
Innovative stochastic finite
difference approach for
modelling unsteady
non-Newtonian mixed
convective fluid flowwith variable
thermal conductivity and mass
diffusivity

Muhammad Shoaib Arif1,2*, Kamaleldin Abodayeh1 and
Yasir Nawaz2,3

1Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan
University, Riyadh, Saudi Arabia, 2Department of Mathematics, Air University, Islamabad, Pakistan,
3Comwave Institute of Sciences & Information Technology, Islamabad, Pakistan

A novel stochastic numerical scheme is introduced to solve stochastic differential
equations. The development of the scheme is based on two different parts. One
part finds the solution for the deterministic equation, and the second part is the
numerical approximation for the integral part of the Wiener process term in the
stochastic partial differential equation. The scheme’s stability and consistency in
the mean square sense are also ensured. Additionally, a respective mathematical
model of the boundary layer flow of Casson fluid on a flat and oscillatory plate is
formulated. Wiener process terms perturb the model to be studied. This scheme
will be solved in contexts including deterministic and stochastic. The influence of
different parameters on velocity, temperature, and concentration profiles is
demonstrated in various graphical representations. The main objective of this
study is to present a reliable numerical approach that surpasses the limitations of
traditional numerical methods to analyze non-Newtonian mixed convective fluid
flows with varying transport parameters. Our objective is to demonstrate the
capabilities of the new stochastic finite difference scheme in enhancing our
comprehension of stochastic fluid flow phenomena. This will be achieved by
comprehensively examining its mathematical foundations and computer
execution. Our objective is to develop a revolutionary method that will serve
as a valuable resource for scientists and engineers studying the modeling and
understanding of stochastic unstable non-Newtonian mixed convective fluid
flow. This method will address the challenges posed by the fluid’s changing
thermal conductivity and mass diffusivity.
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1 Introduction

As we know, fluid dynamics is central to studying various other
disciplines, such as environmental science, engineering, etc. Also,
understanding complex real-world problems demands an insight
into the specific characteristics of non-Newtonian fluids. They are
the fluids that do not follow the linear relation between the shear
stress and the velocity gradient. Casson fluids are a family of
viscoplastic materials having yield stress, which is used to model
the behaviour of many industrial and biological systems.

Several factors of the fluid, such as temperature, mass diffusivity,
etc., affect the behaviour of Casson fluids internally and externally.
These factors do not allow an easier way of modelling and recreating
the movement of Casson fluids. In addition, Casson fluids frequently
flow in systems with spatially varying thermal conductivity andmass
diffusivity, necessitating the development of computational
techniques that can accurately reflect these fluctuations.

Applications in physical chemistry, metrology, biology,
oceanography, astrophysics, plasma physics, etc., all highlight the
importance of heat transmission. Liquid distillation, heat
exchangers, atomic controller refrigeration, and other
technological advances rely heavily on heat transmission. In fluid
mechanics, researchers have observed that a certain proportion of
mechanical energy is converted into thermal or heat energy due to
the resistance generated by viscosity between adjacent fluid layers
during their motion. We refer to this as a “switch in internal energy.”
First, in his essay [1], Brinkman studied the impact of an internal
energy change on capillary flow. Using the impacts of internal
energy change and heat transport, Jambal et al. [2] established a
power law model and estimated the answer using the finite
difference approach. The utilization of nanofluids to improve
heat transfer has garnered significant interest among academics
in recent years due to its extensive applicability in various industries,
such as photonics, electronics, energy production, and
transportation [3]. In general, metallic fluids tend to exhibit
higher thermal conductivity when compared to non-metallic
fluids. Hence, it can be observed that the thermal performance of
simple fluids is relatively worse when compared to the thermal
performance of metallic nano-sized solid particles dispersed in
typical fluids. Nanofluids are formed by introducing
microstructural particles into ordinary fluids. These particles,
typically composed of metals, carbides, carbon nanotubes, or
oxides, have dimensions on the nanometer scale [4, 5]. The
nanoparticle composition is crucial in hybrid nanofluids,
particularly in enhancing distinctive features such as thermal
conductivity. Aziz [6] used the shot method to solve the
governing equations, demonstrating the impact of viscous
dissipation on an energy equation and the effect of altering
thickness on momentum equations.

Nanofluids are the subject of many studies because of their
superior conduction qualities that can be achieved through various
nanofluid compositions [7, 8]. Herein, we list a few studies
conducted along these lines. Nasrin and Alim [9] conducted a
numerical study of the heat transmission rate for nanofluids
containing dual particles.

Furthermore, a method for simulating micro- and nano-scale
fluids has been investigated by Nie et al. [10]. In [11], the writers
delve into the theoretical framework of hybrid nanofluids’ heat

conduction. The effect of hybrid nanofluids on forced convective
heat transfer was estimated statistically by Labib et al. [12].

Investigating fluid flow induced by a horizontally translating
surface and its impact on thermo-physical characteristics, such as
mass diffusivity, thermal conductivity, and viscosity, is a very
captivating subject matter for researchers and scholars. Many
studies do not account for or assume that a malleable surface’s
thermophysical parameters like conductivity, diffusivity, and
viscosity are constant. However, the findings of the experiments
show that these thermo-physical properties depend on temperature
and concentration, especially in the case of a very large temperature
differential. As a result, much attention has been focused on how
different thermo-physical factors affect surface stretching. The effect
of radiation and thermo-physical factors on the flow of a viscous
fluid towards a non-uniform permeable medium was explored by
Elbarbary et al. [13]. Saleem studied the effects of various fluid
properties on viscous fluid flow through a stretchable medium [14].

Hashim et al. [15] proposed the Willaimson fluid model
incorporating nanoparticles, where thermophysical parameters
were treated as independent variables. Malik et al. [16]
investigated how different fluid properties affected the boundary
layer flow of a viscous fluid induced by an expanded cylinder. By
assuming exponential functions of temperature for both viscosity
and thermal conductivity, Mohiuddin et al. [17] can define the
behaviour of a viscoelastic fluid. Second-order fluid flow via a mobile
medium in the presence of a heat source/sink was studied by
Akinbobola et al. [18], who examined the effect of temperature-
dependent physical features of the fluid. Muthucumaraswamy [19,
20] solved the constitutive equations for the flow of a viscous fluid
across a non-uniform plate using the Laplace method and variable
diffusivity. The 1D -diffusion-advection equation was studied by Jia
et al. [21] in two different scenarios: (i) when the thermo-physical
characteristics are fixed but the flow velocity is not, and (ii) when the
flow velocity and the parameters of the fluid are both changeable.
The model was solved, and the resulting outcomes for two scenarios
were compared.

