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Introduction: Hair loss has always bothered many people, with numerous
individuals potentially facing the issue of sparse hair.

Methods: Due to a scarcity of accurate research on detecting sparse hair, this
paper proposes a sparse hair cluster detection model based on improved object
detection neural network andmedical images of sparse hair under dermatoscope
to optimize the evaluation of treatment outcomes for hair loss patients. A new
Multi-Level Feature Fusion Module is designed to extract and fuse features at
different levels. Additionally, a new Channel-Space Dual Attention Module is
proposed to consider both channel and spatial dimensions simultaneously,
thereby further enhancing the model’s representational capacity and the
precision of sparse hair cluster detection.

Results: After testing on self-annotated data, the proposed method is proven
capable of accurately identifying and counting sparse hair clusters, surpassing
existing methods in terms of accuracy and efficiency.

Discussion: Therefore, it can work as an effective tool for early detection and
treatment of sparse hair, and offer greater convenience for medical professionals
in diagnosis and treatment.
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1 Introduction

As a common issue, sparse hair [1] brothers many people, affecting both males and
females alike [2], [3]. Hair loss or thinning primarily attributed to genetic factors, hormonal
changes, environmental conditions, or medical conditions is a prevalent problem affecting
millions worldwide [4]. Regardless of gender or age, it impacts an individual’s self-esteem,
personal aesthetics, and overall mental health. Traditional solutions such as drug
treatments, hair transplants, or wearing wigs have achieved varying degrees of success
and affordability, but they do not fundamentally resolve the problem or prevent its
recurrence. Therefore, early detection and predictive analysis of sparse hair conditions
are vital for implementing preventative measures and more effective treatments [5].

Over the past few decades, both domestic and international researchers have been
exploring how to accurately detect sparse hair. The earliest research primarily relies on
manual feature extraction and traditional image processing techniques [6]. However, due to
the limitations on the selection and representational power of features, these methods are
difficult to adapt to the complex and diverse forms of hair clusters. Therefore, with the rapid
development of computer vision and deep learning [7], researchers introduce neural
network into the field of sparse hair target detection. In recent years, with the advent of
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artificial intelligence (AI) and deep learning technologies, their
application in the healthcare sector grows exponentially,
providing promising results in different fields like diagnosis,
prognosis, treatment planning, and public health [8]. In light of
this, the development of AI-driven sparse hair detection models [9],
especially those based on neural network, offers a promising
research pathway.

Based on the strong learning capability and adaptability, neural
network is able to learn effective feature representations from a large
amount of data and train and optimize through the backpropagation
algorithm. This provides new opportunities and challenges for the
target detection of sparse hair [10]. Researchers design and improve
hair cluster target detection models based on neural network to
enhance detection accuracy and robustness.

At present, domestic and international research in the field of
sparse hair detection is still in the exploratory stage [11]. Some
studies have utilized traditional Convolutional Neural Network
(CNN) to detect hair clusters, improving detection performance
by constructing deep-level feature representations and using
effective loss functions. Other studies have explored more
advanced network structures, such as Recurrent Neural Network
(RNN) and Attention Mechanisms, to capture the temporal
information and local details of hair clusters. In summary, using
neural network in hair cluster target detection models for sparse hair
detection has enormous potential to thoroughly transform hair care
and treatment [12].

However, the target detection of sparse hair still faces some
challenges. Hair clusters exhibit diverse morphologies with
differences in color, texture, and shape [13], posing difficulties
for detection algorithms. Additionally, due to the sparse
distribution of hair, hair cluster targets unevenly occupy
proportions in images, making target detection more challenging.
Currently, dermatoscopy is a non-invasive diagnostic technique that
allows the observation of hair shafts, follicles, and capillaries,
providing a visual representation of inflammation around the
scalp and changes in hair shaft diameter and shape [14]. It is
widely used in the diagnosis and treatment of hair diseases, as
well as in the assessment and follow-up of prognosis [15], [16], [17],
[18]. Digital intelligent analysis of dermatoscopy is still in the
developmental stage, and research on dermoscopy for
androgenetic alopecia is limited. For the daily management and
assessment of treatment outcomes for patients with hair loss, hair
counting plays a crucial role. However, there are currently no clear
standards for a comprehensive evaluation of hair loss across the
entire scalp.

