
Deep learning-powered malware
detection in cyberspace: a
contemporary review

Ananya Redhu1, Prince Choudhary1, Kathiravan Srinivasan1 and
Tapan Kumar Das2*
1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India, 2School of
Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India

This article explores deep learning models in the field of malware detection in
cyberspace, aiming to provide insights into their relevance and contributions. The
primary objective of the study is to investigate the practical applications and
effectiveness of deep learning models in detecting malware. By carefully
analyzing the characteristics of malware samples, these models gain the ability
to accurately categorize them into distinct families or types, enabling security
researchers to swiftly identify and counter emerging threats. The PRISMA
2020 guidelines were used for paper selection and the time range of review
study is January 2015 to Dec 2023. In the review, various deep learning models
such as Recurrent Neural Networks, Deep Autoencoders, LSTM, Deep Neural
Networks, Deep Belief Networks, Deep Convolutional Neural Networks, Deep
Generative Models, Deep Boltzmann Machines, Deep Reinforcement Learning,
Extreme Learning Machine, and others are thoroughly evaluated. It highlights
their individual strengths and real-world applications in the domain of malware
detection in cyberspace. The review also emphasizes that deep learning
algorithms consistently demonstrate exceptional performance, exhibiting high
accuracy and low false positive rates in real-world scenarios. Thus, this article
aims to contribute to a better understanding of the capabilities and potential of
deep learning models in enhancing cybersecurity efforts.

KEYWORDS

artificial intelligence, cyberspace data security, deep learning, malware detection,
network security

1 Introduction

This comprehensive review delves into the burgeoning role of deep learning (DL)
models in the face of the ever-evolving menace of malware in cyberspace. Malware
represents a continuously evolving cybersecurity threat, and traditional detection
technologies often struggle to keep up with the rapid creation of new malware types
[1]. However, deep learning models have gained significance in this field due to their ability
to automatically learn features from large datasets [2]. Deep learning models also possess
the remarkable capability to adapt to emerging threats by learning from extensive and
diverse datasets [3]. They excel in extracting intricate and subtle features within malware
samples, a task that may be challenging for rule-based or signature-based systems. This
feature extraction prowess contributes to heightened accuracy in distinguishing between
benign and malicious files, thereby reducing false positives that can disrupt legitimate
operations. Moreover, deep learning models offer speed, efficiency, scalability, and

OPEN ACCESS

EDITED BY

Amin Ul Haq,
University of Electronic Science and
Technology of China, China

REVIEWED BY

Rajesh Kumar,
University of Electronic Science and
Technology of China, China
Ikram Ud Din,
The University of Haripur, Pakistan
Nuzhat Naqvi,
Mohi-ud-Din Islamic University, Pakistan

*CORRESPONDENCE

Tapan Kumar Das,
tapan.das@vit.ac.in

RECEIVED 04 December 2023
ACCEPTED 15 March 2024
PUBLISHED 28 March 2024

CITATION

Redhu A, Choudhary P, Srinivasan K and Das TK
(2024), Deep learning-powered malware
detection in cyberspace: a
contemporary review.
Front. Phys. 12:1349463.
doi: 10.3389/fphy.2024.1349463

COPYRIGHT

© 2024 Redhu, Choudhary, Srinivasan and Das.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Review
PUBLISHED 28 March 2024
DOI 10.3389/fphy.2024.1349463

https://www.frontiersin.org/articles/10.3389/fphy.2024.1349463/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1349463/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1349463/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1349463&domain=pdf&date_stamp=2024-03-28
mailto:tapan.das@vit.ac.in
mailto:tapan.das@vit.ac.in
https://doi.org/10.3389/fphy.2024.1349463
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1349463


continuous improvement, making them invaluable tools for real-
time or near-real-time detection and response in the dynamic
landscape of cybersecurity [4]. Figure 1 illustrates different
categories in malware analysis.

DL models can reliably categorize malware samples into
numerous families or types by analyzing their individual
properties, assisting security researchers and practitioners in
recognizing and responding to emerging threats more
efficiently [5]. This review aims to provide an in-depth
understanding of various DL architectures utilized in this field,
including Recurrent Neural Networks (RNNs), Deep
Autoencoders (DAEs), Long Short-Term Memory (LSTM)
networks, Deep Neural Networks (DNNs), Deep Belief
Networks (DBNs), Deep Convolutional Neural Networks
(CNNs), and Deep Generative Models (such as Generative
Adversarial Networks or GANs). RNNs are designed for
sequential data processing and can capture dependencies in
data over time. They are commonly used in tasks like natural
language processing and speech recognition. Deep DAEs are
utilized for unsupervised learning and data compression. They
comprise an encoder and a decoder and find applications in
feature learning and anomaly detection. LSTMs, a type of RNN,
have specialized memory cells that capture long-term
dependencies in data. They are particularly effective in
sequential tasks where retaining context is crucial. DNNs
consist of multiple layers of interconnected neurons and are
employed for supervised learning tasks like image and speech
recognition. They form the core of many deep learning
applications. DBNs are generative models composed of multiple
layers of stochastic, latent variables. They are used in tasks such as
feature learning, collaborative filtering, and dimensionality
reduction. CNNs are designed for processing grid-like data,
such as images, and use convolutional layers to automatically
learn spatial hierarchies of features. They find wide applications in
image and video analysis. Deep Generative Models, including
GANs, are capable of generating data rather than classifying it.
GANs, for example, consist of a generator and a discriminator that
compete in a game, resulting in the generation of realistic data.
They are often used in image generation and data augmentation.
This review investigates these models in terms of their unique
capabilities and applications in the field of cybersecurity.

1.1 Limitations of previous reviews

In recent research, various issues and challenges related to
malware detection using data mining have been extensively
explored [6]. One significant challenge is the imbalance of
classes within datasets, which affects the accuracy and
robustness of malware detection models. Additionally, the
need for open and public benchmarks, the emergence of
concept drift, and the concerns surrounding adversarial
learning techniques all pose significant obstacles to the
effectiveness of these detection mechanisms. Furthermore, the
interpretability of models remains a critical concern, impeding
the deployment of reliable and understandable solutions. When it
comes to Cyber-Physical System (CPS) malware detection, the
complexity of different malware classes and their numerous

variants ma kes detection even more challenging [7]. The rise
of Advanced Persistent Threats (APTs) adds another layer of
sophistication, demanding advanced strategies to combat
coordinated and purposeful attacks. Analyzing malware,
including static and dynamic aspects, presents difficulties in
understanding and identifying malware, necessitating robust
detection strategies. While signature-based and behavior-based
methods offer distinct advantages, they also face challenges
related to accuracy and efficiency in classifying programs as
malicious or benign [6].

An examination of the strengths and weaknesses of signature-
based and behavior-based malware detection reveals that each
method has its own merits and shortcomings [6]. Signature-
based detection is fast and efficient but struggles to detect
polymorphic malware, whereas behavior-based detection excels in
identifying unconventional attacks but faces challenges regarding
storage and time complexity. Ransomware detection and prediction
techniques have received significant attention, particularly in the
context of machine learning methods [8]. However, there has been a
lack of emphasis on predicting ransomware, and identified
shortcomings in real-time protection and 0-day ransomware
identification highlight the need for more comprehensive
approaches. Adversarial machine learning exploitation and
concept drift further complicate the landscape of machine
learning models in this domain.

Deep Learning (DL)-based malware detection frameworks
encounter several challenges, including data imbalance,
interpretability issues, susceptibility to adversarial attacks, the
need for regular updates, and difficulties in achieving cross-
platform detection [9]. Efficient feature extraction techniques and
the recognition of new characteristics in 0-day malware add further
complexity to the development and deployment of DLmodels. Deep
learning for 0-day malware detection and classification focuses on
learning paradigms, feature types, benchmark datasets, and
evaluation metrics. API/System calls are the most common type
of feature, and prevalent benchmark datasets include Drebin.
Evaluation metrics encompass Accuracy, Precision, Recall, F1-
score, False Positive Rate, False Negative Rate, Area Under the
Curve, and Evasion rate.

In the domain of Android malware detection using machine
learning, challenges and advancements in static analysis have been
explored [10]. Machine learning techniques applied to features
extracted through static analysis have shown varying degrees of
success, relying on tools like APK Tool and Androguard for
decompiling and analyzing APK files. The challenges posed by
adversarial attacks for PE (Portable Executable) malware are
multifaceted. Adversarial attacks in both feature-space and
problem-space encounter difficulties in maintaining the format,
executability, and maliciousness of PE files. The taxonomy of
attacks includes white-box attacks, where the attacker has full
knowledge of the model, and black-box attacks, where limited or
no knowledge of the model’s internals presents additional challenges
[11]. Feature-space attacks involve direct manipulation of features,
while problem-space attacks entail altering the actual inputs, such as
PE files. These challenges highlight the need for robust defenses
against adversarial threats in the context of malware detection.
Table 1 provides a comparison with previous review papers with
a similar focus.

Frontiers in Physics frontiersin.org02

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


1.2 Motivation and objectives of this review

The rapidly evolving landscape of cybersecurity presents an
ongoing challenge, particularly in the realm of malware detection.
Traditional methods struggle to keep pace with the relentless
creation of new malware variants. They struggle to keep up with
evolving threats, making deep learning’s ability to autonomously
extract features from vast datasets crucial. Deep Learning models
excel in discerning intricate patterns within malware, offering
scalability, efficiency, and continuous improvement. As a result,
there’s a pressing need for innovative solutions that can adapt to
emerging threats and provide robust protection against cyberattacks.

This review aims to delve into the burgeoning role of deep
learning models in combating malware threats in cyberspace. It
provides a thorough exploration of various deep learning
architectures and their applications in malware detection. By
analyzing the strengths and limitations of each model, the review
offers valuable insights to researchers and practitioners seeking to
harness deep learning techniques for cybersecurity. Recognizing the
dynamic nature of cyber threats, the review also sheds light on the
evolving landscape of malware and the increasing sophistication of
cyber-attacks. It identifies future research directions, emphasizing
the need for innovative DL-based solutions that can adapt to
dynamic malware behavior and effectively counter
adversarial attacks.

1.3 Contributions of this review

The main contributions of this article are as follows:

a) This review provides a critical assessment of the existing
literature in the field of deep learning-powered malware

detection in cyberspace. Further, it helps to identify gaps
and areas for improvement, guiding future research
directions and ensuring a more comprehensive
understanding of the subject matter.

b) This review extends the scope of traditional approaches to
encompass the rapidly growing threat landscape targeting
mobile devices. This expansion of focus ensures that the
review remains relevant and up-to-date with emerging
trends in cybersecurity, providing insights into the unique
challenges and opportunities presented by mobile malware.

c) By including recent tools in malware analysis and detection,
this review offers readers a comprehensive overview of the
current state-of-the-art technologies and methodologies
available for combating malware threats. This enables
researchers and practitioners to stay abreast of the latest
advancements in the field and make informed decisions
when selecting and implementing detection tools and
techniques.

d) By incorporating a diverse range of tools in malware detection,
including behavioral analysis tools, threat intelligence
platforms, deception tools, and memory forensic tools, this
review provides a holistic perspective on the multifaceted
nature of malware detection. This ensures that readers gain
insights into the various approaches and methodologies
employed in the detection and analysis of malware,
enhancing their understanding of the complexities involved
in combating cyber threats.

e) By highlighting open challenges in the field of malware
detection using deep learning, this review identifies areas
where further research and development are needed to
address existing gaps and limitations. This stimulates
discussion and collaboration within the research
community, fostering innovation and driving progress
towards more effective and robust solutions for malware
detection using deep learning techniques.

2 Survey methodology

Figure 2 illustrates the process of article selection for this review,
adhering to the PRISMA guidelines [13]. A comprehensive search
for deep learning models in malware analysis and detection was
conducted in three databases, namely, Google Scholar, Scopus, and
Web of Science, spanning from January 2015 to December 2023. The
search string “Cyberspace, Deep Learning, and Malware Detection”
was employed to collect relevant articles. Inclusion and exclusion
criteria were applied to determine the articles to be included in the
review. Specifically, the articles had to be written in English,
published in peer-reviewed journals or conferences, and relevant
to both malware analysis and detection and deep learning. During
the initial stage, 900 non-duplicate articles were obtained, as
depicted in Figure 2. Following the screening of titles and
abstracts, 457 articles were excluded. Subsequently, 171 articles
for which full-text reports could not be retrieved were also
removed from consideration. Additionally, 272 articles were
assessed for eligibility, leading to the removal of 133 articles with
incomplete information. Finally, a total of 139 articles met all the
criteria and were selected for this review.

FIGURE 1
Categories in malware analysis.

Frontiers in Physics frontiersin.org03

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


3 Deep learning-powered malware
detection in cyberspace

Deep learning (DL) models are highly proficient in
autonomously learning features from extensive datasets, making
them particularly suitable for detecting malware in the digital realm.
By thoroughly analyzing malware samples, DL models acquire the
capability to accurately categorize them into distinct families
or types.

DL models undergo training using comprehensive sets of
extracted attributes, including elements such as opcode
sequences, API calls, and system calls. This training empowers
the models to differentiate intricate patterns that distinguish
malware from benign software. Consequently, these well-trained
models can be deployed to classify new and previously unknown
samples, providing a powerful tool for robust detection and in-depth
analysis of malware. Figure 3 illustrates the current taxonomy of
deep learning models for malware detection in cyberspace.
Additionally, Table 2 provides a summary of research conducted
on deep learning models for malware detection in cyberspace.

3.1 Recurrent neural networks

Recurrent Neural Networks (RNNs) play a significant role in the
field of malware detection in cyberspace due to their ability to handle
sequential input data. In the context of malware detection, RNNs are
useful for assessing system calls, API calls, and network traffic

generated by software applications to identify potentially harmful
activities. System calls provide insights into a program’s actions
within the system, allowing the detection of deviations from normal
software behavior that may indicate malicious activity. API calls
reveal how a program interacts with the underlying system, enabling
the identification of specific APIs used for malicious purposes, such
as modifying system settings. Network traffic data is crucial for
detecting malware that communicates with external servers,
attempts data exfiltration, or engages in suspicious data exchange
over the network.