The thermo-physical parameters that change with temperature
and concentration were studied by Li et al. [22] using the finite
difference approach to examine their influence on nonlinear
transient responses. The effects of temperature and concentration
on the transmission of heat and mass in a viscoelastic fluid flow were
examined by Qureshi et al. [23]. Researchers in [24] analyzed
Maxwell’s fluid flow model for nanoparticles over a
heterogeneous medium, considering thermal effects. Near a
vertically moving surface, boundary layer flow is due to cooling
and heating impulses [25]. The boundary layer flow around an
isothermal, free-moving needle was discussed in [26]. [27] examined
the heat transfer parameters of forced convection flow over a non-
isothermal thin needle. The Boungirono model of nanofluid flow
over a rotating needle was analyzed in [28]. Solving the governing
equations involved shooting and fourth-order RKmethods. The role
of heat production and thermal radiation in MHD The effects of an
infinite horizontal sheet on the flow of a Casson fluid in two
dimensions were studied in [29].

Animasaun [30] examined how vertically uneven surface
roughness affected an unstable mixed convection flow. To
investigate the flow’s reaction to a chemical reaction and
radiation, he applied the shooting method and quadratic
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interpolation to the model and then solved it. Shah et al. [32]
investigated the effect of the Grashof number on the mixed
convection flow of different fluids travelling along different
surfaces when heat generation was present. In their study,
Animasaun et al. [33] looked at how a chemical process,
including quartic autocatalysis, might alter the trajectories of
various airborne dust particles. Runge-Kutta, shooting, and bvp4c
were used to solve the model’s constitutive equations. The influence
of nanoparticles’ random mobility in three-dimensional flow was
investigated in a recent meta-analysis by Animasaun et al. [34]. They
calculated the heat transfer rate due to the Brownian motion of
nanoparticles by considering radiation from the surface and local
and mass convection. Researchers at [35] examined how alumina
nanoparticles behaved in three dimensions when they carried water
or were subject to Lorentz force. They looked into how various
dimensionless factors affected the velocities involved.

The article [36] delves into heat transfer in Jeffery-Hamel hybrid
nanofluid flows involving non-parallel plates. Molybdenum
disulfide nanoparticles are suspended in fluids subjected to
magnetic fields, heat radiation, and viscous dissipation. The
researcher studied the flow of micropolar fluids across a vertical
Riga sheet [37]. We look at the nonlinear stretching sheet. A
magnetohydrodynamic (MHD) pair stress hybrid nanofluid on a
contracting surface is studied in terms of its radiative properties and
overall stability [38].

The difficulties in simulating Casson fluids with non-constant
thermal and mass diffusivities can be mitigated with the help of
stochastic numerical techniques. To capture the inherent
stochasticity in real-world systems, these methods add
probabilistic features to account for uncertainties and fluctuations
in material qualities. Randomness can be due to material
contamination, temperature difference or mass
concentration change.

In the past, problems with intricate flows were analyzed by finite
difference or finite element methods or by the CFD (Computational
Fluid Dynamics) simulations to obtain a better viewpoint of fluid
dynamics. Although these methods have enhanced our
understanding of the subject, they have often failed to reproduce
the inherently stochastic behaviours found in numerous real-world
systems accurately. The natural uncertainties in several physical
processes in fluid flow are due to numerous boundary conditions,
material qualities, and environmental effects. If we do not consider
these random variables, then the resulting description of the
phenomenon may lead to a misleading picture of reality.

In this work, we examine and assess stochastic numerical
methodology for modelling of dynamics of the Casson fluid with
arbitrary temperature and density gradients for a better view of how
uncertainties and fluctuations in material qualities influence the flow
of Casson fluid; we will include a stochastic ingredient in the
numerical simulations.

Applications in chemical engineering, geophysics, and
biomedicine can significantly profit from gaining exact forecasts
of the fundamental behaviour of the fluids to optimize the given
processes, develop equipment or know the system’s
biological behaviour.

We are at the dawn of applying stochastic probability in fluid
mechanics; there is a long way to go. The present article goes into
this notion. Let’s consider using stochastic predicting in

computational fluid mechanics. We will understand mathematical
predicting to describe the behaviours of a physical system’s system
within which it operates. Computational models need optimization,
design, and updating due to external effects like fluctuations in the
natural system and internal elements like uncertainty in the
model itself.

Numerous scholars are working hard to figure out stochastic
partial differential equations and their numerical solutions. Tessitoe
[39] made a seminal discovery in this area when he found that linear
and infinite-dimensional stochastic differential equations satisfy the
same general conditions as the modified solution. The authors of
[40] examined the classical form of the stochastic equation under the
assumption of homogeneous Dirichlet boundary conditions. The
group set out to see if there were any non-trivial positive global
solutions and whether or not those solutions were likely to explode
in finite time. Researchers in Ref. [41] examined the Holder
continuous coefficient obtained with constant coloured noise to
study the stochastic partial differential equation (SPDE). Solving a
backward double stochastic differential equation (SDE) allows for
path-wise uniqueness and deterministic manipulation of the
Laplacian. The solution to a system of stochastic differential
equations (SDEs) is found by taking weak limits of a sequence of
variables. We obtain this sequence by substituting the discrete
Laplacian operator for the random variable in the stochastic
partial differential equation (SPDE). Altmeyer et al. explained
cellular repolarization using a stochastic variant of the Meinhardt
equation. The driving noise process has been shown to influence the
evolution of solution patterns for stochastic partial differential
equations (SPDEs), and such solutions exist [42]. The solution is
fully described in the works mentioned above.

Numerical estimation of stochastic partial differential equations
(SPDEs) is a formidable challenge. Instead, Gyorgy et al. [43]
worked to construct lattice approximations for elliptic stochastic
partial differential equations (SPDEs). For white noise on a
restricted domain in Rd, d � 1, 2, 3, the convergence rate of
approximations is calculated. In [44], we look at how to
approximate answers to stochastic partial differential equations of
the Itô type. The consistency and stability of these approximations
with respect to their mean-square error are established by employing
explicit and implicit finite difference techniques. The stochastic Fitz-
Hugh-Nagumo model was defined, and a numerical solution was
given in [45]. This examination shows how well the technique holds
up in a Von Neumann environment [46]. investigated the reliability
and robustness of the forward Euler method for evaluating
stochastic nonlinear advection-diffusion models. In [47], they
consider white noise’s spectral power distribution functions and
estimate the numerical approximations for the linear, elliptic, and
parabolic cases. The approximations of these cases are evaluated
using the finite element and difference methods. The relevant
literature dealt with the integral approximation techniques, the
finite element methods in these contexts, and the weak SPDE
formulation.

This research paper proposes a new and novel numerical scheme
for solving the problems of unstable non-Newtonian mixed
convection flow of fluid with heat and mass transport with the
effect of temperature and concentration fluctuations. The proposed
methodology combines stochastic methods in a finite difference
scheme, which enables the capture of the random behaviour of the
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fluid flow in the presence of convective flows. We go for stochastic
features in our model and versions of operations to have more
accurate predictions and to know more new features in the
behaviour of these dynamic systems.