In response to these challenges, this study utilizes hair images
obtained by dermoscopy, combined with existing advanced target
detection techniques, to propose an efficient and accurate sparse hair
cluster target detection model. This model sets the hair cluster as the
detection target (in this paper, the sparse hair or hair loss area) and
predicts the number of hair clusters. This paper has three main
contributions as follows.

1. Based on the advanced existing object detection networks, a
dermoscopy image hair detection network structure based on
an improved object detection neural network is proposed to
better adapt to sparse hair detection. Through experiments, it
proves that the proposed method surpasses the existing

methods in terms of accuracy and efficiency, providing an
effective tool for early detection and treatment of sparse hair.

2. Multi-Level Feature Fusion Module: A new multi-level feature
fusion Module (MLFF) is designed to extract and fuse features
at different levels. The MLFF structure can obtain features
from different convolutional layers, then integrate these
features through a specific fusion strategy to produce a
richer, more representative feature expression.

3. Channel-Space Dual Attention Module: A new attention
mechanism, the Channel-Space Dual Attention Module, is
proposed to consider both channel and spatial dimensions’
information simultaneously. The CSDA module can handle
channel and spatial correlation in a unified framework, thereby
further enhancing the model’s expressive capacity and
accuracy of sparse hair detection.

2 Related work

With the rapid development of computer technology and
computer-assisted medical diagnostic systems, the continuous
growth of computational power and data, deep learning has
experienced tremendous development, becoming one of the
powerful tools in the medical field. The technology of feature
extraction and classification from medical images [19], [20] using
maturing deep learning models is increasingly mature.

The field of object detection has always been a research hotspot.
For instance, one study proposed a safety helmet detection method
based on the YOLOv5 algorithm [21]. This research involved
annotating a collected dataset of 6,045, training, and testing the
YOLOv5 model with different parameters. In another study,
YOLOv4 was employed for small object detection and anti-
complex background interference in remote sensing images [22].
With the use of deep learning-based algorithms, ship detection
technology has greatly enriched, allowing monitoring of large,
distant seas. Through the use of a custom dataset with four types
of ship targets, Kmeans++ clustering algorithm for prior box
framework selection, and transfer learning method, the study
enhanced YOLOv4’s detection ability. Further improvements
were introduced by replacing Spatial Pyramid Pooling (SPP) with
a Receptive Field Block with dilated convolution and adding a
Convolutional Block Attention Module (CBAM). These
modifications have improved the detection performance of small
vessels and enhanced the model’s resistance to complex
backgrounds. Due to the relatively large size and distinct features
of vessels, the detection results are satisfactory. However, it remains
a challenge for densely packed, small targets.

In recent years, there has been an emergence of research utilizing
deep learning methods in skin imaging analysis, particularly in
studies related to hair. Researchers have explored the application
of deep learning-based object detection [23], [24], segmentation
[25], and other algorithms in hair detection and segmentation.
These studies primarily focus on aspects such as hair detection,
removal, segmentation, and even reconstruction, but there is room
for improvement in terms of accuracy.

