromatic
dispersion. By gradually extending the optical length, we explored
its impact on the received constellation and, consequently, the
symbol error rate. Finally, we incorporated the SSFM to emulate
the combined effects of nonlinearities, chromatic dispersion, and
attenuation in the optical channel. This was accomplished through a
neural network-based receiver. The outcome was an evaluation of
the symbol error rate as the optical fiber’s length was augmented.
Notably, we observed that the symbol error rate increases with the
propagation distance of the optical fiber.

The potential for expanding upon this research lies in the
application of various machine learning models to further reduce
symbol error rates in short-reach optical communication.
Although we have employed autoencoders and deep neural
network-based receivers (decoders) in our current work, it is
worth noting that the channel itself was not modeled using neural
networks. To compute gradients in backpropagation, our
abovementioned techniques always require a specific channel
model. The precise mathematical relationship between the input
and output of a real fiber channel is thus unknown, making these
approaches inappropriate for real fiber channels. To overcome
this limitation, an avenue worth exploring is the integration of
reinforcement learning. This approach could enable the
optimization of both the transmitter and receiver components
independently, without requiring detailed channel knowledge. By

leveraging reinforcement learning techniques, we could
potentially enhance the overall performance of the system and
achieve better symbol error rate outcomes in short-reach optical
communication scenarios.
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