In this work, we shall discuss the theoretical foundation of the
fluid dynamics of Casson fluids, the effect of varying thermal
conductivity and mass diffusivity in the problems, and introduce
some stochastic numerical algorithms for solving such complex
flow systems.

The primary contribution of this work is the suggestion of a
stochastic numerical scheme for the solution of stochastic partial
differential equations. Another method exists in the literature for
solving stochastic partial differential equations. That scheme is
called the Maruyama method and can be used to solve stochastic
equations that appear in fluid dynamics with the variation ofWiener
process terms. The Euler-Maruyama method extends the more
common forward Euler approach for stochastic differential
equations. The Matlab commands generate random numbers
from a Normal distribution with a mean of zero and a standard
deviation that determines the time step size for the Wiener process
term in the scheme.

1.1 Novelty of the study

1. This research presents a distinctive approach by integrating the
analysis of Casson fluids with stochastic numerical techniques.
Although previous studies have been conducted on Casson
fluids and stochastic fluid dynamics modelling, the integration
of these two fields remains relatively underexplored in current
research. This research presents a fresh way to comprehend the
behaviour of non-Newtonian fluids in the presence of changing
thermal conductivity and mass diffusivity by including
stochastic components in the study of Casson fluids.

2. Variable thermal conductivity and mass diffusivity are
considered to solve a practical issue. This variability exists
greatly, and various industrial and natural systems have a
flowing fluid. To understand how such variations alter the
flow behaviour of Casson fluid for practical use in various
domains such as chemical engineering, geophysics, biology, etc.
To understand how such differences will change the flow
behaviour of Casson fluid to be used for actual practical use
in different domains such as chemical engineering, geophysics,
biology, etc.

3. The challenge exists in yield stress and viscoplastic behaviour
modelling the Casson fluid. Moreover, it is already intricate in
the modeling process since, unlike other endpoints, strangers
constant such as thermal conductivity, mass diffusivity, etc.,
varies, and materials become parameter-prone. This work is a
substantial and novel contribution to fluid dynamics since it
addresses the problem of modeling and simulating such
complex systems.

4. The random numerical techniques are useful in portraying the
level of uncertainty and variability of the qualities of the
materials. Using random techniques, the problem of the
Casson dynamics can be interpreted.

To portray the sense of randomness and variability, the
stochastic numerical technique can be used for modelling the
yield stress and viscoelasticity local scalar. The singularity of the
present work is underlined by integrating random techniques for
studying Casson fluid along with thermal conductivity and mass
diffusivity.

2 Proposed computational scheme

This contribution’s stochastic numerical approach can be
utilized to solve partial differential equations. The scheme is
based on two steps. A partial differential equation’s solution can
be predicted in the first step, the predictor stage. The second stage is
the corrector stage, which finds the partial differential equation’s
solution. But these two stages only find the solution for the
deterministic model. The scheme for finding the solution of the
stochastic differential equation will be proposed later. For proposing
a scheme for a deterministic equation, consider the deterministic
equation as follows:

∂v
∂t

� G v,
∂v
∂x

,
∂v
∂y

,
∂2v
∂y2

( ) (1)

Let the first stage of the scheme be expressed as:

�vn+1i,j � vni,j + Δt ∂v
∂t

∣∣∣∣∣∣∣ni,j (2)

Where Δt is the time step size.
The second stage of the scheme is expressed as:

vn+1i,j � 1
5

4vni,j + �vn+1i,j ) + Δt a
∂v
∂t

( )n

i,j

+ b
∂�v
∂t

( )n+1

i,j

⎧⎨⎩ ⎫⎬⎭⎛⎝ (3)

where a and b will be determined later.
Now, substitute Eq. 2 into Eq. 3, which yields.

vn+1i,j � 1
5

4vni,j + vni,j + Δt∂v
∂t

∣∣∣∣∣∣∣ ni,j( )
+ Δt a

∂v
∂t

∣∣∣∣∣∣∣ ni,j + b
∂v
∂t

∣∣∣∣∣∣∣ ni,j + bΔt ∂
2v

∂t2

∣∣∣∣∣∣∣∣
n

i,j

⎧⎨⎩ ⎫⎬⎭ (4)

Expanding vn+1i,j using Taylor series expansion

vn+1i,j � vni,j + Δt ∂v
∂t

∣∣∣∣∣∣∣ni,j + Δt( )2
2

∂2v
∂t2

∣∣∣∣∣∣∣∣
n

i,j

+ O Δt( )3( ) (5)

Substituting Eq. 5 into Eq. 4 gives

vni,j + Δt∂v
∂t

∣∣∣∣∣∣∣ni,j + Δt( )2
2

∂2v

∂t2

∣∣∣∣∣∣∣∣ni,j � vni,j +
1
5
Δt∂v

∂t

∣∣∣∣∣∣∣ni,j
+ Δt a

∂v
∂t

∣∣∣∣∣∣∣ ni,j + b
∂v
∂t

∣∣∣∣∣∣∣ ni,j + bΔt ∂
2v

∂t2

∣∣∣∣∣∣∣∣ ni,j⎧⎨⎩ ⎫⎬⎭ (6)

Evaluating the coefficients of ∂v∂t|
n

i,j
and ∂2v

∂t2 |
n

i,j
on both sides of Eq.

6 that yields
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1 � 1
5
+ a + b

1
2
� b

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

Solving Equation 7 gives

a � 3
10
, b � 1

2
(8)

Therefore, the time discretization of Eq. 1 is

�vn+1i,j � vni,j + ΔtG v | ni,j,
∂v
∂x

∣∣∣∣∣∣∣ ni,j, ∂v∂y
∣∣∣∣∣∣∣∣ ni,j, ∂

2v

∂y2

∣∣∣∣∣∣∣∣
n

i,j

⎛⎝ ⎞⎠ (9)

vn+1i,j � 1
5
(4vni,j + �vn+1i,j ) + Δt

aG v | ni,j, ∂v∂x
∣∣∣∣ ni,j, ∂v∂y ∣∣∣∣∣ ni,j, ∂2v∂y2

∣∣∣∣∣ n
i,j

( )+
bG �v | n+1i,j , ∂�v∂x

∣∣∣∣ n+1i,j
, ∂�v∂y
∣∣∣∣∣ n+1
i,j

, ∂
2�v

∂y2

∣∣∣∣∣ n+1
i,j

( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(10)

Now consider the partial differential equations as

dv � G v,
∂v
∂x

,
∂v
∂y

,
∂2v
∂y2

( )dt + σf v( )dW t( ) (11)

Its Îto integral form is given as

vn+1 � vn + ∫tn+1

tn

Gdt + ∫tn+1

tn

σf v( )dW t( ) (12)

Using Taylor series expansion for f(v) as

f v( ) � f vn( ) + Δtf′ vn( ) + Δt( )2
2

f″ vn( ) + O Δt( )3( ) (13)

So, the last term in Eq. 12 can be expressed as

∫tn+1

tn

f v( )dW � ∫tn+1

tn

f vn( ) + Δtf′ vn( ) + Δt( )2
2

f″ vn( )( )dW
� f v( )