Various deep learning structures and techniques are
introduced in multiple studies to address the challenges related
to hair recognition and removal in dermoscopic images. One such
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study proposed a novel deep learning technique, Chimera Net [26],
an encoder-decoder architecture that uses a pretrained
EfficientNet and squeeze-and-excitation residual (SERes)
structure. This method exhibited superior performance over
well-known deep learning methods like U-Net and ResUNet-a.
Additionally, other research explored difficulties and solutions
related to hair reconstruction. A novel method was proposed to
capture high-fidelity hair geometry with strand-level accuracy
[13]. The multi-stage approach includes a new multiview stereo
method and a novel cost function for reconstructing each hair pixel
into a 3D line. The task of Digital Hair Removal (DHR) also
received ample research. One study proposed a DHR deep learning
method using U-Net and free-form image restoration architecture
[9]. It outperforms other state-of-the-art methods on the
ISIC2018 dataset. Another study explored a similar theme Attia
et al. [10], highlighting the challenges associated with hair
segmentation and its impact on subsequent skin lesion diagnosis.
Moreover, one paper delved into an important metric for
determining the number of hairs on the scalp [27]. It stressed the
need for an automated method to increase speed and throughput while
lowering the cost of counting andmeasuring hair in trichogram images.
The proposed deep learning-based, enables rapid, fully automatic hair
counting and lengthmeasurement. Another study described a real-time
hair segmentation method based on a fully convolutional network, the
basic structure of which is an encoder-decoder [28]. This method uses
Mobile-Unet, a variant of the U-Net segmentation model, which
combines the optimization techniques of MobileNetV2.

In summary, the above studies emphasize the enormous
potential of deep learning techniques in advancing hair-related
dermoscopy research. However, deep learning-based sparse hair
detection is still in the exploratory stage. To address these challenges,
this paper, based on sparse hair dermoscopic medical images,
proposes a dermoscopic image hair detection network structure
based on an improved object detection neural network to achieve the

detection of sparse hair clusters (sparse hair or hair loss areas in this
paper) and predict the number of hair clusters.

3 Materials and methods

In this section, we will provide a detailed introduction to the
proposed sparse hair detection network structure, which is based on
the object detection network [29]. Firstly, we will describe the overall
structure of the network in Section 3.1. Subsequently, we will
highlight the novel contributions of this paper in Sections 3.2,
3.3, namely, the MLFF Module and the CSDA Module, respectively.

3.1 Overall structure

The overall framework proposed for sparse hair detection in this
article is illustrated in Figure 1, primarily based on enhancements to
classical object detection network architectures. Given the crucial
significance of the accuracy of the sparse hair detection model for
hair target recognition and assisting doctors in obtaining diagnostic
results, the model proposed in this article is intended for application
in sparse hair target detection models.

It can be divided into three parts: the feature extraction
backbone network, the feature enhancement and processing
network, and the detection network. Specifically, the feature
extraction backbone network is a convolutional neural network
that incorporates the concept of a feature pyramid architecture,
capable of extracting image features at different levels and reducing
model computation while speeding up training. As shallow features
contain more semantic information, a MLFF Module is proposed to
handle them, preventing the loss of semantic information. At the
end of the feature extraction backbone network, there is a Spatial
Pyramid Pooling (SPP) module aimed at improving the network’s

FIGURE 1
The method proposed in this paper.
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receptive field by transforming feature maps of arbitrary sizes into
fixed-size feature vectors. Three main backbone features can be
obtained through the feature extraction backbone network.

In the feature enhancement and processing network, the Channel-
Spatial Dual Attentionmodule (CSDA) is introduced. The three feature
layers obtained from the backbone network undergo processing
through this module to generate enhanced features. Subsequently,
processing is carried out based on the YOLOv5 network model.
This network segment primarily consists of a series of feature
aggregation layers that mix and combine image features to generate
a Feature Pyramid Network (FPN). The output feature maps are then
transferred to the detection network. With the adoption of a novel FPN
structure, this design strengthens the bottom-up pathway, improving
the transfer of low-level features and enhancing the detection of objects
at different scales. Consequently, it enables the accurate identification of
the same target object with varying sizes and proportions.