RNNs excel at analyzing sequences of data and capturing
temporal dependencies in the behavior of potentially malicious
software. They are particularly effective at processing sequential
data encountered in malware analysis, such as sequences of system
calls, API calls, or network traffic generated by software. By being
exposed to sequential data, RNNs become adept at discerning
correlations and patterns that indicate malware behavior. They
take sequential data as input, working through it one element at
a time and updating their internal state based on the observed data.
This mechanism allows RNNs to capture temporal dependencies
and patterns in the data, which is essential for understanding the
dynamic nature of malware. The hidden state within RNNs serves as
a form of memory, retaining information about previous
observations and enabling the contextualization of past events
while predicting the current one. However, these strengths are
counterbalanced by challenges inherent in its application. There
is a limitation that Kaspersky malware family classification criteria
of the malware sample used for analysis in this paper may not be

TABLE 1 Comparison with previous review articles with a similar background. (✔: Yes and ✘: No).

Reference Year Summary of the main contributions Deep
learning

Open
challenges

Future
directions

Our Review - The review examines the effectiveness of Deep Learning models in detecting
malware, as well as highlighting the existing challenges and potential future
opportunities

✔ ✔ ✔

[9] 2023 This work presents a survey of deep learning techniques for 0-day malware
detection and classification, elaborating on the taxonomy of resilient
techniques for 0-day attacks

✔ ✔ ✘

[7] 2023 The review discusses the significant impacts of malware threats on Cyber-
Physical Systems and explores the application of nature-inspired
metaheuristic algorithms as a means to counter these threats

✘ ✘ ✔

[8] 2023 This work offers a thorough overview of the evolution, taxonomy, and
research related to ransomware. It specifically focuses on the challenges and
detection techniques within the realm of cybersecurity

✔ ✘ ✔

[10] 2022 This work provides a critical review of machine learning approaches used for
Android malware detection. It covers various learning methods and their
organization based on feature use

✔ ✘ ✔

[11] 2022 The review discusses the utilization of Indicators of Compromise (IOCs),
machine learning methods, and deep learning-based methods in tools and
anti-malware products

✔ ✔ ✔

[12] 2020 This survey provides a detailed overview of traditional machine learning
methods, including their challenges and limitations in the field. It also
highlights recent trends, particularly in deep learning, and discusses open
research issues

✔ ✔ ✘

[6] 2018 This work offers a systematic and detailed survey of malware detection
mechanisms that utilize data mining techniques. It classifies the approaches
into two categories: signature-based methods and behavior-based methods

✔ ✔ ✘

Frontiers in Physics frontiersin.org04

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


accurate. Only the types and order of the APIs were taken into
consideration that were called when extracting patterns for APIs
called by malware and evaluating them. Since the API itself is
higher-level than the machine code or assembly in the computer,
the performance may be improved if the semantic criteria and
semantic distinction of malware API to be extracted [1].

To train RNNs for malware detection, historical data is used to
adjust their internal parameters. Backpropagation through time is
employed to update the model’s weights and biases based on
prediction errors, allowing the them to learn patterns associated
with malware. Additionally, their temporal modeling capabilities
enable the identification of anomalous behavior trends within an
application over time, facilitating the early detection of novel or
previously undiscovered strains of malware. The ability of RNNs to
capture nuanced and evolving behavioral patterns makes them a
valuable tool in malware detection. They enhance security by
providing a dynamic, adaptable, and context-aware approach to
identifying malicious software, especially in the face of rapidly
changing cybersecurity threats. RNNs are effective at identifying
evasive and polymorphic malware, which employ techniques to
avoid detection and continually change their code to generate

different variants. RNNs can tackle these challenges by
recognizing deviations from normal behavior and analyzing the
evolving patterns in the code.

Addressing data imbalance in training RNNs demands a
strategic approach. One method involves data augmentation,
wherein synthetic data is generated by introducing variations to
the existing minority class samples, thereby enriching the dataset.
Additionally, employing sampling techniques such as oversampling
(replicating minority class samples) or undersampling (reducing the
number of majority class samples) can help balance the dataset
distribution. Moreover, integrating cost-sensitive learning proves
effective by assigning varying costs to misclassification errors across
different classes, thereby accommodating the imbalance and
enhancing model performance. These strategies collectively
empower RNNs to navigate the challenges posed by skewed data
distributions, ultimately fostering more robust and accurate
predictions.

Experiments were conducted with 787 malware samples
belonging to nine families. In the experiments that were carried
out, representative API call patterns of nine malware families on
551 samples were extracted as a training set and performed

FIGURE 2
Selection of articles adhering to the PRISMA guidelines.

Frontiers in Physics frontiersin.org05

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


classification on the 236 samples as a test set. Classification accuracy
results using API call patterns extracted from RNN were measured
as 71% on average. The results show the feasibility of our approach
using RNN to extract representative API call pattern of malware
families for malware family classification. First, the similarities of the
representative API call patterns with extracted from each family and
the API call sequences of the malware belonging to the test set are
compared. Then, top three representative API call patterns were
selected with the highest similarity compared to each malware in the
test set and compare the top three family results with the correct

answer. Jaccard similarity coefficient was used as the
similarity measure [1].

Experimental results using a balanced dataset showed 83%
accuracy and a 0.44 loss, which outperformed the baseline model
in terms of the minimum loss. The imbalanced dataset’s accuracy
was 98%, and the loss was 0.10, which exceeded the state-of-the-art
model’s accuracy. This demonstrates how well the suggested model
can handle malware classification [23].

One successful application of RNNs in malware detection is
dynamic behavioral analysis. This involves analyzing software

FIGURE 3
Current Deep learning Models for Malware Detection in Cyberspace–Taxonomy.

Frontiers in Physics frontiersin.org06

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


TABLE 2 Details of works on deep learning-powered models for malware detection in cyberspace.

Reference Malware
type

DL models used Brief focus Key contributions Limitations Performance metrics

[5] Smart Vehicular

Network malware

Duelling Deep Q Learning Detect abnormal network traffic and classification of

attack

• Improve detection accuracy using a supervised machine

learning task based on agent-environment interaction using

a modified duelling DQN model

• Low Recall compared to existing systems • The experimental results showed that SIMPLE achieves an

accuracy of 90% in a 5-way classification task on new

malware families

• The algorithm is modified such that it can pick a supervisor

to implement an interaction mechanism as a supervised

algorithm for action, state, and reward

• Demonstrates the efficacy of the suggested invasion

detection strategy and the enhancement in classification

performance over conventional ML algorithms

[14] IoT botnet CCR-ELM Lightweight framework to detect IoT botnet and botnet

clusters

• Framework for detecting IoT botnets and botnet clusters.

The framework works with data regarding automated

behaviour

• Requires more memory space with the addition of data • The proposed ensemble method achieves the best outcome

with the highest accuracy 99.9%, compared to state-of-the-

art machine learning, deep learning, and ensemble models

• The Zeek Network Analysis Framework is used for

reassembling the network flow. Every network flow

produces 27 statistical and behavioural records pertaining

to network communication, application-level protocols,

and payload exchanged

• For the botnet detection portion of ELM, overall efficacy

improves as the number of concealed nodes rises. A botnet

family’s behaviour may vary based on the device it infects

and the stage at which it is deployed

[15] Worms CNN Model Anomaly based intrusion detection, classification of an

event as malignant or benign

• In context of accuracy and recall, the devised model

outperforms popular models such as NB, J48, RF, Bagging,

and Adaboost

• Cannot distinguish fuzzy attacks • Support Vector Machine (SVM), and AdaBoost algorithms

and they achieved the highest accuracy rate of 99,80% with

the Decision Tree classifier• Multiclass classification accuracy has room for

improvement

[16] Malware Detection in

Fog Computing

CNN Optimization of detection and classification mechanism

for malware detection in Fog Computing

• Structured and powerful malware detection system can be

deployed in fog computing by utilising a feature reduction

ability that takes a screenshot of a file and converts it into an

image and gives a new way for feature reduction by reading

only a specific number of bytes per 1 KB of data and

splitting an image into chunks, which divides a large file

into fixed-size output images

• When detecting files with specific extensions such

as.7zip, which have a fewer number of files in the training

dataset, the model performs poorly

• They used Convolutional Neural Network (CNN)

algorithm for classification and achieved an accuracy rate

of 94%

• The training of a model involves the inclusion of

disturbance to improve the model’s accuracy. This method

obtained a 97.2% success rate, used 16 times fewer features

than other approaches, and was able to manage enormous

files

• Model detects chunks of large file as malware even if it is

benign due to lack of adequate samples in training

dataset.

[17] Android malware • SERLA• SimHash and CNN The framework uses disassembly technology to produce

bytes file and asm file for each executable file and a special

matrix generation technique to produce three 256x

256 square matrices. The three matrices are then utilised

as the three channels of an RGB image and combined to

create a colour image. Furthermore, to improve the

discriminative power of the RGB images, we apply

adaptive histogram equalization processing utilizing the

CLAHE (Contrast Limited Adaptive Histogram

Equalization) data augmentation technique. In

conjunction with the oversampling method for training

neural networks, trained models for malware detection

and family classification are ultimately obtained

• Proposed a comprehensive detection and classification

framework for malware that can convert executable files

into their corresponding bytes and asm files. Therefore, we

create a steady dataset containing both normal software

samples and malware samples. This dataset can be utilised

for a wider range of malware detection experiment

categories.

• A novel approach is introduced for data representation,

which leverages binaries and word vectors derived from

both bytes’ files and asm files. This innovative method aims

to extract comprehensive information from software

samples, enabling a more holistic understanding of the data.

It considers the characteristics of more aspects of the data

samples and can provide more valuable assistance for the

training of the detection model, thereby enhancing the

detection performance.

• The labelling method used cannot filter normal software

with 100% accuracy.

• Compilation configuration is also one of the noticeable

issues. Different compilation configurations will make

the code with the same function compiled into different

assembly files, which can cause wrong classification of the

detection model

• The experimentation on a recent data set which includes

11,120 applications showed that an accuracy of 97% on

average can be achieved.

• SWORD obtained an accuracy of 94.2% in experiments on a

data set containing 2000 Android samples from various

sources

(Continued on following page)

Fro
n
tie

rs
in

P
h
ysics

fro
n
tie

rsin
.o
rg

0
7

R
e
d
h
u
e
t
al.

10
.3
3
8
9
/fp

h
y.2

0
2
4
.13

4
9
4
6
3

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


TABLE 2 (Continued) Details of works on deep learning-powered models for malware detection in cyberspace.

Reference Malware
type

DL models used Brief focus Key contributions Limitations Performance metrics

• In conjunction with the data augmentation technique in

computer vision, an optimised deep neural network SERLA

based on SEResNet50, Bi-LSTM, and an attention

mechanism is developed for malware detection. Compared

to other neural network malware detection models and even

state-of-the-art methods, our model is superior in all

evaluation metrics, as demonstrated by experimental results

[18] Malware Dragonfly-based DGDBN Cloud security and malware detection • Development of a novel Dragonfly-based Genetic Deep

Belief Network (DGDBN) technique for safeguarding VMs

in cloud environments

• Limited information on dataset and real-world testing • The authors prove that such gradient approximation

mechanism allows the objective function to converge to

optima with probability 1, where in their experiments only

a 2% accuracy loss is observed on average on GoogleLeNet

training

[19] Android malware DAE-CNN (Deep

Autoencoder-CNN)

Large-scale Android malware detection • The research proposes a hybrid model combining a Deep

Autoencoder (DAE) and Convolutional Neural Network

(CNN) to enhance large-scale Android malware detection

• The research discusses the model’s performance in terms

of accuracy and training time reduction but does not

specify if it was tested in a real-world environment or

against a broader range of Android malware. • Real-

world testing is crucial to validate the model’s practical

effectiveness

• Showed an excellent performance with an overall detection

accuracy of 99.3% for Probe, Remote to Local, Denial of

Service and User to Root type of attacks

• To enhance efficiency, the research introduces DAE as a

pre-training method for CNN. This approach significantly

reduces training time, specifically an 83% reduction

compared to CNN-S

• The model incorporates ReLU activation functions, sparsity

rules, and the combination of convolutional and pooling

layers with the full-connection layer to enhance feature

extraction capability

[20] Botnet Malware Khaos (DGA Model) Domain Generation Algorithm (DGA) for botnets • The research introduces Khaos, a novel Domain Generation

Algorithm (DGA) for generating domain names used in

botnet command and control (C&C) servers. Khaos is

designed to enhance anti-detection capabilities

• The study does not address the adaptability of Khaos to

evolving malware threats

• Two image conversion methods, byteplot and space-filling

curves, were used to represent the malware samples, and a

ResNet-50 architecture was used to train models on the

image datasets. The models were then tested against a

projected gradient descent attack. It was found that without

GAN-generated data, the models’ prediction performance

drastically decreased from 93%–95%–4.5% accuracy
• The study leverages neural language models and the

Wasserstein Generative Adversarial Network (WGAN) to

design Khaos. By mimicking real domain names through

the arrangement of syllables and acronyms, Khaos aims to

create domain names that are challenging for detection

• The dynamic nature of botnets and malware requires

continuous innovation to stay ahead of detection

methods

[4] Cybersecurity

Threats

EDRBM (Ensemble Deep

Restricted Boltzmann Machine)

Classification of cybersecurity threats in large-scale

networks

• The research introduces Ensemble Deep Restricted

Boltzmann Machine (EDRBM) as a novel deep learning

model for the classification of cybersecurity threats in large-

scale network environments. This represents a significant

advancement in the field of threat detection

• The content does not delve into the data and

computational resources needed for implementing

EDRBM in large-scale network environments

• When tested on all the features of the NSL-KDD data set,

the deep learning method obtaines very low result

compared with the mentioned methods, but when it is

tested on six features, the method in terms of accuracy

metric gets the high result and composed of 75.75%

• EDRBM is applied to classify cybersecurity threats, with a

specific emphasis on malware attacks. It serves as a

classification model capable of differentiating between

benign and malicious network traffic flowsets

• Real-world implementation may require significant

resources, and these requirements should be considered

[21] Malware Families Shallow Convolutional Neural

Network (CNN)

Assessing the vulnerability of malware classifier to dead

code insertion and adversarial attacks

• Introducing a Double Q-network-powered framework to

induce misclassification in malware families

• Lack of discussion about the impact of these attacks in

real-world settings

• The model outperforms other CNN architecture by a

significant margin on the accuracy metric, where 98.85%

was achieved on both datasets, Benign and Malicious PE

Files dataset and MalwareDataSet, and 98.37% was

achieved on the Classification of Malwares dataset.
• Training an AI agent to insert dead code instructions into

malware samples

• No information on the resource requirements for

deploying the proposed framework

• Demonstrating significant classification accuracy reduction

in malware classifier

• Ethical and legal aspects related to malware

manipulation and evasion are not addressed

• Achieving 100% evasion rate for specific malware families • Specific limitations associated with the proposed

framework are not discussed

(Continued on following page)

Fro
n
tie

rs
in

P
h
ysics

fro
n
tie

rsin
.o
rg

0
8

R
e
d
h
u
e
t
al.