� f vn( )ΔW + Δtf′ vn( )ΔW + Δt( )2
2

f″ vn( )ΔW
(14)

Therefore, the proposed stochastic numerical scheme for time
discretization Eq. 11 is

�vn+1i,j � vni,j + ΔtG vni,j,
∂v
∂x

∣∣∣∣∣∣∣ ni,j, ∂v∂y
∣∣∣∣∣∣∣∣ ni,j, ∂

2v

∂y2

∣∣∣∣∣∣∣∣
n

i,j

⎛⎝ ⎞⎠ (15)

vn+1i,j � 1
5

4vni,j + �vn+1i,j ) + Δt
⎧⎨⎩ 3
10

G vni,j,
∂v
∂x

∣∣∣∣∣∣∣ ni,j, ∂v∂y
∣∣∣∣∣∣∣∣ ni,j, ∂

2v

∂y2

∣∣∣∣∣∣∣∣
n

i,j

⎛⎝ ⎞⎠⎛⎝
+1
2
G⎛⎝�vn+1i,j ,

∂�v
∂x

∣∣∣∣∣∣∣n+1i,j
,
∂�v
∂y

∣∣∣∣∣∣∣∣n+1
i,j

,
∂2�v
∂y2

∣∣∣∣∣∣∣∣
n+1

i,j

⎞⎠⎫⎬⎭ + σf vn( )ΔW

+ σΔtf′ vn( )ΔW + σ

2
Δt( )2f″ vn( )ΔW (16)

where ΔW is approximated as a normal distribution with mean
0 and standard deviation

��
Δt

√
i.e., ΔW ~ N(0, ��

Δt
√ )

Let f(v) � v and G � β1
∂qv
∂x + β2

∂qv
∂y + β3

∂2qv
∂y2 then the fully

discretized scheme is given as

�vn+1i,j � vni,j + Δt β1δxv
n
i,j + β2δy v

n
i,j + β3δ

2
yv

n
i,j

q + 1( )
2

( ) (17)

vn+1i,j � 1
5

4vni,j + �vn+1i,j ) + Δt{ 3
10

β1δxv
n
i,j + β2δyv

n
i,j + β3δ

2
yv

n
i,j

q + 1( )
2

( )⎛⎝
+ 1
2
(β1δx�vn+1i,j + β2δy �v

n+1
i,j + β3δ

2
y�v

n+1
i,j

1 + q( )
2

) + σvni,jΔW + σΔtΔW}
(18)

where δxvni,j �
vni+1,j−vni−1,j

2Δx , δyvni,j �
vni,j+1−vni,j−1

2Δy , δ2yv
n
i,j �

vni,j+1−2vni,j+vni,j−1
(Δy)2

3 Consistency analysis

Theorem 1: The proposed numerical schemes (17) and (18) are
consistent in the mean square sense.

Proof. Let P be a smooth function, then.

L P( )ni � P n + 1( )Δt, iΔx, jΔy( ) − P nΔt, iΔx, jΔy( )
−β1∫ n+1( )Δt

nΔt
Px s, iΔx, jΔy( )dS

−β2∫ n+1( )Δt

nΔt
Py s, iΔx, jΔy( )dS

−β3∫ n+1( )Δt

nΔt
Pyy s, iΔx, jΔy( )dS

−σ∫ n+1( )Δt

nΔt
P s, iΔx, jΔy)dW(S( ) (19)

Now, combining both stages of the schemes gives the
following operator

Ln
i P � P n + 1( )Δt, iΔx, jΔy( ) − P nΔt, iΔx, jΔy( )

−Δt[ β1
4Δx P nΔt, i + 1( )Δx, jΔy( ) − P nΔt, i − 1( )Δx, jΔy( )( )

+ β2
4Δy P nΔt, iΔx, j + 1( )Δy( ) − P nΔt, iΔx, j − 1( )Δy( )( )

+ β3
2 Δy( )2 (P nΔt, iΔx, j + 1( )Δy( ) − 2P nΔt, iΔx, jΔy( )

+P nΔt, iΔx, j − 1( )Δy( ))]
−Δt[ β1

4Δx (�P n + 1( )Δt, i + 1( )Δx, jΔy( )
−�P n + 1( )Δt, i − 1( )Δx, jΔy( ))
+ β2
4Δy (�P n + 1( )Δt, iΔx, j + 1( )Δy( )

− �P n + 1( )Δt, iΔx, j − 1( )Δy( ))
+ β3
2 Δy( )2 (�P n + 1( )Δt, iΔx, j + 1( )Δy( )

− 2�P n + 1( )Δt, iΔx, jΔy( )
+ �P n + 1( )Δt, iΔx, j − 1( )Δy( ))]

−σP nΔt, iΔx, jΔy( ) W n + 1( )Δt( ) −W nΔt( )( )
−σΔt W n + 1( )Δt( ) −W nΔt( )( ) (20)

where �P((n + 1)Δt, iΔx, jΔy) � P(nΔt, iΔx, jΔy) + Δt{ β1
2Δx (P(nΔt,

(i + 1)Δx, jΔy) − P(nΔt, (i − 1)Δx, jΔy)) + β2
2Δy (P(nΔt, iΔx,

(j + 1)Δy) − P(nΔt, iΔx, (j − 1)Δy)) + β3
(Δy)2 (P(nΔt, iΔx,(j + 1)Δy) − 2P(nΔt, iΔx, jΔy) + P(nΔt, iΔx, (j − 1)Δy))}

The mean square of the scheme is written as:
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E L P( )ni − Ln
i P

∣∣∣∣ ∣∣∣∣2
� E

∣∣∣∣∣∣∣∣ − β1∫ n+1( )Δt

nΔt
Px s, iΔx, jΔy( )dS − β2∫ n+1( )Δt

nΔt
Py s, iΔx, jΔy( )dS

− β3∫ n+1( )Δt

nΔt
Pyy s, iΔx, jΔy( )dS− σ∫ n+1( )Δt

nΔt
P s, iΔx, jΔy( )dW S( )

+ β1Δt
4Δx P nΔt, i + 1( )Δx, jΔy( ) − P nΔt, i − 1( )Δx, jΔy( )( )

+ β2Δt
4Δy P nΔt, iΔx, j + 1( )Δy( ) − P nΔt, iΔx, j − 1( )Δy( )( )

+ β3Δt
2 Δy( )2 (P nΔt, iΔx, j + 1( )Δy( ) − 2P nΔt, iΔx, jΔy( )

+ P nΔt, iΔx, j − 1( )Δy( ))
+ β1Δt
4Δx

�P n + 1( )Δt, i + 1( )Δx, jΔy( ) − �P n + 1( )Δt, i − 1( )Δx, jΔy( )( )
+ β2Δt
4Δy