The detection network is primarily employed for the final
detection phase of the model. It applies anchor boxes to the
feature maps output from the preceding layer and outputs a
vector containing the class probability, object score, and position
of the bounding box around the object. The detection network of the
proposed architecture consists of three detection layers, with inputs
being feature maps of sizes 80 × 80, 40 × 40, and 20 × 20,
respectively, used for detecting objects of different sizes in the
image. Each detection layer ultimately outputs an 18-dimensional
vector ((4 + 1+1)×3 anchor boxes). The first four parameters are
used for determining the regression parameters for each feature
point, and adjusting these regression parameters yields the predicted
box. The fifth parameter is utilized to determine whether each
feature point contains an object, and the last parameter is
employed to identify the category of the object contained in each
feature point. Subsequently, the predicted bounding boxes and
categories of the targets in the original image are generated and
labeled, enabling the detection of clusters of hair targets in the image.

Algorithm 1 describes the training process of the hair detection
model in dermoscopic images. The computation time increases
linearly with the increase of training sample, batch size, and
training epochs. The time complexity of the training algorithm is
O [E × (n/B) × 2 × (M − 1)].

Input: Training dataset D, segmentation model M, number

of epochs E, learning rate η, n training samples, loss

function L, batch size B

Output: Trained segmentation model M̂.

1: Initialize segmentation model M

2: for e ∈ [1, E] do

3: for b ∈ [1, n/B](mini-batch b in D with size B) do

4: Perform forward pass on M with mini-batch b

5: Calculate detection loss according to the

loss function L

6: Perform backward pass and update model

weights and model according to the gradient

7: end for

8: Save the trained model M̂

9: end for

Algorithm 1. A dermoscopy-image hair detectionmodel based on improved

object detection neural network.

3.2 Multi-level feature fusion structure

The main task of the MLFF (Multi-Level Feature Fusion)
structure is to process a large amount of semantic information
contained in shallow layers. Its structure is shown in Figure 2. The
purpose of this module is to extract and fuse semantic information
from shallow features, so that the resulting feature information is
more detailed and more suitable for subsequent object detection
tasks. Semantic feature information reflects a global feature of
homogeneous phenomena in the image, depicting the surface
organization and arrangement rules of slow-changing or
cyclically-changing structures in the image. However, the low-
level information extracted by the original backbone network
(such as pixel values or local region attributes) is often of low
quality and contrast, making it difficult to obtain and utilize this low-
level information effectively. This paper proposes the MLFF module
to address this problem.

As shown in Figure 2, in this module, a feature X1 Eq. 1 before
the output of this module serves as the input. It undergoes two
consecutive CBS modules, resulting in two feature layers X2 and X3

Eq. 1, represented as follows:

X1 ∈ RH×W×C

X2 ∈ RH×W×C

X3 ∈ RH×W×C
(1)

The CBS module represents a sequence of convolution
operation, batch normalization operation, and activation function
operation. This sequence is designed to capture local relationships
within the input data, facilitating effective feature learning in images.
Simultaneously, it helps mitigate the vanishing gradient problem
and enhances the model’s adaptability to changes in the distribution
of input data. The CBS module can be expressed as follows:

Xout � SiLU BN Conv Xin, cin, cout( )[ ]{ } (2)

Where Conv represents the convolution operation, BN
represents batch normalization operation, and SiLU represents
the activation function operation. Xout represents the output
feature of the CBS module, Xin represents the input feature of
the CBS module, cin represents the number of channels in the
input feature, and coutrepresents the number of channels in the
output feature.

After the three features obtained through stacking and fusion,
two feature layers are obtained. They will undergo another CBS
module (where cin = cout) for feature processing. Finally, these
features will be stacked together, achieving feature integration.
With the depth of feature processing and fusion, the dimension
of the image feature vector continuously increases, and the size of
each slice changes accordingly. Finally, after passing through a CBS
module (where cin = cout), as in Eq. 2, the output feature Eq. 3 is:

XMLFF ∈ R
H
4×

W
4 ×4C (3)

The obtained features will be inputted into the feature
enhancement and processing network for further processing,
where the abundant semantic information contained in the
shallow layers will be fully utilized to achieve better detection
performance. The first three branches actually correspond to
dense residual structures, which take into account the easy-to-
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optimize characteristics of residual networks, and the ability of
residual networks to improve the overall accuracy of the network
by adding a considerable depth. In addition, skip connections are
used to alleviate the problem of gradient disappearance caused by
the depth of the neural network.