10
.3
3
8
9
/fp

h
y.2

0
2
4
.13

4
9
4
6
3

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


behavior, such as file operations, system calls, registry accesses, and
network interactions, to identify potentially malicious activities.
They can create behavioral profiles of software by observing and
analyzing its interactions with the operating system and external
resources. These profiles can be compared against known malware
behavior patterns to identify potential threats. RNNs excel in
anomaly detection, crucial for identifying malware that exhibits
unusual or unexpected behavior. By continuously learning and
adapting to evolving malware behavior, RNN-based systems can
update their models to detect novel threats, making them effective
against 0-day attacks. They also reduce false positives by focusing on
behavioral analysis, prioritizing potential threats for security
professionals to investigate. RNNs can consider the context of
each action within a software’s behavior, distinguishing legitimate
activities from malicious ones. Given their proficiency in processing
ordered data, RNNs are well-suited for tasks involving time series
data. They adapt to various application domains, including speech
recognition, language modeling, translation, and image captioning,
where sequential data analysis is crucial [1].

3.2 Deep autoencoder

Deep Autoencoders (DAEs) have ascended as potent tools in the
fight against malware, particularly within the realm of unsupervised
learning. DAEs are a type of neural network that encodes high-
dimensional input into a lower-dimensional representation and
then decodes it back into its original format. They serve as
valuable tools for uncovering the inherent characteristics and
patterns exhibited by benign software applications. By training
on extensive datasets of benign applications, DAEs learn and
internalize the defining traits of harmless programs.

Labeled datasets are crucial in training DAEs for malware
detection. These datasets play a pivotal role in imparting the
model with the ability to discern nuanced patterns that
distinguish benign software from malicious counterparts.
Operating within a supervised learning framework, they are
trained on input-output pairs derived from labeled datasets. Each
input represents features extracted from both benign and malicious
samples, enabling the model to comprehend the distinctive
characteristics associated with each class. This process contributes
to the model’s generalization ability, allowing it to recognize
common patterns indicative of malware across different
variations and instances, ensuring effectiveness on previously
unseen data.

Addressing data imbalance in training deep DAEs and
variational autoencoders (VAEs) involves employing several
strategic approaches. One method involves leveraging the
inherent generative capacity of VAEs to counter data scarcity by
generating synthetic data. This technique helps balance the class
distribution, enhancing the model’s ability to learn from
underrepresented classes. Additionally, adversarial training can be
utilized to foster robustness against imbalances. By exposing the
model to adversarial examples, it learns to create more resilient
representations, mitigating the impact of data imbalance. These
strategies collectively empower them to handle skewed datasets
effectively, improving their capacity to generalize and learn
meaningful representations across all classes.T

A
B
LE

2
(C

o
n
ti
n
u
e
d
)
D
e
ta
ils

o
f
w
o
rk
s
o
n
d
e
e
p
le
ar
n
in
g
-p

o
w
e
re
d
m
o
d
e
ls

fo
r
m
al
w
ar
e
d
e
te
ct
io
n
in

cy
b
e
rs
p
ac

e
.

R
e
fe
re
n
ce

M
al
w
ar
e

ty
p
e

D
L
m
o
d
e
ls

u
se
d

B
ri
e
f
fo
cu

s
K
e
y
co

n
tr
ib
u
ti
o
n
s

Li
m
it
at
io
n
s

P
e
rf
o
rm

an
ce

m
e
tr
ic
s

•
E
nh

an
ci
n
g
ev
as
io
n
su
cc
es
s
ra
te
s
th
ro
ug
h
de
ep

re
in
fo
rc
em

en
t
le
ar
ni
ng

w
it
h
th
e
D
ou

bl
e
Q
-l
ea
rn
in
g

al
go
ri
th
m

•
V
al
id
at
in
g
re
su
lts

on
th
e
P
or
ta
bl
e
E
xe
cu
ta
bl
e
fi
le
s
da
ta
se
t

fo
r
re
pr
od

uc
ib
ili
ty

[2
2]

St
eg
an
og
ra
ph

y
C
on

vo
lu
ti
on

al
N
eu
ra
lN

et
w
or
ks

(C
N
N
)
an
d
E
xt
re
m
e
Le
ar
ni
ng

M
ac
hi
ne
s
(E
LM

)

T
ra
in
in
g
m
ac
hi
ne

le
ar
ni
ng

m
od

el
s
fo
r
m
al
w
ar
e

cl
as
si
fi
ca
ti
on

ba
se
d
on

fe
at
ur
es

ob
ta
in
ed

w
it
ho

ut

di
sa
ss
em

bl
y
or

co
de

ex
ec
ut
io
n

•
In
tr
od

uc
in
g
a
m
et
ho

d
to

vi
su
al
iz
e
m
al
w
ar
e
sa
m
pl
es

as

im
ag
es

fo
r
cl
as
si
fi
ca
ti
on

•
La
ck

of
sp
ec
ifi
c
in
fo
rm

at
io
n
ab
ou

t
th
e
m
al
w
ar
e
ty
pe
s
or

da
ta
se
t
us
ed

in
th
e
ex
pe
ri
m
en
ts

•
T
he

av
er
ag
e
ac
cu
ra
cy

fo
r
th
e
un

w
ei
gh
te
d
m
od

el
is
96
.5
%
,

w
hi
le

fo
r
th
e
w
ei
gh
te
d
m
od

el
w
e
ob
ta
in

a
sl
ig
ht

im
pr
ov
em

en
t
at

97
.7
%

•
E
va
lu
at
in
g
tw
o
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

es
:
C
N
N
s
an
d

E
LM

s

•
N
o
di
sc
us
si
on

of
th
e
re
al
-w

or
ld

ap
pl
ic
ab
ili
ty

or

pe
rf
or
m
an

ce
of

th
e
pr
op

os
ed

ap
pr
oa
ch

•
D
em

on
st
ra
ti
ng

th
at

E
LM

s
ac
hi
ev
e
co
m
pa
ra
bl
e
ac
cu
ra
cy

to

C
N
N
s
w
it
h
si
gn
ifi
ca
nt
ly

fa
st
er

tr
ai
ni
ng

ti
m
es

•
T
he

pa
pe
r
do

es
no

t
ad
dr
es
s
th
e
po

te
nt
ia
l
lim

it
at
io
ns

of

im
ag
e-
ba
se
d
m
al
w
ar
e
cl
as
si
fi
ca
ti
on

in
te
rm

s
of

ac
cu
ra
cy

or
se
cu
ri
ty

•
Sh
ow

in
g
th
at
E
LM

s
an
d
C
N
N
s
pe
rf
or
m

w
el
lw

it
h
bo
th

on
e-

di
m
en
si
on

al
an
d
tw
o-
di
m
en
si
on

al
da
ta

Frontiers in Physics frontiersin.org09

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


When presented with novel applications, DAEs can assess
whether they deviate significantly from the learned benign
patterns. This assessment is made possible by evaluating the
reconstruction error generated during the decoding process. A
high reconstruction error indicates a substantial departure from
the expected benign behavior, raising suspicion of potential
malicious activity. They can also be seamlessly integrated with
other machine learning algorithms, enhancing the
comprehensiveness of malware detection strategies.

The approach without autoencoder, both precision and recall
are 99 Percentage for just the Bi-LSTMmodel in detecting malicious
activities in cyber security. Average precision and recall of the
performed model with autoencoder is 93% [24].

The architectural framework of DAEs consists of two pivotal
stages: encoding and decoding. In the decoding phase, the
compressed representation is reconstructed back to its original
form, with each network layer performing a distinctive
transformation on the input data. Their adaptability benefits
applications like natural language processing (NLP), picture
recognition, identity verification, and data reduction.

While DAEs have ascended as potent tools in the fight against
malware, deploying them for real-world malware detection comes
with various challenges. Scalability is a significant challenge, as
training and deploying DAEs at scale can strain organizational
infrastructure. Efficient scaling becomes essential as datasets grow
in size and models become more complex. The demand for
computational resources, especially during training, poses another
challenge. Organizations must address the need for processing
power, which can lead to longer inference times and increased
operational costs. Real-time analysis, crucial for timely malware
identification, can be challenging with DAEs, particularly those with
complex architectures that struggle to achieve low-latency
predictions. Imbalances in real-world malware datasets pose
challenges related to biased models favoring the majority class,
resulting in suboptimal detection of less common or emerging
malware variants. The interpretability and explainability of DAEs,

often seen as black-box models, become critical in a production
setting to gain the trust of security analysts and stakeholders [24].

In malware detection, a comparative analysis reveals distinctive
strengths and weaknesses among DAEs, traditional machine
learning algorithms, and other deep learning approaches. DAEs
excel in unsupervised feature learning and automatically capture
intricate representations vital for complex tasks. Their ability to
detect anomalies without labeled data is advantageous for
identifying new malware variants. Traditional machine learning
algorithms, like Decision Trees, offer superior interpretability and
computational efficiency but rely onmanual feature engineering and
have limitations in anomaly detection [19]. Deep learning
approaches, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), excel in spatial and temporal
contexts but require large labeled datasets and can be
computationally intensive. Factors like interpretability, data
availability, and analysis requirements play a crucial role in
choosing among DAEs, traditional algorithms, or other deep
learning models. DAEs, with their focus on unsupervised feature
learning and anomaly detection, stand out in the malware detection
toolkit, each approach presenting unique strengths tailored to the
demands of the cybersecurity landscape.

Deep Autoencoders (DAEs) find practical application in
unsupervised learning for discerning inherent traits within benign
software. They leverage extensive datasets of benign applications to
learn characteristic features. Through this learning process, DAEs
become adept at identifying deviations from these established
norms, effectively flagging potential malware presence. By
analyzing and detecting anomalies in software behavior, DAEs
serve as a valuable tool in the continuous battle against
cybersecurity threats, enabling proactive identification of
suspicious activities and potential threats [25].

Unsupervised learning presents a promising avenue for discerning
the inherent traits of malware, and its efficacy lies in the ability to
perform effective feature learning without relying on labeled data.
However, despite its potential, DAEs encounter notable challenges.

FIGURE 4
Categories of recent tools in malware analysis and detection.

Frontiers in Physics frontiersin.org10

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


Scalability poses a significant hurdle during both training and
deployment phases, demanding innovative solutions to handle the
complexities of large-scale data. Additionally, the vulnerability to
adversarial attacks presents a pressing concern, necessitating robust
defense mechanisms to fortify these models. Furthermore, integrating
unsupervised learning methodologies with existing security
infrastructure proves to be a challenging task, demanding a concerted
effort to harmonize these disparate elements effectively. Thus, while
holding considerable promise, the practical implementation of
unsupervised learning in identifying malware characteristics
necessitates a strategic approach to mitigate these formidable challenges.

3.3 LSTM

The Long Short-Term Memory (LSTM) architecture has
demonstrated its effectiveness in virus detection due to its ability
to identify long-term dependencies within sequential data. LSTMs
are a type of recurrent neural network (RNN) that use memory cells
and gates to control the flow of information within the network. This
makes them valuable for analyzing sequences of system calls, API
calls, or network traffic generated by applications, especially in the
context of malware detection in cyberspace. By processing
sequential data using LSTM networks, patterns and correlations
indicative of malicious behavior can be discovered. The following
techniques are used in this scenario:

a) Sequence Encoding: System call sequences are encoded into
numerical vectors, where each system call is represented as an
integer or a one-hot encoded vector. This encoding enables
effective processing by the LSTM network.

b) Sequence Padding: Sequences are often padded or truncated to
a fixed length to ensure uniform input lengths. This step is
crucial for creating consistent input for the LSTM.

c) LSTM Architecture: LSTM layers are utilized to capture the
temporal dependencies and the order of system calls within the
encoded sequences. LSTMs excel at modeling long-range
dependencies, making them well-suited for this task.

d) Output Classification: The output of the LSTM layer is
typically connected to a classification layer responsible for
distinguishing between benign and malicious behavior based
on the patterns learned from the system call sequences.

Like system call analysis, LSTM networks can be used for
analyzing sequences of API calls to detect malware in cyberspace.
The techniques involved are similar to those used in system call
analysis, including sequence encoding, padding, LSTM architecture,
and output classification. Additionally, they can also be utilized to
model the behavior of an application over time, enabling the
identification of anomalous activities that may indicate the
presence of a new or previously undiscovered malware strain
[25]. For enhanced malware detection strategies, LSTMs can also
be seamlessly integrated with other machine learning techniques,
such as Convolutional Neural Networks (CNNs).

The development of the LSTM architecture was primarily
motivated by the need to address the vanishing gradient problem
present in standard neural networks [26]. This problem arises when
each connection within a network has its individual weight that
remains unchanged over time, leading to training difficulties. As a
type of RNN, LSTMs leverage memory cells and gating mechanisms
to effectively control the flow of information, making them well-
suited for the analysis of sequences involving system calls, API calls,
or network traffic while identifying patterns and correlations
indicative of malicious behavior.

A high-quality dataset consisting of 2,060 benign and memory-
resident programs was created. In other words, the dataset contains
1,287,500 labeled sub-images cut from the MRm-DLDet
transformed ultra-high resolution RGB images. MRm-DLDet was

FIGURE 5
Open challenges–deep learning-powered malware detection in cyberspace.

Frontiers in Physics frontiersin.org11

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


implemented for Windows 10, and it performs better than the latest
methods, with a detection accuracy of up to 98.34%. Twelve diferent
neural networks were trained and the F-measure up to 99.97% [27].

To address the challenges posed by data imbalance in LSTM
training, several strategies are employed. One approach involves
employing data augmentation techniques, which entail generating
synthetic data by introducing variations to the existing minority
class samples. This method aids in balancing the dataset and
providing the model with more diverse instances to learn from.
Another valuable strategy involves leveraging sampling techniques
such as oversampling or undersampling. Oversampling involves
replicating minority class samples to balance the class distribution,
while undersampling focuses on reducing the number of majority
class samples. These methods help create a more equitable
representation of classes within the dataset, enabling the LSTM
to learn effectively from both the majority and minority classes.
Furthermore, adopting cost-sensitive learning techniques proves
beneficial. By assigning varying costs to misclassification errors in
different classes, the model can account for the imbalance and
prioritize accurate classification of the minority class. This
approach ensures that the LSTM places appropriate emphasis on
correctly identifying instances from both the majority and minority
classes, thereby enhancing overall performance despite data
imbalances [26].