�P n + 1( )Δt, iΔx, j + 1( )Δy( ) − �P n + 1( )Δt, iΔx, j − 1( )Δy( )( )
+ β3Δt
2 Δy( )2 (�P n + 1( )Δt, iΔx, j + 1( )Δy( ) − 2�P n + 1( )Δt, iΔx, jΔy( )

+ �P n + 1( )Δt, iΔx, j − 1( )Δy( ))
+ σ Δt + P nΔt, iΔx, jΔy( )( ) × W n + 1( )Δt( ) −W nΔt( )( )

∣∣∣∣∣∣∣∣2
(21)

Equation 21 can be written as:

E L P( )ni −Ln
i P

∣∣∣∣ ∣∣∣∣2
≤2β21E|∫ n+1( )Δt

nΔt
−Px s, iΔx,jΔy( )dS

+ Δt
4Δx P nΔt, i+1( )Δx,jΔy( )−P nΔt, i−1( )Δx,jΔy( )( )
+ Δt
4Δx

�P n+1( )Δt, i+1( )Δx,jΔy( )− �P n+1( )Δt, i−1( )Δx,jΔy( )( )∣∣∣∣∣∣∣∣2
+2β22E∫ n+1( )Δt

nΔt
−Py s, iΔx,jΔy( )dS

+ Δt
4Δy P nΔt, iΔx, j+1( )Δy( )−P nΔt, iΔx, j−1( )Δy( )( )

+ Δt
4Δy

�P n+1( )Δt, iΔx, j+1( )Δy( )− �P n+1( )Δt, iΔx, j−1( )Δy( )( )∣∣∣∣∣∣∣∣2
+2β23E|∫ n+1( )Δt

nΔt
−Pyy s, iΔx,jΔy( )dS+ Δt

2 Δy( )2 P nΔt, iΔx, j+1( )Δy( )(
−2P nΔt, iΔx,jΔy( )+P nΔt, iΔx, j−1( )Δy( ))
+ Δt
2 Δy( )2 �P n+1( )Δt, iΔx, j+1( )Δy( )−2�P n+1( )Δt, iΔx,jΔy( )(

+�P n+1( )Δt, iΔx, j−1( )Δy( ))∣∣∣∣∣∣∣∣2
+2σ2E|∫ n+1( )Δt

nΔt
−P s, iΔx,jΔy( )dW S( ) Δt+Q nΔt, iΔx,jΔy( )( )

× W n+1( )Δt( )−W nΔt( )( )|2 (22)

Now, utilizing the result

E ∫ n+1( )Δt

nΔt
−P[ s, iΔx, jΔy( ) − Δt + Q nΔt, iΔx, jΔy( ))]dW(S( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣2
≤Δt∫ n+1( )Δt

nΔt
E −P s, iΔx, jΔy( ) − Δt + Q nΔt, iΔx, jΔy( )( )∣∣∣∣ ∣∣∣∣2[ ]dS

(23)
Thus by applying limit as Δx → 0,Δy → 0,Δt → 0 and

(nΔt, iΔx, jΔy) → (t, x, y), the mean square error approaches
zero. i.e.

E L P( )ni − Ln
i P

∣∣∣∣ ∣∣∣∣2 → 0 (24)

So, the proposed scheme is consistent.

Theorem 2: The proposed numerical scheme is
conditionally stable.

Proof: The stability of the proposed scheme will be analyzed
using Fourier series analysis and mean square sense. The
Fourier series analysis for the classical model will be applied,
and then stability conditions in the mean square sense will be
employed. The Fourier series analysis requires some
transformations when finding stability conditions of finite
difference schemes. The transformation reduces the
difference equation into trigonometric equations, and the
stability condition will be determined later. For applying a
Taylor series analysis for scheme (17) and (18), the following
transformations will be applied

�vn+1i,j � �Q
n+1

eiIψ1ejIψ2 , vni,j � QneiIψ1ejIψ2

vni ± 1,j � Qne i±1( )Iψ1ejIψ2 , vni,j ± 1 � QneiIψ1e j±1( )Iψ2

�vn+1i±1,j � �Q
n+1

e i±1( )Iψ1ejIψ2 , �vn+1i,j±1 � �Q
n+1

eiIψ1e j±1( )Iψ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)

Applying some of the transformations from Eq. 25 in the first
stage of scheme (17) yields.

�Q
n+1

eiIψ1ejIψ2 � QneiIψ1ejIψ2

+ Δt β1
e i+1( )Iψ1ejIψ2 − e i−1( )Iψ1ejIψ2

2Δx( )Qn(
+ β2

eiIψ1e j+1( )Iψ2 − eiIψ1e j−1( )Iψ2

2Δy( )Qn

+ β3
eiIψ1e j+1( )Iψ2 − 2eiIψ1ejIψ2 + eiIψ1e j−1( )Iψ2

Δy( )2( )Qn)
(26)

Upon dividing both sides of Eq. 27 by eiIψ1ejIψ2 , it yields

�Q
n+1 � Qn+Δt β1

2Δx eIψ1 − e−Iψ1( ) + β2
2Δy eIψ2 − e−Iψ2( ){

+ β3
Δy( )2 eIψ2 − 2 + e−Iψ2( )}Qn (27)

Using trigonometric identities in Eq. 27 it yields

�Q
n+1 � Qn + Δt β1

Δx Isinψ1 +
β2
Δy Isinψ2 +

2β3
Δy( )2 cosψ2 − 1( ){ }Qn

(28)
Re-write Eq. 28 as:

�Q
n+1 � Qn + c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( ){ }Qn (29)

where c1 � β1Δt
Δx , c2 � β2Δt

Δy , c3 � 2β3Δt
(Δy)2

Similarly, employing some of the transformation from Eq. 25
into the second stage of the scheme and ignoring the non-
homogeneous part in Eq. 18 gives

Qn+1 � 1
5

Qn + �Q
n+1( )

+ 3
10

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )Qn{
+1
2

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( ) �Qn+1} + σQnΔW

(30)
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Substituting Eq. 29 into Eq. 30 yields

Qn+1 � Qn + 1
2

c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )
Qn + 1

2
c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )

× c1Isinψ1 + c2Isinψ2 + c3 cosψ2 − 1( )( )Qn + σΔWQn

(31)
Re-write Eq. 31 as

Qn+1 � Qn + 1
2
ZQn + 1

2
Z 1 + Z( )Qn + σΔWQn (32)

where Z � c1Isinψ1 + c2Isinψ2 + c3(cosψ2 − 1)
Equation 32 can be re-written as

Qn+1 � �a + I�b( )Qn + σΔWQn (33)

The amplification factor is written as

Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � �a + σΔW( )2 + �b

2
(34)

where �a � ReZ + 1
2 ((ReZ)2 − (ImZ)2) and �b � ImZ + ReZ ImZ

Applying expected value on both sides of Eq. 33 yields

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � E �a2 + �b

2
∣∣∣∣∣ ∣∣∣∣∣ + 2σ�aE ΔW| | + σ2E ΔW( )2∣∣∣∣ ∣∣∣∣ (35)

Since E|ΔW| � 0, andE|(ΔW)2| � Δt
Therefore, Eq. 35 yields

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � �a2 + �b

22
∣∣∣∣∣ ∣∣∣∣∣ + σ2Δt (36)

Now if �a2 + �b
22 ≤ 1 and let λ � σ2 then Eq. 37 can be re-

written as

E
Qn+1

Qn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � 1 + λΔt (37)

Thus, the proposed stochastic numerical scheme with non-
homogenous parts is conditionally stable in the mean square sense.