For the CBS module, the SiLU activation function is used, which
is an improved version based on the Sigmoid activation function and
ReLU activation function. SiLU has the characteristics of no upper
bound and a lower bound, smoothness, and non-monotonicity.
SiLU performs better than ReLU in deep models and can be
considered as a smoothed ReLU activation function. Its specific
implementation is shown in the equation below Eq. 4:

f x( ) � x · sigmoid x( ) (4)

3.3 Channel-space dual attention module

After obtaining feature information at different depths, it is
necessary to further process these features to capture the target
information in them. Therefore, this paper proposes a Channel-
Space Dual Attention Module (CSDA) for feature inference, as
shown in Figure 3. Finally, the inferred information is passed

through the second part of the object detection model
architecture to obtain three types of feature maps.

The module proposed in this article takes the feature layers
obtained from the feature extraction backbone network, namely,
F1 ∈ R80×80×256, F2 ∈ R40×40×512 and F3 ∈ R20×20×1024, and infers
attention maps along two different dimensions. One dimension is
the channel attention mechanism, which is based on the SE module
[30] and uses global average pooling to calculate channel attention.
The other dimension is the spatial attention mechanism, which
focuses on which pixels in different feature maps are important and
require significant attention. Then, the channel attention map and
the spatial attention map are multiplied successively with the feature
maps on the backbone to perform adaptive feature focusing,
resulting in corresponding feature maps F′1, F′2 and F′3.

For the Squeeze-and-Excitation module, it can be viewed as a
computational unit that mainly embeds the dependency factors of
feature map channels into variable υ. This is to ensure that the
network can enhance its sensitivity to information features and
suppress less useful features. In the channel-wise optimization
process, squeezing and excitation steps are applied to optimize
the response of the convolutional kernel, in order to capture the
correlation of channel information. The specific implementation is
shown in the following equation:

FIGURE 2
Multi-level feature fusion structure.

FIGURE 3
Channel spatial dual attention module.
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Ctran: x → y; x, y ∈ RH×W×C (5)

In the equation, Ctran is the convolutional operator, υ = [v1, v2,
. . . , vn] represents the learned weights in the network, and n denotes
the parameters of the n − th convolutional kernel. Therefore, the
output of the convolutional operator is Y = [y1, y2, . . . , yn], which is
implemented as shown in Eq. 5 and Eq. 6. In the proposed attention
module, after the channel attention, we can obtain the
feature Fchannel.

Y � υpX � ∑
n

n�1
vnpxn (6)

Regarding the spatial attention module, as shown in the right
half of Figure 3, the feature map obtained by the feature extraction
network is understood as a three-dimensional space, where each
slice corresponds to a channel. Firstly, the values at the same
position on different channels are subjected to average pooling
and max pooling operations to obtain the features Fmax, Faverage
Eq. 7.

Fmax � MaxPool F( )
Faverage � AvgPool F( ) (7)

Finally, convolution and normalization operations are applied to
generate a 2D spatial attention map Fspatial, which is computed as
follows Eq. 8:

Fspatial � sigmoid f7×7 Fmax, Faverage( )( ) (8)

The symbol f7 × 7 represents a convolution operation with a
kernel size of 7 × 7. After obtaining the channel attention map, it is
multiplied with the input feature map F to obtain a new feature map
F′. This new feature map F′ is then multiplied with the spatial
attention map to obtain the final feature map F″. The overall process
can be described as follows Eq. 9:

F′ � Fchannel ⊗ F
F″ � F′ ⊗ Fsaptial

(9)

Finally, three feature maps, denoted as F′1, F′2 and F′3, can be
obtained. The obtained new features are then processed and
enhanced using feature processing networks and detection
networks to obtain the final object detection results. The
experimental results of the proposed network will be discussed in
Section 3 of this paper.