LSTM’s mastery in capturing temporal dependencies enables a
deep comprehension of malware’s dynamic behavior over time.
However, this strength comes with inherent challenges. The
resource-intensive nature of training poses a significant obstacle,
while vulnerability to adversarial attacks is a critical concern.
Additionally, the constant need for updates to align with the
ever-evolving array of malware variants presents an ongoing
demand. Despite these hurdles, the methodology’s proficiency in
unraveling intricate data sequences remains a promising frontier in
the realm of deciphering and combating malware conduct.

3.4 Deep neural network

Deep Neural Networks (DNNs) have gained prominence in
virus detection due to their remarkable capacity to comprehend
complex patterns and data characteristics. DNNs represent a class of
artificial neural networks characterized by numerous interconnected
layers of nodes. These layers collaboratively process incoming data,
ultimately yielding predictions or classifications. In the realm of
malware detection in cyberspace, DNNs are trained on extensive
datasets encompassing both benign and malicious programs,
enabling them to discern the fundamental attributes and patterns
inherent to each class.

Leveraging the knowledge acquired from this training, DNNs
can effectively categorize new applications as either benign or
malicious based on their intrinsic characteristics. They exhibit
versatility in assessing diverse forms of input data, spanning
system calls, API calls, and network traffic, making them
adaptable to various malware detection scenarios. For instance, in
API call pattern recognition, Convolutional Neural Networks
(CNNs), a type of DNN, can effectively analyze sequences for
anomaly detection or malware identification by representing each
API call as a feature vector. In network traffic analysis, DNNs,

including CNN architectures, excel at detecting spatial patterns
within data for intrusion detection, often extracting features from
packet headers or payloads. Additionally, CNNs prove valuable in
image-based malware detection, where they process images of
executable files to identify malicious code patterns. Furthermore,
the ability of DNNs to integrate multiple forms of input data in
multimodal threat analysis, combining features from system calls,
API patterns, and network traffic, highlights their capability for
comprehensive threat assessment [28].

The utilization of transfer learning allows DNNs trained on one
malware classification task to be fine-tuned for related challenges,
showcasing their adaptability and knowledge transfer capabilities in
cybersecurity applications. The training process for DNNs typically
involves backpropagation, a technique that seeks to minimize the
loss function’s value through the gradient descent approach. The
training process involves several key stages, starting with the
initialization of weights and biases, a critical step that establishes
the foundation for effective learning [29]. As the input data
undergoes forward propagation, traversing through the network’s
layers, activations are computed, and the output is generated based
on the current parameters. Simultaneously, the loss function
calculates the disparity between the predicted output and actual
labels, providing a quantifiable metric for the network’s
performance. Backpropagation follows, utilizing the chain rule to
compute gradients and propagate errors backward through the
network. This process enables the network to discern the
contribution of each weight to the overall error. Subsequently,
gradient descent optimization adjusts the weights and biases to
minimize the loss function, guiding the network toward optimal
configurations for proficient malware detection. The entire sequence
of forward propagation, loss calculation, backpropagation, and
weight updates iterate over multiple epochs, allowing the network
to progressively refine its parameters. These iterative adjustments
enhance the network’s capacity to generalize and effectively identify
previously unseen malware variants, underscoring its effectiveness
in the realm of cybersecurity. Resampling methods such as
oversampling, undersampling, or using techniques like SMOTE
(Synthetic Minority Over-sampling Technique) can rebalance the
dataset, ensuring equal representation of classes. Additionally,
adjusting class weights during training serves as a means to
penalize misclassifications of the minority class more heavily,
allowing the model to prioritize learning from the
underrepresented data. These strategies collectively aim to
mitigate the impact of data imbalance, enabling DNNs to better
generalize and make more accurate predictions across all classes in
the dataset.

A deep neural network based malware detection system that
Invincea has developed, achieves a usable detection rate at an
extremely low false positive rate and scales to real world training
example volumes on commodity hardware. Their system achieves a
95% detection rate at 0.1% false positive rate (FPR), based on more
than 400,000 software binaries sourced directly from our customers
and internal malware databases [28].

To generate predictions or classifications, DNNs
meticulously process data through their interconnected layers
of nodes. When applied to malware detection, these networks can
be trained on extensive datasets containing both benign and
malicious programs, equipping them with the knowledge needed

Frontiers in Physics frontiersin.org12

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


to distinguish between the two categories. By synergizing DNNs
with other machine learning techniques, such as Deep
Autoencoders (DAEs) or Long Short-Term Memory (LSTM)
networks, a more comprehensive and robust approach to
malware identification can be achieved. Deep Autoencoders, as
unsupervised models, play a pivotal role in feature learning and
extraction, providing compact and meaningful representations of
input data, particularly valuable in high-dimensional spaces like
raw system call sequences or network traffic patterns. This
enhances the model’s robustness against various malware
variants by capturing latent features and anomalies during
pre-training on unlabeled data. On the other hand, Long
Short-Term Memory Networks excel in capturing temporal
dependencies and sequences, crucial for understanding
dynamic aspects of malware behavior over time. Integrated
into a DNN architecture, LSTMs contribute temporal context
awareness, enabling the model to discern evolving patterns
exhibited by sophisticated malware. Ensemble learning
techniques, such as stacking or bagging, further amplify the
model’s robustness by combining the strengths of DNNs,
DAEs, and LSTMs [28]. The ensemble approach leverages the
diversity of information captured by each component, resulting
in a more accurate and resilient model less sensitive to noise and
outliers. Additionally, the utilization of transfer learning
facilitates knowledge transfer from related tasks, such as
feature learning or sequential modeling, enhancing the DNN’s
generalization performance in malware identification.

While leveraging DNNs has significantly propelled the field of
malware detection towards greater accuracy and efficiency, their
application comes with inherent limitations and challenges. Firstly,
scalability issues pose a substantial hurdle, as training large-scale
DNNs demands significant computational resources and can be
financially burdensome. The complexity of DNN architectures,
coupled with the extensive data required for effective training,
exacerbates this challenge, particularly for organizations with
limited computational capabilities. Secondly, interpretability
challenges impede the widespread adoption of DNNs in malware
detection in cyberspace. DNNs are often considered black-box
models, lacking transparency in their decision-making processes.
In intricate tasks like malware detection, understanding the rationale
behind a specific decision is crucial for building trust and ensuring
alignment with the expectations of security experts. Adversarial
attacks constitute another formidable challenge. DNNs are
susceptible to intentional manipulations of input data by
malicious actors, leading to misclassifications and compromising
the reliability of malware detection systems. Such attacks pose a
significant security risk, requiring robust defenses to mitigate their
impact [29]. Furthermore, the issue of data imbalance within
malware datasets complicates the generalization performance of
DNNs. Imbalances, where certain types of malware are
underrepresented, can result in model biases towards prevalent
classes, leading to suboptimal detection of less common or
emerging malware variants. Lastly, the lack of explainability in
DNNs’ decision-making processes hinders their integration into
security workflows. The opacity of these models makes it challenging
for security analysts to comprehend the basis for a classification,
impeding effective collaboration between automated systems and
human experts.

3.5 Deep Belief Network

Deep Belief Networks (DBNs) are powerful tools in the realm of
malware detection in cyberspace. These neural networks excel at
capturing intricate patterns and features within vast datasets,
making them invaluable for identifying malicious software. DBNs
are particularly effective in analyzing software behavior and
identifying anomalies or suspicious activities. They have the
ability to autonomously discover relevant features, which is
advantageous in the context of rapidly evolving malware. By
processing various aspects of software behavior, such as system
calls, API calls, or network traffic patterns, DBNs can differentiate
between normal software operations and potentially harmful ones.
This approach allows for the detection of previously unseenmalware
strains or novel attack techniques, making them a critical
component of modern cybersecurity systems. The versatility and
adaptability of DBNs in handling large and diverse datasets make
them an essential tool for protecting against the ever-growing
landscape of malware threats [2].

End-to-end deep learning architectures, specifically
Bidirectional Long Short-Term Memory (BiLSTM) neural
networks, are employed for the static behavior analysis of
Android bytecode. Unlike conventional malware detectors that
rely on handcrafted features, this system autonomously extracts
insights from opcodes. This approach demonstrates the superiority
of deep learning models over traditional machine learning methods,
offering a promising solution to safeguard Android users from
malicious applications [30].

Researchers have also explored the suitability of deep learning
models for mobile malware detection. They utilize a deep neural
network (DNN) implementation called DeepLearning4J (DL4J),
which successfully identifies mobile malware with high accuracy
rates. The study suggests that adding more layers to the DNN
models improves their accuracy in detecting mobile malware,
showcasing the feasibility of using DNNs for continuous learning
and anticipating new types of attacks [22].

An anti-malware system that uses customized learning models,
which are sufficiently deep, and are end to end deep learning
architectures report an accuracy of 0.999 and an F1-score of
0.996 on a large dataset of more than 1.8 million Android
applications [2]. The SOFS-OGCNMD system achieves system’s
average accuracy is 98.28%, average precision is 98.65%, recall is
98.53%, and F1-Score is 98.47 [22].

In addition, a method has been proposed to address the
challenges of malware detection in Cyber-Physical Systems (CPS)
within the Internet of Things (IoT). The model, called Snake
optimizer-based feature selection with optimum graph
convolutional network for malware detection (SOFS-OGCNMD),
demonstrates remarkable results in accuracy, precision, recall, and
F1-Score, outperforming recent models and contributing to the
protection of CPS and IoT systems from evolving cyber threats [18].

Furthermore, a system has been designed to enhance the security
of power systems through a Deep Belief Network (DBN)-based
malware detection system. This system deconstructs malicious code
into opcode sequences, extracts feature vectors, and utilizes DBN
classifiers to categorize malicious code. It effectively utilizes
unlabeled data for training and outperforms other classification
algorithms in terms of accuracy. The research showcases the

Frontiers in Physics frontiersin.org13

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


potential of DBNs for enhancing malware detection accuracy and
reducing feature vector dimensions, thereby contributing to
safeguarding power systems from cyber threats.

3.6 Deep convolutional neural network

The realm of malware detection in cyberspace, particularly in
the context of evolving cyber threats, is experiencing a surge in
innovative approaches driven by deep learning and convolutional
neural networks (CNNs). Deep Convolutional Neural Networks
(DCNNs) have emerged as robust and efficient technologies for
detecting malware. Their ability to automatically extract complex
features from various forms of data makes them exceptionally well-
suited for this task. In the context of malware analysis, CNNs excel at
processing and identifying malicious patterns within binary code,
enabling the detection of known malware strains and even the
discovery of novel threats. These networks are particularly
effective in detecting malware through the analysis of file content
and structure, which includes identifying suspicious code segments
and unusual behaviors. Deep CNNs offer a significant advantage in
terms of adaptability as they can be trained on diverse and evolving
datasets to keep up with the continuous evolution of malware.
Additionally, their capacity to handle large-scale data and discern
subtle variations in binary files enables the identification of both
prominent and more subtle malicious patterns. They are at the
forefront of malware detection, contributing to the defense against
the ever-growing sophistication of cyber threats [3].

DCNNs have proven to be highly effective in tasks related to
image processing, excelling in capturing intricate spatial hierarchies
and patterns. Their performance, often measured through precision,
recall, and F1-score, is particularly notable in image classification
tasks, especially when trained on extensive and diverse datasets.
When compared to traditional machine learning models like SVM
or Random Forest, DCNNs consistently outshine them in image-
related tasks, showcasing a superior ability to discern complex
patterns. Transfer learning models, such as VGG16 or ResNet,
compete strongly with them, benefiting from pre-trained
networks on large datasets. However, DCNNs, especially those
incorporating transfer learning architectures, often emerge as
leaders, demonstrating heightened precision, recall, and F1-score
by leveraging their effective feature extraction capabilities. In tasks
involving sequential data, where Recurrent Neural Networks
(RNNs) excel in capturing temporal dependencies, DCNNs
maintain their superiority in scenarios where spatial features hold
more significance, as seen in image-related tasks. Ensemble models,
combining various techniques, present a competitive alternative,
sometimes matching or exceeding DCNNs’ performance,
particularly in cases where diverse models contribute to
improved generalization. These models find a significant
application in the financial sector, particularly in credit scoring.
In credit scoring, financial institutions aim to predict the probability
of a loan applicant defaulting on a loan. This prediction is based on a
myriad of factors including credit history, income, employment
status, and others. Ensemble models combine various machine
learning models like Decision Trees, Logistic Regression, and
Neural Networks to assess these factors. In the real world, this
translates to more accurate credit scoring, which helps financial

institutions in reducing the risk of loan defaults while approving
more loans for credit-worthy applicants.

The evaluation of DCNNs on diverse datasets is indispensable
for gauging their generalizability and robustness across various
malware types. Assessing these models on multiple datasets
provides crucial insights into their adaptability and real-world
performance. Key considerations include exploring malware
variability, addressing imbalances in datasets, accounting for
temporal aspects in malware evolution, cross-domain evaluation
to assess adaptability, examining scenarios involving transfer
learning, evaluating resilience against adversarial attacks,
accounting for geographical variations in malware prevalence,
ensuring versatility in handling different feature representations,
and maintaining consistent evaluation metrics such as precision,
recall, F1-score, and area under the ROC curve. This comprehensive
approach to evaluation enables researchers and practitioners to
develop DCNN models that can effectively navigate the dynamic
and complex landscape of malware detection, ensuring their efficacy
across diverse and evolving cybersecurity scenarios.

An advanced intelligent IoT malware detection model proposed
based on deep learning and ensemble learning algorithms, called
DEMD-IoT achieves the best outcome with the highest accuracy
99.9%, compared to state-of-the-art machine learning, deep
learning, and ensemble models [3]. The 4L-DNN model
outperforms other DNN architecture by a significant margin on
the accuracy metric, where 98.85% was achieved on both datasets,
Benign and Malicious PE Files dataset and Malware Dataset, and
98.37% was achieved on the Classification of Malwares dataset [31].

To address the challenges related to malware detection, the
DEMD-IoT model leverages the power of deep learning and
ensemble learning techniques. It comprises a stack of three one-
dimensional convolutional neural networks (1D-CNNs) tailored to
analyze IoT network traffic patterns. The model also features a meta-
learner, utilizing the Random Forest algorithm, to integrate results
and produce the final prediction. DEMD-IoT’s advantages lie in its
ensemble strategy to enhance performance and the use of
hyperparameter optimization to fine-tune base learners. Notably,
it employs 1D-CNNs, avoiding the complexity of preprocessing
phases. Empirical evaluation on the IoT-23 dataset demonstrates
that this ensemble method outperforms other models, achieving a
remarkable accuracy of 99.9% [31].