Below, we present a comprehensive analysis of the advantages
and disadvantages of the proposed scheme.

3.1 Advantages

Enhanced Accuracy and Stability: The application of our
stochastic finite difference method yields improved accuracy in
solving stochastic differential equations, providing a more precise
depiction of the non-Newtonian mixed convective fluid flow. The
stability of the scheme, as measured in terms of mean square sense,
guarantees reliable numerical solutions, especially in situations with
fluctuations in thermal conductivity and mass diffusivity.

Adaptability to Stochastic Partial Differential Equations
(SPDEs): This method effectively deals with SPDEs by specifically
addressing the integral component of the Wiener process term,
demonstrating its capacity to adapt to the difficulties presented by
stochastic partial differential equations. It provides a thorough basis
for modeling complex fluid flow processes and allows for a seamless
transition from deterministic to stochastic models.

3.2 Disadvantages

Computational Strength: We recommend using a stochastic
finite-difference approach with higher computational complexity
when determining discrete models and simulating complex systems
with time-variant parameters. It is a stochastic differential equation
and has high computational costs. So, it may not be feasible to use
this scheme in multimillion grid simulations due to the huge
computational requirement.

Sensitivity to Model Parameters: One can notice the high
sensitivity to some model parameters, especially the time-variant
parameters associated with the stochastic bits. These model
parameters should be carefully tuned to obtain accurate and
reliable results. The sensitivity to parameters must be
appropriately staged at the beginning to apply the scheme across
multiple applications and fluid-flow situations.

Our novel stochastic finite difference method provides state-of-
the-art answers to stochastic fluid flow issues while considering
computing constraints and improved accuracy. Although it has
several drawbacks, engineers and researchers who want to study
non-Newtonian mixed convective fluid flow with variable mass
diffusivity and thermal conductivity will find it helpful because it
is robust to application-specific changes and can be adjusted
to SPDEs.

4 Problem formulation

Consider the non-Newtonian, unsteady, laminar, and
incompressible fluid flow over the sheet. The plate’s abrupt
motion induces fluid flow toward the positive x*-axis, where the
x*-axis represents the horizontal direction, and the y*-axis is
perpendicular to it. The stretching velocity of the plate is
represented by uw. A uniform electric field E

. � (0, 0,−E+) and
transverse magnetic field B

. � (0, B+, 0) are applied, and the fluid is
electrically conducting. The electric and magnetic fields follow
Ohm’s rule, but the electric field is stronger. For the moment,
disregard the Hall effect and the induced magnetic field.
Chemical reactions, frictional heating, and viscous dissipation are
some of the flow characteristics taken into account. Under the
assumption of boundary theory over a flat plate, the governing
equations are expressed as:

∂u*
∂x*

+ ∂v*
∂y*

� 0 (38)

∂u*
∂t*

+ u*
∂u*
∂x*

+ v*
∂u*
∂y*

� ] 1 + 1
β

( ) ∂2u*
∂y*2

+ σ

ρ
E+B+ − B2

+u*( )
+ g βT T − T∞( ) + βC C − C∞( )( ) (39)

∂T
∂t*

+ u*
∂T
∂x*

+ v*
∂T
∂y*

� 1
ρCp

∂
∂y*

k T( ) ∂T
∂y*

( )
+ ]
Cp

1 + 1
β

( ) ∂u*
∂y*

( )2

+ σ

ρCp
uB+ − E+( )2

(40)
∂C
∂t*

+ u*
∂C
∂x*

+ v*
∂C
∂y*

� ∂
∂y*

D C( ) ∂C
∂y*

( ) − kr C − C∞( ) (41)

With the following initial and boundary conditions
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u* � 0, v* � 0, T � 0, C � 0, when t* � 0
u* � uw, v* � 0, T � Tw, C � Cw, when y* � 0
u* → 0, T → T∞, C → C∞, when y* → ∞
u* � 0, v* � 0, T � 0, C � 0when x* � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (42)

where k(T) � k∞(1 + εθ) and D(C) � D∞(1 + �εϕ) and σ is
electrical conductivity, ρ is the density of the fluid, Cp is specific
heat capacity, β is the Casson parameter, g is the gravity, BT is the
coefficient of thermal expansion and βC is the coefficient of solutal
expansion and kr is reaction rate. The transformations

u � u*
uw

, v � v*
uw

, t � t*uw

L
, x � x*

L
, y � y*

L
, θ � T − T∞

Tw − T∞
,

ϕ � C − C∞
Cw − C∞

(43)

When applied to Eqs. 38–42 reduces them to following
dimensionless equations

∂u
∂x

+ ∂v
∂y

� 0 (44)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� 1
Re

1 + 1
β

( ) ∂2u
∂y2

+ H2
a

Re
E1 − u( ) + GγT

R2
e

θ + GγC

R2
e

ϕ

(45)
∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

� ε

Pr

1
Re

∂θ
∂y

( )2

+ 1
Pr

1
Re

1 + εθ( ) ∂
2u

∂y2

+ ECH2
o

Re
u − E1( )2 + EC

Re
1 + 1

β
( ) ∂u

∂y
( )2

(46)

∂ϕ
∂t

+ u
∂ϕ
∂x

+ v
∂ϕ
∂y

� �ε

ScRc

∂ϕ
∂y

( )2

+ 1
Sc

1
Re

1 + �εϕ( ) ∂2ϕ
∂y2

− γϕ (47)

Subject to the dimensionless boundary and initial conditions

u � 0, v � 0, θ � 0, ϕ � 0when t � 0
u � 1, v � 0, θ � 1, ϕ � 1when y � 0
u → 0, θ → 0, ϕ → 0when y → ∞
u � 0, v � 0, θ � 0,ϕ � 1when x � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (48)

where Ha is Hartmann’s number, E1 is used for local electric
parameters, GγT is thermal Grashof number, GγC solutal Grashof
number, EC Eckert number, Re is Reynolds number, Pr is Prandtl
number, Sc is Schmidt number and γ dimensionless reaction rate
parameter, and these are defined as

Ha �
��
σ

ρ]

√
B+L, E1 � E+

B+uw
, GγT �

L3gβT Tw − T∞( )
]2

,

GYC �
L3gβC Cw − C∞( )

]2
, EC � u2

w

Cp Tw − T∞( ), Re � Luw

]
,

Pr � ρCp

]k∞
, Sc � D∞

]
, γ � Lkγ

uw

The skin friction coefficient is defined as

Cf � τw
ρu2

w

(49)

where τw � μ ∂u*
∂y*|y*�0

The dimensionless skin friction coefficients are given as

FIGURE 1
Effect of Casson parameter on velocity profile for the
deterministic model using Re = 1, GrT = 0.4, GrC = 0.5, ε = 0.1, ε1 = 0.1,
Ha = 0.1, E1 = 0.1, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.