3.4 Attention dynamic head

Introducing dynamic heads [31], based on three feature maps
F′1, F′2 and F′3, the general formula for applying self-attention is as
follows Eq. 10:

W F( ) � π F( ) · F (10)

Where π(·) is an attention function. A simple solution to this
attention function is achieved through fully connected layers.
However, due to the high dimensionality of tensors, directly
learning attention functions across all dimensions is
computationally expensive and practically unaffordable.

Therefore, transforming the attention function into attention
along three directions, with each attention focusing on a single
direction, is proposed Eq. 11.

W′ F( ) � πC πS πL F( ) · F( ) · F( ) · F (11)

Where πL (·), πS (·), πC (·) are three different attention functions
applied respectively to dimensions L, S, and C.

4 Experimental results and analysis

4.1 Datasets

In the experiment described in this paper, both the training
and testing datasets are sourced entirely from hospitals and
collected based on different patients, each with varying
degrees of hair sparsity. The original dataset is devoid of any
annotations, and labeling is used to annotate it, generating XML-
format files to store the labeled tags. Each image corresponds to
one XML file, containing multiple hair cluster labels, primarily
annotating each hair cluster. In the experiment, each hair cluster
does not exceed three strands. A total of 200 images were
annotated for the dataset. As neural network-based object
detection models are developed on the basis of extensive
image data, the dataset is expanded and divided through data
augmentation, resulting in 500 images. From these, 50 images are
randomly selected as the validation set, and another 50 images
are chosen as the test set. This is done to enrich the dataset size,
better extract features of hair belonging to different labeled
categories, and prevent the trained model from overfitting.
The objective of this dataset is to achieve hair detection in
populations with sparse hair, identifying the number of
hair clusters.

4.2 Experimental details

During the preprocessing stage, the source dataset had a size of
1,920 × 1,080. In this study, all hair datasets underwent image
enhancement and partitioning, resulting in a final size of 640 × 640
for each slice.

In the experiment, all programs were implemented in the
PyTorch framework under the Windows 10 operating system.
The training process used one GeForce RTX 3090 GPU and was
written in Python language, calling CUDA, CuDNN, OpenCV, and
other required libraries. The optimizer used in the experiment was
SGD, with a momentum of 0.937 and default parameters for other
settings. The initial learning rate, weight decay, and batch size were
set to 0.01, 5e-4, and 8, respectively, and the epoch was set to 500.
The trained model’s weight file was saved, and the model’s
performance was evaluated using the test set.

The model evaluation metrics adopted include commonly
used object detection metrics such as Precision, Recall, mAP
(mean average precision), and F1 score, which are used to assess
the performance of the trained model. Visual comparison was
also conducted. The implementation of these metrics is as follows
Eq. 12:
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FIGURE 4
Network training situation.

FIGURE 5
Correlation between predicted labels during network training.
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Precision � TP

TP + FP

Recall � TP

TP + FN

mAP � 1
C
∑
C

k�0
APk

F1 � 2
1

Precision
+ 1
Recall

(12)

Among them, TP represents the number of correctly identified
clusters of hair; FP represents the number of clusters mistakenly
identified as hair; FN represents the number of hair cluster targets
that were not successfully identified; C represents the number of
categories of hair cluster targets; AP represents the area enclosed by
the precision-recall curve and the coordinate axis.