Another study introduces a web-based malware detection
system centered on deep learning, specifically a one-dimensional
convolutional neural network (1D-CNN). Unlike traditional
methods, it focuses on static features within portable executable
files, making it ideal for real-time detection. The 1D-CNN
architecture, tailored for these executable files, facilitates efficient
feature extraction. Comparisons with state-of-the-art methods
across diverse datasets confirm the model’s superiority. As
malware poses a significant security threat, this web-based system
offers user-friendly malware detection, reducing vulnerability to
cyberattacks and benefiting individuals and organizations alike.
The study emphasizes the importance of deploying deep learning
models in web-based applications to enhance usability and
accessibility [32].

In another paper, the authors propose an efficient neural
network model, EfficientNetB1, for classifying malware families
using image representations of malware at the byte level. By

Frontiers in Physics frontiersin.org14

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


employing computer vision techniques, they aim to detect
sophisticated and evolving malware. The evaluation of various
pretrained CNN models highlights the importance of minimizing
computational resource consumption during training and testing.
EfficientNetB1 achieves an impressive accuracy of 99% in classifying
malware classes, requiring fewer network parameters compared to
other models. This work contributes to the field of cybersecurity by
providing a novel approach that combines efficient neural network
models and diverse image representation methods for accurate and
resource-efficient malware classification [33].

To address the persistent challenge of malware detection in
Windows systems, a Convolutional Neural Network (CNN)-based
approach is used. It leverages the execution time behavioral features
of Portable Executable (PE) files to identify and classify elusive
malware. The approach was evaluated using a dataset comprising
MIST files, generating images from N-grams selected by various
Feature Selection Techniques. Results from 10-fold cross-validation
tests showcase the remarkable malware detection accuracy,
particularly when employing N-grams recommended by the
Relief Feature Selection Technique. In comparison to other
machine learning-based classifiers, this CNN-based approach
outperforms them, offering a promising solution to enhance
malware detection in Windows systems.

3.7 Deep generative models

Deep Generative Models offer a promising avenue for enhancing
malware detection techniques in cyberspace. These models operate by
generating synthetic data that mimics the characteristics of malicious
code, thereby providing an innovative approach to detect malware. By
leveraging techniques such as Variational Autoencoders (VAEs) or
Generative Adversarial Networks (GANs), deep generative models can
create artificial malware samples to diversify training datasets. This
augmentation helps improve the robustness of malware detection
systems, enabling them to recognize new and evolving threats. These
models can also be employed in anomaly detection, identifying
deviations from normal software behavior, which often indicates the
presence of malware. Furthermore, they can generate features that
enhance feature-based malware detection in cyberspace. Their
adaptability and ability to generate data like malicious code samples
contribute to strengthening the overall cybersecurity landscape, offering
a proactive approach to identifying and combating
malware threats [34].

In contrast, state-of-the-art methods and alternative approaches
encompass signature-based detection, heuristic-based detection, and
traditional machine learning models. Signature-based methods are
efficient in identifying known malware through predefined patterns
but face limitations in detecting novel threats. Heuristic approaches
rely on rules and behavioral patterns, demonstrating adaptability but
may produce false positives or negatives. Traditional machine
learning models, while interpretable and computationally
efficient, are constrained by the need for manual feature
engineering and may struggle with high-dimensional data.
Interpretability favors signature-based and heuristic-based
methods, as well as certain traditional machine learning models,
over deep generative models. However, the adaptability to novel
threats is shared by deep generative models and heuristic-based

approaches, distinguishing them from the limitations of signature-
based methods. Deep generative models, with their strengths in
unsupervised learning and anomaly detection, offer a promising
avenue for addressing challenges posed by evolving and novel
malware threats.

The two features extracted from the data with their respective
characteristics are concatenated and entered into the malware
detector of a hybrid deep generative model. By using both
features, the proposed model achieves an accuracy of 97.47%,
resulting in the state-of-the-art performance. [34]. A model
which was verified by extensive experiments on the benchmark
datasets KDD’99 and NSL-KDD effectively identifies normal and
abnormal network activities. It achieves 99.73% accuracy on the
KDD’99 dataset and 99.62% on the NSL-KDD dataset [35].

To tackle the challenge of detecting obfuscated malware, which
often employs techniques like null value insertion and code
reordering to evade traditional detection methods, a deep
generative model is proposed. This model combines both global
and local features by transforming malware into images to capture
global characteristics efficiently and extracting local features from
binary code sequences. By fusing these two types of features, the
model achieves an impressive accuracy of 97.47% [36]. A novel
approach is also introduced that leverages generative adversarial
networks (GANs) for plausible malware training and augmentation.
By training a discriminator using malware images generated by
GAN models, the framework enhances the robustness of detection
against 0-day malware. This eliminates the need for inefficient
malware signature analysis, reducing signature complexity. The
study emphasizes the importance of understanding 0-day
malware features through explainable AI techniques and suggests
future work on expanding the framework’s applicability [35].
Despite the inherent black-box nature of these models,
Explainable AI (XAI) provides a set of methodologies to shed
light on their decision-making processes. Layer-wise Relevance
Propagation (LRP) assigns relevance scores to input features,
aiding in the identification of crucial patterns for 0-day malware
features. Saliency maps highlight significant regions in input data,
offering interpretability by emphasizing key areas in images or
sequences. Integrated Gradients calculates feature attribution,
providing nuanced insights into how variations in input features
contribute to the identification of 0-day malware characteristics.
Local Interpretable Model-agnostic Explanations (LIME) generates
faithful interpretations by perturbing input instances, creating
surrogate models for better understanding. Attention mechanisms
focus on relevant parts of input sequences, aiding in the
interpretation of the importance of different elements,
particularly beneficial for sequential data. Counterfactual
explanations generate alternative instances, showcasing the
impact of input feature variations on model predictions,
enhancing understanding of 0-day malware identification. Rule-
based explanations extract decision rules approximating the
behavior of deep generative models, offering a simplified
representation for accessibility and understanding by security
analysts. These explainability methods collectively contribute to a
more transparent and interpretable framework, allowing analysts to
dissect and comprehend the decision-making processes of deep
generative models in the complex domain of 0-day
malware detection.

Frontiers in Physics frontiersin.org15

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


To tackle network intrusion detection, where high-dimensional
data, the scarcity of labeled samples, and real-time detection pose
challenges, the proposed solution utilizes deep learning. It employs a
multichannel Simple Recurrent Unit (SRU) model that outperforms
traditional LSTM algorithms in efficiency and accuracy. To address
the scarcity of labeled samples, a generative adversarial model
(DCGAN) is used to generate training data, significantly
improving system detection rates and reducing false alarms. The
paper introduces efficient data preprocessing and demonstrates an
impressive detection accuracy of 99.73% on KDD datasets. The
SRU-based approach offers real-time intrusion detection capabilities
and enhances network security [20].

While offering unique strengths, Deep Generative Models also
come with several drawbacks in the context of malware detection in
cyberspace. One key limitation lies in their interpretability, as these
models are often perceived as black-box systems, making it
challenging for security analysts to comprehend and trust their
decision-making processes. Moreover, the computational intensity
required for training, stemming from complex architectures and
large datasets, poses practical challenges for deployment,
particularly in resource-constrained environments. Data
dependency is another drawback, with deep generative models
relying on substantial amounts of labeled data for effective
training. Acquiring diverse and representative datasets for various
malware types can be logistically challenging, considering the
dynamic nature of the cybersecurity landscape. Additionally,
these models are vulnerable to adversarial attacks, similar to
other deep learning approaches, which pose a threat to their
reliability in real-world scenarios. The need for large-scale
training data is a practical concern, as optimal performance often
hinges on access to extensive and diverse datasets. Adapting to the
dynamic nature of cybersecurity threats is another limitation,
requiring frequent updates and retraining to effectively address
new malware variants. Incorporating domain knowledge or
expert-defined rules into the learning process can be difficult for
deep generative models, hindering their ability to leverage human
expertise in refining malware detection.

3.8 Deep Boltzmann machine

Deep Boltzmann Machines (DBMs) are powerful tools in
malware detection in cyberspace. These deep learning algorithms
excel in capturing intricate patterns within large datasets. When
used for malware detection, they analyze binary code or behavioral
data to identify malicious patterns and anomalies. By modeling the
complex relationships between features, they effectively distinguish
between benign and malicious software. DBMs offer the advantage
of unsupervised learning, making them adept at uncovering novel
and previously unseen malware variants. They can identify subtle
and evolving threat vectors, making them crucial in the battle against
constantly changing malware. Additionally, DBMs can be used for
feature extraction, reducing data dimensionality and enhancing the
efficiency of other detection algorithms.

Compared to other malware detection techniques, including
traditional machine learning algorithms, Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs), each
approach brings its unique attributes. Traditional algorithms are

known for their interpretability but may require manual feature
engineering. CNNs excel in spatial feature extraction for image-
based tasks. RNNs outperform DBMs in handling sequential data
and capturing temporal dependencies.

In the field of cybersecurity, DBMs play a pivotal role in
bolstering defenses and ensuring the early identification of
emerging malware threats [37]. A multi-objective RBM model
aims to improve robustness and data classification accuracy. This
study addresses challenges such as dataset imbalance, complex deep
learning network models, and the need for multiple objectives. It
leverages non-dominated sorting genetic algorithms (NSGA-II) to
tackle imbalanced malware families. The proposed model, in
conjunction with NSGA-II, significantly enhances data
classification accuracy within HetNets, demonstrating its
effectiveness in safeguarding data fusion processes [38].

To tackle dimensionality, Subspace-based Restricted Boltzmann
Machines (SRBM) introduce a novel approach that combines RBMs
with subspace learning. SRBM efficiently reduces feature
dimensionality while considering non-linear feature relationships.
Compared to other methods like PCA and Stacked Auto Encoder
(SAE), SRBM stands out with significant improvements in
performance metrics, enhancing efficiency and accuracy in
Android malware detection [4].

To explore the application of deep learning in the detection of
Denial of Service (DoS) attacks, a deep Gaussian-Bernoulli-type
RBM is introduced with additional layers, optimizing
hyperparameters for improved detection accuracy. This deep
RBM model supports continuous data and demonstrates superior
accuracy when compared to alternative RBM models, such as
Bernoulli-Bernoulli RBM. The study underscores the importance
of developing systems capable of detecting malicious behavior
within network traffic, particularly in the context of
DoS attacks [39].

In order to confirm the effect of the proposed method (RBM +
NSGA-II) on the accuracy of data classification, the recall rate values
with five other methods are compared. The methods are GIST +
KNN, GIST + SVM, GLCM + KNN, GLCM + SVM, and DRBA, and
the recall rates are 91.7, 91.4, 92.3, 93, and 94.5 percent, respectively
[37]. The method proposed here has a recall rate of 95.83 percent.
Next, by comparing the values of loss, recall rate, and false alarm rate
with, it was found that the proposed multi-objective RBMmodel has
loss values (loss = 0.083, 0.080, and 0.086) and recall rate values
(recall = 88.64, 93.48, and 95.83 percent) are all better in three
different resolutions, and the value of FPR at 50 × 50 resolution is
slightly worse (FPR = 12.5 percent is greater than
11.50 percent) [37].

Obtaining and labeling appropriate training data for Deep
Boltzmann Machines (DBMs) in malware detection presents
multifaceted challenges with implications for model
generalizability and real-world applicability. Firstly, imbalances in
class distribution within malware datasets pose a challenge,
potentially leading to biased model training and diminished
effectiveness in detecting less common malware types.
Annotating malware samples is resource-intensive, and the
dynamic cybersecurity landscape introduces new variants
regularly, contributing to limitations in dataset size and
timeliness. This can hinder the model’s capacity to generalize to
evolving threats. Moreover, inherent biases in malware datasets

Frontiers in Physics frontiersin.org16

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


from different sources create potential limitations. Models trained
on biased datasets may struggle to generalize across different
contexts, impacting performance when faced with malware
variants from underrepresented sources or regions. The active
involvement of malicious actors in crafting adversarial samples
further complicates the training process. Adversarial samples,
intentionally manipulated to deceive the model, can compromise
the robustness and reliability of the DBM in real-world scenarios.
Additionally, the heterogeneous nature of malware, ranging from
simple to highly sophisticated attacks, presents a challenge in
capturing this diversity within a single training dataset. A lack of
diversity may result in a model that struggles to identify novel and
sophisticated malware types, further constraining its efficacy in
practical, real-world scenarios.

3.9 Deep reinforcement learning

Deep reinforcement learning (DRL) plays a crucial role in
enhancing malware detection by introducing innovative
approaches to address evolving cybersecurity challenges. This
advanced technique utilizes artificial intelligence and deep
learning algorithms to train intelligent agents that learn to
make decisions based on interactions with malware samples.
These agents can determine optimal sequences of actions to
modify malware, making it more difficult for anti-malware
engines to detect. DRL is particularly effective in scenarios
where traditional machine learning approaches struggle,
especially in dealing with adversarial attacks. By allowing the
agents to iteratively interact with malware, it is possible to
enhance the agility and evasiveness of malware, making
detection more challenging. This approach empowers
researchers and cybersecurity professionals to proactively
combat cyber threats, adapt to new evasion techniques, and
continuously strengthen their malware detection systems [40].

In comparison to established methods, signature-based
detection techniques prove effective in identifying known
malware patterns, offering computational efficiency and a well-
established presence in cybersecurity practices. Heuristic-based
approaches leverage rules and behavioral patterns, adapting to
new threats through heuristic updates. While computationally
efficient, heuristics may generate false positives or negatives
based on predefined rules. Traditional machine learning models,
such as Support Vector Machines (SVMs) or Random Forests,
provide interpretability and efficiency but may struggle with
complex relationships in data due to their reliance on manual
feature engineering. Analysis of these approaches reveals the
superiority of DRL techniques in sequential decision-making
tasks and adaptability to dynamic environments, addressing
limitations seen in signature-based and traditional machine
learning methods.