FIGURE 2
Effect of thermal Grashof number on velocity profile for the
deterministic model using Re = 1, β = 1,GrC = 0.5, ε = 0.1, ε1 = 0.1,Ha =
0.1, E1 = 0.1, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.

FIGURE 3
Effect of Hartmann number on velocity profile for the
deterministicmodel using Re= 3, β= 1,GrC=0.5, ε=0.1, ε1 = 0.1,GrT=
0.4, E1 = 0.01, Pr = 0.9, Ec = 0.1, Sc = 0.9, γ = 0.1.
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ReCf � ∂u
∂y

∣∣∣∣∣∣∣∣y�0. (50)

The stochastic model is given as:

∂u
∂x

+ ∂v
∂y

� 0 (51)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� 1
Re

1 + 1
β

( ) ∂2u
∂y2

+ H2
o

Re
E1 − u( ) + GγT

R2
e

θ

+ GγC

R2
e

ϕ + σ1udW

(52)

∂θ
∂t

+ u
∂θ
∂x

+ v
∂θ
∂y

� ε

Pr

1
Re

∂θ
∂y

( )2

+ 1
Pr

1
Re

1 + εθ( ) ∂
2θ

∂y2

+ EcH2
o

Re
u − E1( )2 + Ec

Re
1 + 1

β
( ) ∂u

∂y
( )2

+ σ2θdW (53)

∂ϕ
∂t

+ u
∂ϕ
∂x

+ v
∂ϕ
∂y

� �ε

ScRc

∂ϕ
∂y

( )2

+ 1
Sc

1
Re

1 + �εϕ( ) ∂2ϕ
∂y2

− γϕ + σ3ϕdW (54)

with the same initial and boundary conditions (48).

4.1 Application description and justification

Choice of the Model: The selected stochastic model accurately
represents fluid flow and heat transfer dynamics in intricate systems.
By incorporating stochastic factors (σ1, σ2, σ3), the model considers
the inherent uncertainties and fluctuations in practical scenarios.
This enables the model to apply to real-world situations where
environmental circumstances vary.

FIGURE 4
Effect of local electric parameter on velocity profile for the stochastic
model usingRe= 3, β= 1,GrC=0.5, ε=0.1, ε1 = 0.1,GrT=0.4,Ha= 1, Pr=
0.9, Ec = 0.1, Sc = 0.9, γ = 0.1, σ1 = 0.9, σ2 = 0.4, σ3 = 0.3.

FIGURE 5
Effect of Eckert number on a temperature profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, ε = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, γ = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 6
Effect of small parameter on a temperature profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, γ = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 7
Effect of reaction rate parameter on concentration profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, ε1 = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε = 0.1, σ1 = 0.5, σ2 =
0.4, σ3 = 0.3, x0 = 0.3469.
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Physical Interpretation: The system of equations includes the
processes of advection, diffusion, and stochastic effects, making it
suitable for studying phenomena that include the interaction of
these systems, such as turbulent flows and heat transfer.

Application to Real-World Phenomena: The model applies to
various physical systems, including environmental fluxes, industrial
processes, and atmospheric dynamics. By integrating stochastic
elements, one can consider the random variations and
uncertainties often encountered in real-world situations but
usually ignored in deterministic models.

4.2 Numerical scheme report

Numerical Scheme Overview: The proposed numerical
approach employs a stochastic finite difference technique for

solving the system of stochastic partial differential equations
(SPDEs). The method is designed expressly to handle the
complexities that arise from the stochastic terms, providing a
robust and accurate foundation for simulating the system’s
dynamic behavior.

Stability and Accuracy: The numerical scheme’s stability and
correctness are evaluated comprehensively. The system’s stability is
ensured through a two-step predictor-corrector technique, while the
accuracy is enhanced by discretizing stochastic terms using Taylor
series expansions. The proposed approach is additionally verified by
its ability to adjust to various time intervals and compare it to
established methodologies.

Comparison with Existing Methods: The numerical system has
been compared to existing approaches, demonstrating its advantages
in terms of stability, accuracy, and computational efficiency. The
scheme’s ability to handle random variables differentiates it from
conventional numerical methods.

5 Results and discussions

This work proposes a computational technique for solving
deterministic and stochastic partial differential equations. The
scheme is divided into two distinct stages. The scheme’s initial
stage only finds a solution for the deterministic model. On the other
hand, the second stage of the system employs the previous stage’s
solution, provides better accuracy, and handles the stochastic
element of the stochastic model. The second stage integrates the
remainder of the term(s) using the Taylor series expansion for the
coefficient of the Wiener process term. If the Wiener process term’s
coefficient is constant, it integrates it exactly. After that, the
technique is applied to a system of partial differential equations
emerging from fluid flow over the plates. Its square stability and
uniformity are also offered.

Nonetheless, the stability analysis only considered the
homogeneous component of the scheme, in which each term is
dependent on the dependent variable. One of the assumptions

FIGURE 8
Effect of small parameter on concentration profile for the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1,
GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, x0 = 0.3469.

FIGURE 9
Velocity, temperature, and concentration profiles of the
stochastic model using Re = 3, β = 1, GrC = 0.5, Ec = 0.9, γ = 0.1,
GrT=0.4,Ha=0.1, Pr=0.9, E1 = 0.01, Sc=0.9, ε1 = 0.1, ε=0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, x0 = 0.3469, tf = 1.

FIGURE 10
Mesh plot underneath contours for the horizontal component of
velocity profile on spatial and temporal coordinates of the stochastic
model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4,
Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, Lx = 27, uw = cos(t).
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considered in the stability analysis was this. The normal distribution
with mean zero and variance equalling the time step size is used to
approximate the integral of theWiener process term. This is addressed
using the Matlab command. The scheme’s non-stochastic part
provides the accuracy of the deterministic model. Therefore, the
scheme delivers accuracies in both the non-stochastic and stochastic
parts of the given stochastic partial differential equation.

The impact of the Casson parameter on the velocity profile in the
deterministic case is illustrated in Figure 1. By increasing the Casson
parameter, the velocity profile drops. The velocity profile of a fluid
declines due to the impact of the diffusion process occurring within
molecules, which is caused by an increase in the Casson parameter,
which causes the diffusion coefficient to decay. Figure 2 shows the
influence of the thermal Grashof number on the velocity profile in the
deterministic situation. The velocity profile improves with a higher

thermal Grashof number. An elevation in the thermal Grashof
number results in a corresponding increase in the temperature
gradient for mixed convective fluxes due to the disparity between
the wall and ambient temperatures. As a result of the temperature
gradient being one of the flow’s propelling forces, the velocity profile
increases. The impact of the Hartmann number on the velocity profile
in the deterministic case is illustrated in Figure 3.