Figure 4 displays the training and validation loss curves, as well
as precision, recall, and mAP curves for the entire training process.
The model is trained from scratch, and from the curves in the
figure, it is evident that the network model descends rapidly in the
first 50 epochs and gradually stabilizes thereafter. In the figure, a
smaller box_loss indicates more accurate bounding boxes, and a
smaller obj_loss indicates more accurate predictions of targets.
Precision, recall, and mAP curves stabilize later, indicating a good
training outcome. In summary, the figure demonstrates that the
model for hair cluster detection is well-trained and does not exhibit
overfitting. Figure 5 shows the correlation between predicted labels
during the training process of the hair cluster object detection
model. Figure 5 is a set of 2D histograms, illustrating the contrast
between each axis of the data. Labels in the image are located in the

xywh space, where x and y represent the center values of the label
box, and w and h represent the length and width of the label box.
The histograms of x and y in Figure 5 indicate that the size
variation of detected targets is small. Additionally, the
distribution plots of x and width, as well as y and height, show
that their relationships have a linear correlation. Combined with
Figure 4, this suggests that the proposed model for the hair cluster
object detection task is trainable.

4.3 Comparative experiments

In the comparative experiments, to validate the performance of
the proposed hair cluster detection model based on sparse hair,
experiments and analyses were conducted on test set images using
publicly available source code of classical object detection models.
The object detection network developed in this study was compared
with YOLOv3 [32], YOLOv4 [33], MobileNet YOLOv4, YOLOv5,
Detr, FastestV2, YOLOv7, FastestDet, and YOLOv8 on test set
images. Table 1 presents the performance of the proposed
method and other methods on the test set.

The comparative experimental results in Table 1 indicate that
the hair cluster detection model proposed in this study achieves the
highest mAP value, surpassing the classical YOLOv5 network model
by 2.8%. Additionally, it outperforms the latest YOLOv8 by 7.6%.
This suggests that the proposed algorithm has advantages in the task
of hair cluster target recognition. Moreover, the proposed model
achieves the highest Precision, F1, and Recall scores, demonstrating
the superior performance of the sparse hair cluster model proposed
in this study. Therefore, the results indicate that the proposed model
can ensure accurate identification of sparse hair clusters, comparable
to the best methods in terms of metrics, and surpassing most
other methods.

To more clearly illustrate the performance of the proposed
method, visual experiments were conducted on six images selected
from the test set, as shown in Figure 6. Figure 6 displays the visual
comparison of hair cluster detection results obtained by the
proposed method and five other methods (YOLOv8, YOLOv7,
Detr, FastestDet, FastestV2) under the same experimental
conditions. It is evident that the proposed method achieves
more accurate hair cluster detection results compared to
other methods.

As evident from the obtained detection results above, the proposed
hair cluster detection model for sparse hair in this study has achieved
significant results. Simultaneously, the algorithm accomplishes
counting and visualizing the detected clusters. A comparison reveals
that themethod developed in this study exhibits the best performance in
hair cluster detection. In Figure 6, it can be observed that othermethods
show instances of hair cluster omission. In summary, the method
investigated in this study demonstrates commendable hair cluster
detection performance. Finally, for a more comprehensive
comparison of the advantages of the proposed method against
different approaches, Figure 7 depicts bar charts representing the
hair cluster detection performance of various methods across
different metrics. The performance on four metrics is illustrated
separately. It is evident that the proposed method holds a significant
advantage in hair cluster detection tasks.

TABLE 1 Comparison with different detection networks (Bold numbers
represent best results).

Networks year Precision mAP F1 score Recall

YOLOv3 2018 0.733 0.500 0.35 0.471

YOLOv4 2020 0.768 0.561 0.58 0.434

Mobilenet
YOLOv4

2020 0.792 0.406 0.21 0.245

YOLOv5 2020 0.865 0.706 0.63 0.677

Detr 2020 0.822 0.717 0.65 0.854

FastestV2 2021 0.479 0.458 0.52 0.564

YOLOv7 2022 0.816 0.697 0.66 0.691

FastestDet 2022 0.609 0.524 0.47 0.593

YOLOv8 2023 0.820 0.658 0.63 0.712

Our network - 0.898 0.734 0.72 0.873

TABLE 2 Comparison of ablation experiments of target detection indicators
on data sets (Bold numbers represent best results).