One method explores the evolution from traditional signature-
based methods to machine learning-based algorithms for malware
detection. While machine learning approaches have significantly
improved detection accuracy, they remain vulnerable to adversarial
attacks. The study delves into the creation of adversarial samples to
test the resilience of these systems, particularly focusing on binary
file modification. It discusses the complexities involved in avoiding

corruption of the binary and the need to strengthen the defenses of
machine learning models. The research highlights the ongoing need
to enhance the robustness of malware classifiers against adversarial
attacks. Another study introduces a novel framework called DQEAF
(Deep Q-Learning for Evading Anti-Malware Engines), which
employs DRL to bypass anti-malware engines. This framework
trains an artificial intelligence agent to iteratively interact with
malware samples and determine optimal sequences of non-
destructive actions that modify the samples, enabling them to
evade detection. The study emphasizes the effectiveness of this
approach, achieving a 75% success rate in evading detection by
anti-malware engines, particularly in the context of Portable
Executable (PE) samples [40].

Alternative approaches delve into network security and leverage
Software-Defined Networking (SDN) to optimize traffic analysis
through Deep Packet Inspection (DPI). One such approach utilizes
deep reinforcement learning, specifically Deep Deterministic Policy
Gradient (DDPG), to intelligently allocate sampling resources in
SDN-capable networks. The goal is to capture malicious network
flows while minimizing the load on multiple traffic analyzers. The
study showcases the efficacy of this approach in achieving more
efficient traffic monitoring and cyber threat detection, highlighting
the importance of data-driven decisions in traffic sampling [41].
Additionally, the vulnerability of a leading malware classifier to dead
code insertion is explored, and a framework employing deep
reinforcement learning, specifically a Double Q-network, is
introduced to induce misclassification in the classifier. An
intelligent agent, trained through a convolutional Q-network,
strategically inserts NOP instructions into malware code
sequences. The results demonstrate a significant reduction in the
classifier’s accuracy, showcasing the potential for evasion using the
dead code insertion technique.

One of the primary performance metrics of DRLs lies in the
rewards earned over time, depicting the agent’s learning progress by
maximizing cumulative rewards through interactions with an
environment. The reported values for the performance
comparison were an average of 500 iterations with a 95%
confidence interval. Parameter values used for network
topologies. traffic steering overheads than other methods while
maintaining a load-balancing of traffic analyzers over 88% [41].

DRL models exhibit remarkable adaptability to new and
unknown malware samples, making them valuable assets in the
ever-changing landscape of cybersecurity. Their adaptability arises
from the models’ ability to learn optimal strategies through
dynamic interactions with their environment, mirroring real-
world cybersecurity scenarios effectively. In the realm of
malware detection, DRL models such as Deep Q Networks
(DQN) or Proximal Policy Optimization (PPO) excel in
sequential decision-making tasks. This capability proves vital in
scenarios where the identification process involves a series of
actions and responses, enabling these models to learn optimal
sequences of actions for effective detection and response to
emerging threats. The models exhibit a remarkable feature
learning capability, automatically extracting relevant patterns
from raw input data. This reduces the reliance on predefined
features or signatures, facilitating adaptability as the models can
discover novel patterns associated with new malware samples
without explicit feature engineering.

Frontiers in Physics frontiersin.org17

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


DRL models shine in 0-day threat detection, showcasing their
prowess in identifying previously unseen and unknown threats. By
learning from the dynamics of the environment and comprehending
the underlying patterns of normal andmalicious behavior, DRLmodels
can adeptly adapt to emerging threats that lack historical data or
predefined signatures. The support for continuous learning allows
the models to stay current with the evolving threat landscape,
ensuring they can effectively counter emerging risks. Reinforcement
learning agents within DRL can dynamically adjust their policies based
on feedback from the environment, enabling the model to update its
knowledge as it encounters new malware samples. This dynamic policy
adjustment significantly enhances the model’s ability to handle
unknown threats effectively.

Tackling data imbalance is pivotal for effective model training. One
key strategy involves reward balancing, a technique aimed at adjusting
reward mechanisms to address the imbalance between minority and
majority classes. This approach seeks to ensure that the learning process
does not disproportionately favor the majority class while neglecting the
minority. By fine-tuning the reward system, the algorithm can be guided
to allocate appropriate attention to underrepresented scenarios,
encouraging the model to learn from these instances as rigorously as
from the dominant ones. This balance fosters a more comprehensive
understanding of the environment, enabling the reinforcement learning
agent to make informed decisions across diverse situations. By
strategically adjusting reward structures, DRL algorithms can
overcome data imbalance challenges, ultimately enhancing their
adaptability and performance in complex real-world scenarios.

While this model holds promise for malware detection in
cyberspace, its practical use faces notable challenges. High
computational requirements, especially for complex models
like Deep Q Networks and Proximal Policy Optimization, pose
a constraint, particularly in resource-constrained environments.
Additionally, the demand for substantial training data raises
concerns about data efficiency, affecting performance when
labeled malware samples are limited. Lengthy training times of
DRL models, particularly deep neural networks, can hinder
timely deployment in dynamic cybersecurity scenarios. The
black-box nature of DRL models presents interpretability
challenges, making it difficult to understand the decision-
making processes and the features crucial for malware
detection in cyberspace. Moreover, sample inefficiency,
sensitivity to hyperparameters, and difficulties in generalizing
across diverse malware variants further limit the effectiveness of
DRL. Vulnerability to adversarial attacks adds another layer of
concern, as intentional manipulations could compromise the
reliability of the model. Deploying DRL models at scale in
complex network environments requires addressing scalability
challenges. Ethical considerations, especially regarding privacy
and potential misuse, necessitate compliance with regulatory
frameworks for responsible deployment. Balancing these
challenges is crucial for unlocking the full potential of DRL in
the realm of cybersecurity.

3.10 Extreme Learning Machine

Extreme Learning Machine (ELMs) are increasingly used in
malware detection due to their versatility and efficiency. ELMs excel

in feature extraction, making them suitable for processing various
data types crucial for malware analysis. Their single hidden layer
with randomized weight assignments enables them to process many
features quickly, which is beneficial for comprehensive malware
detection in cyberspace. While this allows for quick processing of
many features, it may not capture complex relationships and
dependencies in the data as effectively as models with multiple
hidden layers and optimized weight assignments. ELMs are
particularly favored for their fast-training process, as they do not
involve iterative weight optimization. This speed and their ability to
handle diverse data types make ELMs a valuable tool in the ongoing
battle against malware [42].

While this may be beneficial for efficiency, it could also limit the
model’s ability to fine-tune and improve its performance over time.
Iterative weight optimization techniques, such as backpropagation,
are commonly used in other machine learning models to refine the
model’s predictions and achieve higher accuracy. Research in this
field addresses the pressing challenges posed by malware, with a
primary focus on improving accuracy, automation, and efficiency in
the detection process. Data Imbalance can pose a significant
problem in ELM training but several strategies can help address
this challenge. Resampling techniques like oversampling or
undersampling methods are effective approaches. Oversampling
involves increasing the instances of the minority class, while
undersampling reduces the instances of the majority class, aiming
to balance the dataset’s representation. This helps prevent the model
from being biased toward the majority class. Another valuable
strategy is weighted learning, where different weights are assigned
to samples based on their class. By assigning higher weights to
minority class samples and lower weights to majority class samples,
the learning process becomes more balanced, allowing the model to
better discern patterns from the less represented class.

Notably, one of these studies introduces an innovative approach
in the form of a Two-hidden-layered Extreme Learning Machine
(TELM), which departs from conventional backpropagation
techniques to offer a streamlined and faster approach to malware
detection in cyberspace. This approach incorporates dependencies
of malware sequence elements, effectively enhancing the accuracy of
classification while dramatically reducing both training and
detection time. The practical implications of this study are
profound, particularly in safety-critical systems such as healthcare
and the Internet of Things (IoT), where rapid and reliable malware
detection is imperative [43].

While the Two-hidden-layered Extreme Learning Machine
(TELM) and the Gauss-Mapping Black Widow Optimization
with Deep Learning Enabled Android Malware Classification
(GBWODL-AMC) demonstrate efficacy in malware detection,
they exhibit specific limitations and trade-offs. TELM,
characterized by its two-hidden-layer extreme learning
architecture, faces challenges in interpretability due to the
inherent complexity of deep learning models. The model’s
decision-making processes might be challenging to decipher,
potentially impacting the trust users place in its outputs.
Additionally, TELM’s performance is contingent on the
availability of sufficient labeled training data, making it
susceptible to constraints in scenarios where obtaining diverse
datasets is difficult. The computational intensity of training
TELM models, especially with larger datasets and intricate

Frontiers in Physics frontiersin.org18

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


architectures, can pose challenges in resource-constrained
environments.

On the other hand, GBWODL-AMC, which integrates Gauss-
Mapping Black Widow Optimization, introduces its own set of
limitations. The model’s effectiveness is tied to the appropriateness
of the chosen optimization technique, and its dependency on this
specific strategy may limit its applicability across diverse problem
domains. Hyperparameter sensitivity poses a trade-off, requiring
careful experimentation to select optimal values and avoid reduced
model performance. Deep learning components within GBWODL-
AMC are susceptible to potential overfitting, especially when dealing
with complex datasets, which may hinder the model’s generalization
to new, unseen data. Similar to TELM, the model’s interpretability
may be compromised due to the inherent complexity of deep
learning architectures.

It is common for Android malware to employ code obfuscation
techniques to evade detection. In response, a cutting-edge model, the
Gauss-Mapping Black Widow Optimization with Deep Learning
Enabled Android Malware Classification (GBWODL-AMC), is
introduced. This model combines novel feature selection
techniques with deep extreme learning, and through meticulous
parameter optimization, it achieves a remarkable accuracy rate of up
to 98.95%. The significance of this research extends to the realm of
mobile device security, providing a promising solution for more
effectively combating Android malware.

Another technique delves into the critical domain of detecting
obfuscated malware within network traffic. It introduces the
MalHyStack hybrid classification model, a powerful fusion of
machine learning algorithms and deep learning [44]. This model,
through the incorporation of feature subset selection and a balanced
dataset, achieves exceptional accuracy rates that surpass existing
models. The broader implication of this research is evident in its
ability to combat obfuscated malware efficiently while maintaining a
high degree of accuracy.

In comparing Extreme Learning Machines (ELMs) and
Convolutional Neural Networks (CNNs) for malware detection
across a broader range of datasets, each approach exhibits
distinct strengths and weaknesses. ELMs are characterized by
their fast training times, simplicity, and non-iterative training,
making them efficient for large datasets and resource-constrained
scenarios. However, ELMs may face challenges in capturing
hierarchical features and may require manual feature engineering,
limiting their suitability for complex data, such as images or
sequences. On the other hand, CNNs excel in spatial feature
extraction, hierarchical representation learning, and end-to-end
learning, making them particularly effective for image-based
malware detection tasks [42]. Their ability to automatically learn
hierarchical representations from raw data eliminates the need for
extensive manual feature engineering. Nonetheless, CNNs come
with computational intensity during training, interpretability
challenges due to their black-box nature, and a dependency on
large labeled datasets, posing challenges in data acquisition. When
applied to image-based malware detection, ELMs may perform well
under resource constraints, while CNNs are likely to outperform
ELMs due to their proficiency in spatial feature extraction. In
handling sequential data like API calls or network traffic, ELMs
may struggle with temporal dependencies and might require
additional feature engineering, whereas CNNs, with modifications

like 1D convolutions or recurrent layers, offer a more robust
performance. For multimodal data encompassing a combination
of images and sequences, ELMs may need careful feature
engineering, while CNNs, capable of processing both types of
data, provide a more comprehensive solution. In terms of
generalization across diverse malware datasets, ELMs might face
challenges, especially with complex hierarchical features. In contrast,
CNNs, with their inherent capacity for hierarchical representation
learning, demonstrate potential for better generalization across a
broad spectrum of malware datasets [43].

In the realm of malware detection, enhancing the interpretability
of deep learning models holds immense importance for establishing
trust, comprehending model predictions, and gaining insights into
classification decisions. To achieve this, several key approaches have
emerged. Feature visualization techniques enable the understanding
of the specific characteristics or patterns that the model identifies as
indicative of malware. Techniques like activation maximization or
gradient-based methods visualize salient features, such as sequences
of system calls or network traffic patterns. Saliency maps, generated
through methods like Grad-CAM, highlight crucial regions in the
input data that influence the model’s output, shedding light on the
importance of different input features in model decisions. Attention
mechanisms, prevalent in models like transformers, aid in
understanding the model’s processing of sequential data by
visualizing attention weights, indicating the elements of input
sequences that hold more significance [44]. Transforming
complex models into interpretable rule-based systems,
accomplished through rule extraction algorithms or decision tree
induction, simplifies model logic and facilitates comprehension.
Layer-wise relevance propagation helps attribute relevance to
input features by discerning the contribution of different model
layers to the final decision. Model distillation aims to simplify
complex models while retaining performance, training smaller,
more interpretable models to mimic the behavior of intricate
deep learning models. Techniques like Integrated Gradients or
SHAP values quantify the impact of each input feature on model
output, providing a clear understanding of feature importance.
Moreover, domain-specific visualization tools tailored for
malware analysis offer interactive dashboards or tools for security
analysts, enabling intuitive exploration of model decisions and
deeper insights into malware behavior.

3.11 Attention models

In the ongoing battle against malware, traditional detection
methods are struggling to keep pace with the constant innovation
of cybercriminals. Attention models, a powerful deep learning
technique, are emerging as a game-changer. These models do not
treat all aspects of a file equally; instead, they learn from vast datasets
of malware and benign software to identify the most critical
features–the red flags that scream “malicious.” The
polymorphism in malicious components has deteriorate the
situation, as malicious files, which essentially belong to the same
malware “family” and have the same form of malicious behavior, are
constantly modified, or obfuscated using various strategies to make
them appear to be many different files [45]. By focusing on these key
elements, attention models can achieve higher accuracy in detecting

Frontiers in Physics frontiersin.org19

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


both known and unknown malware strains, while also reducing the
number of innocent files mistakenly flagged as threats. This ability to
adapt and learn makes them invaluable in the fight against ever-
evolving cyber threats. Traditional methods often suffer from a high
rate of false positives, mistakenly quarantining harmless files.
Existing gray image based malware detection and classification
approaches are primarily based on conventional machine
learning or deep learning with Convolutional Neural Networks
(CNNs). GIST + kNN pioneers the application of machine
learning in malware classification on the Malimg dataset.
Subsequent studies relied on features extracted from PCA
features, N-gram application programming interface (API)
sequences, opcodes, control flow graphs, text semantics of
network traffic and URLs, system calls, OS-level information flow
and the network activities of the malware. While these
advancements have broadly elevated the field, they require
manual feature design, deep foundational knowledge, and even
the construction of complex network system environments for
detection and classification [45]. Attention models, by placing
less weight on irrelevant features, can significantly reduce these
false alarms. This translates to less wasted time and resources for
security teams, allowing them to focus on genuine threats.
Additionally, some attention models offer a degree of
explainability. They can provide insights into why a particular
file was classified as malware, helping security professionals
understand the attacker’s techniques and potentially identify
vulnerabilities that need to be addressed.