As the Hartmann number rises, the quality of a velocity profile
deteriorates. Lorentz’s force increases in tandem with an increase in
Hartmann’s number, slowing the flow and causing a decrease in the
velocity profile. Figure 4 shows how the local electric parameter
affects the velocity profile in the stochastic situation. Different parts
of the domain display contrasting velocity profiles. Figure 5 depicts
the temperature distribution as a function of the Eckert number.
Stochastic analysis reveals a bimodal distribution of temperatures.

FIGURE 11
Mesh plot underneath contours for the vertical component of
velocity profile on spatial and temporal coordinates of the stochastic
model using Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4,
Ha = 0.1, Pr = 0.9, E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5,
σ2 = 0.4, σ3 = 0.3, Lx = 27, uw = cos(t).

FIGURE 12
Mesh plot underneath contours plot for temperature on spatial
and temporal coordinates of the stochastic model using Re = 3, β = 1,
GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01,
Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3, Lx = 27,
uw = cos(t).

FIGURE 13
Mesh plot underneath contours for the horizontal component of
velocity profile on spatial coordinates of the stochastic model using
Re = 3, β = 1, GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9,
E1 = 0.01, Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3,
Lx = 27, uw = cos(t).

FIGURE 14
Mesh plot underneath contours for concentration profile on
spatial coordinates of the stochastic model using Re = 3, β = 1,
GrC = 0.5, Ec = 0.1, γ = 0.1, GrT = 0.4, Ha = 0.1, Pr = 0.9, E1 = 0.01,
Sc = 0.9, ε1 = 0.1, ε = 0.1, σ1 = 0.5, σ2 = 0.4, σ3 = 0.3, Lx = 27,
uw = cos(t).
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Nonetheless, as the boundary layer flows over the plates, the
temperature profile typically increases as the Eckert number rises.
The temperature profile variation as a function of minor parameters
is illustrated in Figure 6. The temperature exhibits a dual effect by
increasing minor parameters. The temperature profile increases for
the deterministic model as small parameters increase, as the thermal
conductivity also increases with small parameter values.
Consequently, the temperature profile experiences an upward
trend. The impact of the reaction rate parameter on the
concentration profile of the stochastic model is illustrated in
Figure 7. In the context of boundary layer flow over flat plates,
the concentration profile typically decreases as the reaction rate
parameters increase, according to the deterministic model. Figure 8

demonstrates the influence of a modest parameter introduced in
variable mass diffusivity on the stochastic model’s concentration
profile. Figure 9 shows the impact of the stochastic model’s velocity,
temperature, and concentration profiles.

Figures 10, 11 show the mesh plots for the horizontal and
vertical components of velocity profiles for the oscillatory
boundary beneath contours. Because the time coordinate
determines the oscillation border, oscillatory behaviour can be
observed along the time coordinate. The stochastic effect on the
horizontal velocity component is not noticeable or minor.
Nonetheless, the variation of Wiener process term(s) is visible in
the contours for the horizontal velocity component. The mesh plot
for the temperature profile over spatial and temporal coordinates is
shown in Figure 12. Figure 12 depicts the influence of the oscillatory
boundary on the velocity profile and the effect of theWiener process
term. In Figures 13, 14, the mesh plots beneath contours for the
horizontal component of velocity and concentration profiles are
displayed over the spatial coordinates. Figure 15 compares the
proposed stochastic and existing Euler Maruyama schemes for
the problem considered in this contribution. Figure 16 shows the
norm of difference between numerical and exact solutions for the
first example studies in [48]. Different mesh sizes are considered for
the study. The mesh sizes are 25 × 25, 35 × 35, 45 × 45, 55 × 55
along x and y directions. This Figure 16 also shows that error
decreases by increasing mesh size. The error is calculated by finding
the L2 norm for the difference between numerical and exact
solutions at the final time.

6 Conclusion

The precise representation and simulation of unsteady non-
Newtonian mixed convective flows incorporating varying thermal
conductivity and mass diffusivity provide a noteworthy obstacle

FIGURE 15
Comparison of (A) proposed scheme and stochastic scheme (B) Euler Maruyama method using Re = 3, β = 1, GrT = 0.4, GrC = 0.5, ε = 0.1, ε1 = 0.1,
H0 = 0.1, E1 = 0.01, Pr = 0.9, Ec = 0.9, Sc = 0.9, γ = 0.1, σ1 = 0.9, σ2 = 0.7, σ3 = 1.3.

FIGURE 16
Error over mesh size using. tf (final time) = 0.07,
Nt (No. of time levels) = 1000.
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within fluid dynamics. The present study has introduced an innovative
strategy to tackle this obstacle by devising and executing a novel
stochastic finite difference scheme. The main objective of this study
was to develop a robust computational tool that can effectively model
the stochastic characteristics of intricate fluid flow phenomena. This
tool aims to improve our comprehension, prediction, and optimization
of systems in which these phenomena are present. By investigating the
mathematical underpinnings and computational execution of our
innovative approach alongside a sequence of numerical trials, we
have acquired significant knowledge regarding the possibilities and
constraints of the scheme. Including stochastic aspects in themodelling
process significantly enhances the precision and dependability of
simulations, particularly in scenarios involving systems inherently
characterized by unpredictability and uncertainties. A stochastic
numerical approach has been created to solve stochastic time-
dependent partial differential equations. Stages of prediction and
correction form the basis of the plan.

In contrast, the corrector stage approximates the integral of the
Wiener process term and gives second-order precision for the non-
stochastic portion. The paper also discussed the issue of non-
Newtonian fluid flow over flat and oscillatory plates subject to
the influence of temperature and mass diffusivity variations. In
summary, the arguments might be stated as.

1. The velocity profile declined as the values of the Casson
parameter and Hartmann number increased.

2. The velocity has dual behaviour by rising local electric
parameters.

3. The temperature and concentration profiles have dual
behaviours by rising small parameters that appeared in
variable thermal conductivity and mass diffusivity.

The results of our study have indicated that the newly developed
stochastic finite difference scheme holds significant value as a
supplementary tool for academics and engineers engaged in fluid
dynamics. The proposed methodology demonstrates a high level of
efficacy in managing the challenges posed by unsteady non-
Newtonian mixed convective flows with varying thermal
conductivity and mass diffusivity but also contributes to a more
comprehensive comprehension of the influence of stochastic
elements within these intricate systems. Consequently, this
scheme can enhance decision-making processes in designing and
optimizing numerous processes across several disciplines, such as
chemical engineering, environmental science, and fluid mechanics.
We expect this unique technique to be widely adopted as we develop
and expand. We believe it can advance our understanding and
application of complex, stochastic fluid flow processes.
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