Networks Precision mAP F1 score Recall

Without MLFF 0.817 0.680 0.57 0.712

Without CSDA 0.762 0.599 0.33 0.588

Our network 0.898 0.734 0.72 0.873
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FIGURE 6
Visual comparison of hair cluster detection results.

FIGURE 7
Performance comparison of different detection methods on the four indicators of Precision, Recall, mAP (mean average precision), and F1 score.
The method that performs best in each case is marked with an asterisk.
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4.4 Ablation experiment

This study utilizes the developed model as the network for sparse
hair target detection (Ours) in hair cluster detection. Experiments were
conducted by removing the designed modules from this model.
Specifically, the MLFF module was removed from the feature
extraction network to assess the extraction of image features, and
the CSDA module was removed from the feature enhancement and
processing network to examine feature inference and fusion. As shown
in the performance metrics results in Table 2, removing the
corresponding modules leads to a decrease in the model’s detection
performance. Additionally, as depicted in Figure 8A, it is apparent that
some smaller and overlapping hair clusters are missed when certain
modules are removed, while the detection results proposed in this study
remain superior.

To further explore the differences between different modules and
their reasons, a heatmap analysis was conducted. Figure 8B visualizes
the objective performance of different modules. It can be observed that
removing the CSDA module generates regions of interest extending
beyond the actual target area, focusing on some irrelevant background
information. While focusing on certain background regions might not
significantly impact normal target detection, it proves detrimental for
densely distributed small targets, exacerbating background interference
and the difficulty of instance recognition. Without the MLFF module,
the situation of missed detections is more severe, indicating that the

inclusion of the MLFFmodule in the network brings more information
about the target. In conclusion, the proposed modules in this study
contribute to improving the model’s detection performance to a certain
extent, significantly enhancing the overall performance of the target
detection network.

5 Conclusion

In this study, we have proposed and implemented an efficient
and accurate detection model specifically designed for sparse hair
clusters. This model is based on an improved neural network for
object detection. The construction of this model introduces three
innovative aspects: firstly, we designed a new neural network
structure based on existing advanced object detection networks to
optimize the detection of sparse hair. Secondly, a novel multi-level
feature fusion structure was devised to better extract and fuse
features at different levels. Lastly, a new attention mechanism,
the Channel-Spatial Bi-Attention Module, was introduced to
simultaneously consider information in both channel and spatial
dimensions, further enhancing themodel’s expressive power and the
accuracy of sparse hair detection.

The model primarily consists of three parts: a feature extraction
backbone network, a feature enhancement and processing network,
and a detection network. It effectively achieves the detection of hair

FIGURE 8
Visual comparison of ablation experiment results. (A): Comparison of detection results; (B): Comparison of detection heatmaps.
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clusters, predicting the number of hair clusters with promising
results in experiments. Despite the application of dermoscopy in
hair detection being in an exploratory and developing stage, and
related research being incomplete, our study provides a new and
effective tool for the precise detection of sparse hair clusters. It opens
up new avenues for research and applications in hair detection,
contributing to the advancement of dermoscopy in hair detection.
This, in turn, assists healthcare professionals in diagnosing
conditions and selecting treatment plans, while also providing
convenience for daily management and condition monitoring for
individuals with hair loss.

If the decisions made by the model are not interpretable, they
may not be accepted by individuals. In future research, our project
team will explore the interpretability of the hair cluster object
detection network, applying these advancements to help
healthcare professionals understand the processes in image
analysis. Additionally, in order to bring the detection model to
edge devices for user convenience, we will explore the development
of lightweight hair cluster object detection models in the future.
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