The attention-based feature extraction method allows malicious
code analysts to only analyze parts of malicious code based on the
features extracted by the attention-based feature extraction method,
rather than analyzing the entire malicious code. This is expected to
considerably reduce the efforts required by malicious code analysts [46].
An implementation of the ARI cell with LSTM networks, called ARI-
LSTM enhances the LSTM cell by incorporating ARImechanismwithin
the cell, and use sthe resulting neural network for sequence learning with
ransomware. Through evaluation on a ransomware dataset for the
Windows operating system environment, it is seen that ARI-LSTM
improves the performance of an LSTM in detecting ransomware from
emulation sequences [47].

Cross-dataset experiments conducted on the Windows and
Android datasets, with an accuracy of 90.64% on cross-dataset
detection of the android [45]. The attention-based model yielded
an accuracy that was approximately 12% and 5% higher than those
of the CNN-based and SC-LSTM-based models, respectively [46].

However, attention models are not without their challenges.
Training these complex algorithms requires significant resources.
Large, diverse datasets of malware samples are essential for them to
learn and adapt effectively. Additionally, the computational cost of
training and deploying these models can be substantial. Finally,
while some models offer explanations, their inner workings can be
intricate, requiring expertise to fully comprehend. Despite these
challenges, the potential of attention models is undeniable. Their
ability to learn, adapt, and focus on the most critical features makes
them a powerful weapon in the fight against malware. As these
models continue to evolve and become more accessible, they hold
the promise of a future where cyber defenses are more agile and
effective, constantly learning and adapting to the ever-changing
threat landscape.

3.12 Summary and interpretability of deep
learning models

Choosing the optimal model for malware detection hinges on
several factors, including dataset characteristics, feature
requirements, and performance expectations. Among the
considered models, each possesses unique strengths. Recurrent
Neural Networks (RNNs) excel in capturing temporal
dependencies, making them suitable for sequential data. Deep
Autoencoders prove effective in learning hierarchical
representations, particularly for anomaly detection. Long Short-
Term Memory (LSTM) networks, designed for sequential data,
demonstrate prowess in handling long-term dependencies. Deep
Neural Networks (DNNs) are versatile, capable of learning complex
non-linear mappings. Deep Belief Networks (DBNs) are adept at
unsupervised learning and hierarchical representation learning.

Deep Convolutional Neural Networks (CNNs) are well-suited
for image-based data, capturing spatial hierarchies effectively. Deep
Generative Models can generate new samples, aiding in
understanding data distribution. Deep Boltzmann Machines are
suitable for unsupervised learning and complex dependency
modeling. Deep Reinforcement Learning is designed for tasks
involving agent-environment interactions and policy learning.
Extreme Learning Machines (ELMs) stand out for their fast
training, simplicity, and good generalization.

For malware detection, a combination or ensemble approach
may prove effective. Models like CNNs can extract features from
binary files or images, while RNNs or LSTMs capture temporal
dependencies in malware behavior. Unsupervised learning models
like autoencoders or DBNs can aid in anomaly detection,
identifying novel malware patterns. Experimentation and
evaluation on specific datasets are crucial to determine the most
effective model, and regular updates are essential to adapt to
evolving malware threats.

4 Comparisons with non deep
learning models

In the realm of malware detection, traditional non-deep learning
methods like signature-based detection heavily rely on predefined
patterns, making them susceptible to 0-day threats. Heuristic-based
approaches utilize rules but can struggle to adapt to evolving tactics.
Behavioural analysis, while effective, faces scalability issues and
might overlook subtle anomalies. Non-deep learning machine
learning algorithms such as Decision Trees and SVMs demand
expert feature engineering and struggle with high-dimensional data
complexity [7].

In contrast, deep learning models provide a range of distinct
advantages over these traditional methods. They autonomously
learn intricate features from raw data, bypassing the limitations
of handcrafted features in traditional methods. Their adaptability to
diverse data types and capacity to generalize to new, unseen malware
variants outshine the rigidity of traditional approaches, often reliant
on frequent updates [8]. Deep learning excels in capturing complex
patterns and relationships, particularly in large-scale datasets,
surpassing traditional methods in nuanced pattern
recognition tasks.

Frontiers in Physics frontiersin.org20

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


Furthermore, deep learning’s scalability and automation in
handling large datasets streamline feature extraction, whereas
traditional methods may encounter scalability limitations.
However, while traditional methods often boast interpretability
due to explicit rule-based decisions, deep learning models’
complex architectures render them less interpretable, though
ongoing efforts aim to enhance interpretability through emerging
techniques. Additionally, while deep learning can learn from
imbalanced data, it requires specific strategies to effectively
manage class imbalance, a challenge that traditional methods also
encounter, often necessitating sophisticated sampling or weighting
techniques [6, 10–12].

5 Smartphone applications in malware
analysis and detection

Smartphone applications have emerged as valuable assets in the
field of malware analysis and detection. Numerous tools have been
designed for both Android and iOS platforms, leveraging the
computing power and connectivity of smartphones to enhance
the capabilities of security professionals and organizations. These
applications play a pivotal role in scanning and analyzing mobile
apps for known malware signatures, identifying behavioral
anomalies and vulnerabilities. This aids in the early detection of
potentially harmful applications and helps prevent device
compromise [48].

One key feature of these applications is real-timemonitoring, which
keeps a vigilant eye on network traffic, system activity, and app
behavior. This continuous surveillance is crucial for identifying
suspicious or malicious activities on mobile devices, enabling prompt
alerts to users or administrators about unusual behaviors or interactions
with known malicious domains. Integration with Mobile Device
Management (MDM) solutions further enhances the functionality of
these applications. MDM allows organizations to manage and secure
mobile devices remotely, enforce security policies, deploy updates, and,
if necessary, remotely wipe compromised devices. This integration is
particularly beneficial for enterprises looking to safeguard their mobile
device ecosystem [49].

Furthermore, some of these smartphone applications
incorporate threat intelligence feeds, providing access to the latest
information on mobile-specific threats and indicators of
compromise. This integration significantly improves detection
and response capabilities against emerging threats. Another
aspect of these applications is app reputation scanning [50]. They
assess mobile applications based on various factors, including the
source, required permissions, and code behavior. This enables users
and administrators to make informed decisions about app
installation and usage.

Behavioral analysis is another advanced feature offered by some
applications, where they monitor the interactions of mobile apps
with device resources and the network. This method effectively
unveils hidden or obfuscated malicious activities that may not be
evident through static analysis alone. Additionally, there is a focus
on user education within these applications. They provide tips and
information about potential security risks and best practices for safe
mobile device usage, empowering users to become more aware and
vigilant regarding their security [51].

These applications often include the capability to detect rooting
or jailbreaking of devices. Rooted or jailbroken devices are more
susceptible to security risks, and detecting such modifications is
crucial for alerting users and administrators to potential tampering
or compromise. The contribution of smartphone applications to
malware analysis and detection is increasingly significant, especially
as mobile devices become more prevalent targets for cybercriminals.
These applications empower users and organizations to proactively
defend their smartphones and the sensitive data they contain. As the
mobile threat landscape evolves, the importance of these
applications in ensuring mobile security and privacy becomes
even more critical [52].

6 Recent tools in malware analysis
and detection

Machine learning has become a popular approach for malware
detection due to its proficiency in identifying patterns and anomalies
in large datasets [53–55]. Various algorithms, such as Random
Forest, Support Vector Machines, and Neural Networks, are
employed to analyze features extracted from executable files,
including binary code, API calls, and file metadata, effectively
detecting malware. Dynamic analysis tools, which involve
executing malware in a controlled environment to observe its
behavior, have also seen significant advancements. Modern tools
offer capabilities like automated sandboxing and advanced code
instrumentation, allowing for real-time monitoring of system and
network activities and analysis of the malware’s actions. Examples of
these tools include Cuckoo Sandbox, Any. Run, and
Hybrid Analysis.

Behavioral analysis is another critical area, focusing on how
malware behaves upon execution. By using advanced techniques to
detect abnormal behavior patterns, such as process injection and
privilege escalation, these tools can identify malicious actions,
enabling the detection of previously unknown malware. Memory
forensics tools have become increasingly sophisticated, with tools
like Volatility enabling analysts to extract and analyze information
from a system’s RAM. These tools are crucial for uncovering hidden
processes, rootkits, and other memory-resident malware. YARA
rules have gained popularity for creating custom patterns to identify
specific malware characteristics. These rules, defined by security
professionals, are instrumental in both static and dynamic analysis
phases. In response tomalware authors developing sandbox-evading
techniques, analysts have improved sandbox environments tomimic
real systems more closely and developed methods to detect sandbox
detection techniques. Blockchain technology is also being utilized to
create immutable and transparent threat intelligence databases. This
innovation aids in the secure sharing and distribution of malware
indicators, facilitating quicker detection and response to
emerging threats.

Deep learning, including techniques like convolutional and
recurrent neural networks, is increasingly applied in malware
analysis. These methods are capable of learning intricate patterns
and behaviors, enhancing the accuracy of identifying malicious code
and activities. Zero-Day Vulnerability Scanners are evolving to
identify vulnerabilities that might be exploited by malware. These
tools employ a range of techniques, such as static analysis and

Frontiers in Physics frontiersin.org21

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


fuzzing, to detect 0-day vulnerabilities. Finally, with the rise of IoT
devices, specialized tools and techniques are emerging for IoT-
specific malware analysis. These tools focus on the unique
characteristics and communication patterns of IoT devices, aiding
in the detection and analysis of potential threats in this growing
domain. Figure 4 illustrates the categories of recent tools in malware
analysis and detection.

6.1 Behavioral analysis tools

Behavioral analysis is a crucial approach in malware analysis and
detection, focusing on how malware behaves when executed in a
controlled environment [56–59]. This technique observes the
dynamic actions and interactions of malware with the host
system and network, allowing for the detection of malicious
behavior that may not be evident through static analysis alone.
The core of behavioral analysis involves creating a dynamic
execution environment, commonly known as a sandbox, where
malware samples can be safely executed. This environment
replicates the target system, enabling the malware to run without
causing harm to the actual host.

Within this setting, various tools monitor different aspects of the
malware’s behavior, including file system interactions, registry
modifications, process creation, and network communication.
These tools log system calls, API functions, and other activities
to meticulously track the sequence of events. Behavioral analysis
tools also establish behavioral signatures that define what constitutes
normal system behavior. By comparing the observed actions of the
malware against these signatures, abnormal and potentially
malicious behavior can be identified, such as attempts to encrypt
files or establish unauthorized network connections. Additionally,
heuristic algorithms and anomaly detection techniques are applied
to the collected data. These algorithms search for patterns that
deviate from the expected norm, flagging activities that indicate
malicious intent. This approach is particularly effective in detecting
previously unknown malware. Once the analysis is complete, these
tools generate comprehensive reports detailing the malware’s
behavior, its impact on the system, and indicators of
compromise (IOCs).

6.2 Threat intelligence platforms

Threat Intelligence Platforms (TIPs) are crucial for enhancing
malware analysis and detection. They offer a structured framework
for collecting, aggregating, analyzing, and disseminating threat
intelligence. These platforms are invaluable for cybersecurity
professionals and organizations as they provide critical insights to
proactively defend against emerging threats [60–63]. A key function
of TIPs is aggregating data from diverse sources, including feeds,
internal logs, open-source intelligence, and proprietary databases.
This data includes indicators of compromise (IOCs) such as
malware signatures, IP addresses, domain names, and file hashes,
thus providing a comprehensive view of potential threats. TIPs also
play a vital role in normalizing and enriching this raw threat data,
ensuring consistency and actionability. They standardize different
data formats and add contextual information, such as source

reputation and known malware families, thereby enhancing the
quality and relevance of the intelligence. Moreover, TIPs employ
sophisticated algorithms to correlate and analyze the collected data.
This process involves identifying patterns, trends, and anomalies
that may indicate malware infections or other malicious activities.
Advanced techniques like machine learning and data analytics are
often utilized to uncover previously unknown threats.

In terms of incident response, TIPs provide real-time alerts and
playbooks for security teams. They enable automated actions based
on received intelligence, such as blocking malicious IP addresses or
isolating infected devices, thereby facilitating swift and effective
responses to threats. Furthermore, these platforms promote the
sharing of threat intelligence within trusted networks and
information-sharing communities. This collaboration allows
organizations to benefit from collective insights and strengthen
their overall security posture. Standards like STIX/TAXII are
often employed to facilitate the exchange of information. TIPs
offer a high degree of customization and can be tailored to meet
the specific needs of an organization. They often integrate with
existing security tools and infrastructures, such as SIEMs, firewalls,
and endpoint protection systems, to provide automated responses
and adaptability to the ever-evolving threat landscape.

Moreover, the storage of historical threat data by TIPs is crucial
for trend analysis and retrospective investigations. This historical
perspective aids in identifying long-term patterns and
understanding how cybercriminal tactics evolve over time. TIPs
assist organizations in compliance reporting by maintaining detailed
records of threat intelligence and incident response activities. These
records are essential for meeting regulatory requirements and
facilitating audits, thus playing a critical role in organizational
compliance strategies.

6.3 Deception tools

Deception tools, a relatively new but increasingly vital
component in the cybersecurity landscape, have demonstrated
remarkable effectiveness in malware analysis and detection. These
tools are designed to create a deceptive environment within a
network with the aim of misleading, confusing, and ultimately
trapping malicious actors and malware. They employ various
strategies and technologies to achieve this goal [64–66]. A
common technique used in deception tools is the deployment of
honeypots and honeynets, which essentially act as decoy systems
created to mimic real assets within a network. These systems are
designed to be enticing to attackers, drawing them in and piquing
their interest. Honeypots can range in complexity, from low-
interaction versions that emulate services and applications at a
basic level, to high-interaction variants that closely simulate real
systems, thus enticing attackers further into the deception.

In addition to these decoy systems, deception tools also generate
counterfeit data and services. This includes forged documents,
credentials, and network shares that appear legitimate and
attractive to attackers. When attackers engage with this deceptive
content, the tools capture their actions, enabling detailed analysis of
their tactics, techniques, and procedures (TTPs). Advanced
simulation techniques are another facet of deception tools, going
beyond simple emulation. These tools can mimic actual network

Frontiers in Physics frontiersin.org22

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


behavior, including simulating user actions, generating realistic
traffic patterns, and replicating the unique “personality” of a
network. This level of sophistication makes the deceptive
environment more convincing and effective.

One of the key advantages of deception tools is their ability to
provide early detection of potential threats. When attackers or
malware interact with these deceptive elements, they
inadvertently trigger alerts, notifying security teams of the
presence of a threat. This enables rapid investigation and
response, helping to mitigate risks more efficiently. Beyond mere
detection, these tools play a critical role in attribution and analysis.
By examining how attackers interact with the decoys, security teams
can gain valuable insights into their methodologies. This
understanding is crucial for developing more effective
countermeasures against future attacks. Deception tools are also
adept at luring and containing malware. They can create simulated
vulnerabilities or backdoors specifically designed to be exploited by
malware, allowing for the isolation and detailed analysis of the
malicious code. This capability is particularly useful for studying
malware behavior and developing strategies to neutralize it.

Another significant advantage of deception tools is their ability
to minimize false positives. By focusing on interactions with the
deceptive elements, these tools reduce the volume of irrelevant
alerts, streamlining the workload of security teams and
enhancing the overall efficiency of malware detection. The most
advanced deception tools are adaptive, capable of evolving over time
based on observed attacker behavior. They continuously refine and
update their deceptive elements to make them even more
convincing, ensuring they remain effective against evolving
threats and sophisticated attackers. This adaptive nature
underscores the dynamic and proactive approach of deception
tools in the ongoing battle against cyber threats.

6.4 Memory forensics tools

Memory forensics tools are essential in the field of malware
analysis and detection, providing cybersecurity experts with the
means to examine a computer’s volatile memory (RAM) for
indications of malicious activities [67–69]. In the overall process
of forensic analysis, memory analysis plays a crucial role since
malware often resides in memory to avoid detection and
maintain its presence. These tools facilitate the retrieval of
memory dumps from live systems or capture memory images
from forensic images, which include active processes, data
structures, and code present at the time of acquisition. They
enable detailed analysis of these memory dumps, focusing on
identifying running processes, their memory footprints, and
associated threads. This analytical process is crucial for
identifying suspicious or unauthorized applications that may be
operating covertly.

A significant function of memory forensics tools is malware
detection. They are skilled at scanning memory for known
malicious signatures, patterns, or behaviors. This includes
identifying injected or obfuscated code, rootkits, and other
forms of memory-resident malware that are notoriously difficult
to detect through conventional means. Furthermore, these tools
are instrumental in uncovering evidence of API hooking and

function call redirection, tactics commonly employed by
malware to intercept and manipulate system calls. This
capability is crucial for understanding the extent of the
malware’s control over a system. Detection of rootkits is
another vital aspect of memory analysis, as rootkits are
designed to be invisible to traditional file-based forensics.
Memory forensics tools can reveal hidden processes, files, and
network connections by exploring memory structures.

Advanced memory forensics tools even extend their
capabilities to the examination of kernel memory, a critical area
where essential system data and structures reside. Analyzing this
segment can provide deep insights into the inner workings of the
operating system and any potential manipulations by malware.
These tools can also analyze memory dumps to extract information
about active network connections and related data, assisting in the
identification of malicious network communications. This analysis
of network activity is crucial for understanding how malware
communicates and potentially exfiltrates data. Timeline
reconstruction is another crucial feature offered by memory
forensics tools. By analyzing memory dumps over a period of
time, analysts can piece together a timeline of events, revealing the
sequence in which processes were initiated and actions were
executed. This is particularly helpful in understanding the
development and spread of a malware infection within a
system. The extensibility of many memory forensics tools
through plugin support enhances their utility significantly.
Analysts can utilize custom scripts or leverage pre-built plugins
to automate and refine the analysis process, making these tools
even more powerful in combating sophisticated malware threats.

6.5 Sandboxing with threat intelligence
integration

Sandboxing with integrated threat intelligence represents a
sophisticated and effective approach to malware analysis and
detection by combining isolated environments with up-to-date
threat intelligence [70–72]. This method offers a comprehensive
and dynamic means of understanding and identifying malicious
software. At its core, sandboxing involves executing potentially
malicious code within a controlled and isolated environment,
such as a virtual machine or container. This setup closely mimics
a real system, encouraging malware to demonstrate its full
functionality and intentions. During the sandboxing process,
malware is allowed to run freely, enabling real-time capture of its
behavior, including file system interactions, registry changes,
network communications, and process activities. This dynamic
analysis provides valuable insights into the malware’s execution
flow, evasion tactics, and persistence mechanisms.

The integration of threat intelligence feeds is a crucial aspect of
this approach. These feeds are constantly updated sources of
information, providing the latest data on known threats,
indicators of compromise (IOCs), malware signatures, and other
relevant security details. By incorporating these feeds into the
sandboxing environment, it becomes possible to retrieve up-to-
date threat information instantly. Consequently, the behavior of
the analyzed code can be cross-referenced with this data, facilitating
the detection of matches with known malware. The sandbox also

Frontiers in Physics frontiersin.org23

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


plays a vital role in IOC detection by scrutinizing the behaviors and
attributes of the executed code against the IOCs from threat
intelligence feeds. A match suggests that the code under analysis
exhibits characteristics typical of known malicious software. Upon
detecting a match or suspicious behavior, the sandbox generates
alerts and detailed reports. These reports provide valuable
information about the malware’s actions, potential impact, and
IOCs, which are crucial for further investigation and mitigation
efforts. Additionally, integrating sandboxing with incident response
tools can trigger automated responses, such as isolating affected
systems, blocking malicious domains, or generating tickets for
human analysts to investigate further.

Another advantage of this integrated approach is its support for
historical analysis. The threat intelligence within the sandbox allows
for checking previously analyzed samples for known threats, aiding
in the identification of recurring attack patterns and related malware
families. By combining sandboxing with threat intelligence
integration, organizations gain a proactive, responsive, and
insightful method for conducting malware analysis and detection.
This approach not only aids in identifying and mitigating known
threats but also plays a crucial role in addressing emerging threats by
leveraging the latest intelligence data in real-time while closely
monitoring the behavior of suspicious code in a secure and
controlled environment.

7 Open challenges

In the field of malware detection using deep learning, there are
several challenges that need to be addressed and promising avenues for
future research [23, 73–85]. Figure 5 illustrates the open challenges
associated with the deep learning-powered malware detection in
cyberspace. One of the main challenges is the need to enhance the
resilience of deep learning models against adversarial attacks, which are
increasingly employed by malware authors to evade detection.
Additionally, it is crucial to develop interpretable models that shed
light on the decision-making processes of these models. Real-time
detection, particularly in streaming environments, is becoming
imperative to swiftly identify and counteract malware propagation.
As the volume of malware samples and feature spaces continues to
expand, scalability concerns must be addressed [44, 86–98].

Another important area for exploration is the development of
techniques for few-shot and zero-shot learning, which can
facilitate the detection of new and previously unseen malware
strains. This capability is crucial in the ever-evolving threat
landscape. The fusion of data from multiple sources, privacy-
preserving methods for sharing labeled malware samples, and
ethical considerations are also significant areas for research [14,
75, 98–110]. Improving malware detection accuracy can be
achieved through efficiency in model architectures, seamless
integration with existing security systems, cross-domain
transfer learning, hybrid models that combine different deep
learning architectures, and automated feature engineering
methods. User education and awareness also play a pivotal
role in reducing inadvertent installation or interaction with
malware [21, 111–117]. Finally, collaborative threat
intelligence platforms that enable information sharing among
organizations represent a promising approach to collectively

strengthen defenses against malware. Figure 3 illustrates the
open challenges in deep learning-powered malware detection
in cyberspace.

The field of deep learning-poweredmalware detection encompasses
various challenges and solutions [118–123]. One significant challenge is
handling 0-day attacks, as deep learning models traditionally rely on
historical data and struggle against novel, unseen threats [124–128]. To
address this, techniques such as transfer learning and anomaly detection
should be employed to enhance themodels’ ability to detect new threats.
Another area of concern is the collection, standardization,
benchmarking, and reproducibility of malware datasets. The lack of
standardized datasets and evaluation metrics hinders fair comparisons
between different deep learning models. Overcoming this challenge
requires the establishment of standardized benchmarks and datasets for
malware analysis, as well as promoting open data sharing and
collaboration within the research community.

The mathematical provability and interpretability of deep learning-
powered models also pose challenges. These models, especially neural
networks, are often considered “black boxes,” making their decision-
making processes opaque. It is essential to develop interpretable models
or techniques that explain the predictions of deep learning models to
ensure transparency and trust in malware detection systems.
Additionally, class imbalance and distribution bias in training and
testing datasets can significantly impact model performance.
Imbalanced datasets tend to bias models towards the majority class,
resulting in poor performance on minority classes that are often crucial
inmalware detection. Techniques like oversampling, undersampling, or
synthetic data generation, along with tailored evaluation metrics, are
vital for addressing this issue. Adapting to real-world settings and
maintaining context awareness is another hurdle.

Deep learning models may struggle to adapt to rapidly changing
environments, leading to potential obsolescence [129–136]. Developing
dynamic models capable of continuous learning from new data and
adapting to evolving threat landscapes is a solution to this problem. The
lack of benchmark platforms for deep learning-powered malware
detection research also hampers progress and collaboration in the
field. Establishing such benchmark platforms and encouraging
competitions can foster innovation and the development of more
effective malware detection solutions. The aging problem of malware
detection and classification tools is an ongoing challenge. As attackers
evolve their tactics and techniques, malware detection tools often
become less effective over time. To address this, continuous research
and development are necessary to keep these tools updated and capable
of identifying new attack vectors.

8 Future research directions

Deep learning techniques are revolutionizingmalware detection,
offering innovative approaches to tackle the complexity and
sophistication of modern cyber threats. Graph Neural Networks
(GNNs) excel in comprehending intricate relationships within
graph-structured data, enabling a deeper understanding of
malware behavior patterns often missed by traditional models.
Transformer-based architectures, renowned for their success in
natural language processing, hold promise in capturing temporal
dependencies within sequences of system or API calls, potentially
enhancing the comprehension of malware behavior.

Frontiers in Physics frontiersin.org24

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


The emergence of meta-learning techniques empowers models
to swiftly adapt to new malware variants or unseen attack patterns,
bolstering the adaptability and generalization of detection systems.
Self-supervised learning, by training models on unlabeled data,
unveils latent features and anomalies within malware, potentially
improving identification accuracy. Federated learning, a
collaborative approach, allows multiple devices or organizations
to jointly train models without compromising data privacy,
leading to more robust and accurate malware detection systems.
A prime example of the effectiveness of Federated Learning is its
application in improving predictive text and autocorrect features on
smartphones. This technology involves training an algorithm across
multiple decentralized devices (or servers) holding local data
samples, without exchanging them. This method is used by
major tech companies to enhance their keyboard applications. In
this scenario, each smartphone has a local model that learns from
the user’s typing behavior. Instead of sending individual data points
(like the words typed) back to a central server, the smartphone
computes an update to the model based on the local data and only
sends this model update back to the server. This way, the central
model gets trained over time with the aggregated updates from
millions of users, without ever having access to specific examples
from any individual’s data. This preserves privacy while still
benefiting from the collective learning of all users.

Adversarial robustness techniques aim to fortify models against
attacks, ensuring the reliability of malware detection systems in the
face of adversarial threats. Continual learning techniques enable
models to evolve with changing environments, incorporating new
malware behaviors while retaining the ability to detect historical
attack patterns. Finally, Explainable AI (XAI) techniques enhance
the interpretability of models, fostering trust and aiding
cybersecurity experts in comprehending model decisions. These
emerging deep learning techniques collectively promise to elevate
the efficacy and resilience of malware detection systems, offering a
more comprehensive defense against evolving cyber threats.

The advancement of technology will significantly contribute to the
progress of research in malware detection using deep learning models
[137–140]. In Explainable Artificial Intelligence, the focus should be on
enhancing the interpretability and transparency of deep learning
models for cybersecurity experts. This entails developing neural
network architectures that are easier to understand and techniques
for generating explanations of model predictions in a human-readable
format. Additionally, in Generative Artificial Intelligence, there is a need
to explore how generative models like GANs and VAEs can be utilized
to generate synthetic malware samples. These samples can be used to
train deep learning models, allowing them to mimic the creativity of
malware authors and enabling more robust model training and testing.
Moreover, in the context of the Internet of Everything (IoE), deep
learning models can be applied to analyze and secure interconnected
devices and networks. It is crucial to address the unique challenges and
vulnerabilities that arise in malware detection within the IoE ecosystem.

The limitations inherent in singular deep learning models for
malware detection necessitate exploration of more advanced
methodologies. Hybrid and ensemble techniques present promising
avenues for enhanced threat coverage and resilience. These approaches
can synergistically combine the strengths of deep learning architectures,
such as convolutional neural networks (CNNs) and long short-term
memory networks (LSTMs), with established methods like rule-based

pre-filtering and feature engineering. For instance, domain knowledge
may be leveraged to extract salient features from code and network
traffic, which can then be fed into CNNs for automated learning of
complex representations. Subsequently, LSTMs can analyze the
remaining data for intricate temporal sequences indicative of novel
malware, reducing computational burden and focusing resources on
potential threats. Ensemble techniques further diversify the defensive
landscape by combining diverse deep learning models trained on
disparate data representations. Meta-learning algorithms can then
orchestrate the collective predictions of these models, resulting in
enhanced generalizability and improved resilience against
evasion attempts.

However, the dynamic nature of the malware landscape
demands agile solutions. Continuous learning techniques
empower models to dynamically update their knowledge base
with incoming data and emerging threats, obviating the need for
complete retraining. Incremental learning approaches, such as
online learning with memory replay, enable models to
continuously learn from new data points while retaining past
knowledge, mitigating the risk of catastrophic forgetting.
Curriculum learning further facilitates this process by gradually
exposing the model to more complex malware samples, building a
robust foundation for accurate real-world detection. Additionally,
meta-learning techniques can equip models with the ability to learn
how to learn quickly on new tasks, enabling rapid adaptation to
novel malware variants.

9 Conclusion

This article delves into the realm of deep learning models for
malware detection in cyberspace, highlighting their significance and
contributions to the field of cybersecurity. Deep learning models
have emerged as powerful tools in combating malware, offering
unparalleled potential in automatically learning features from vast
datasets. However, it is crucial to acknowledge the limitations of
current deep learning techniques in malware detection. These
limitations include the vulnerability of deep learning models to
adversarial attacks and the necessity of large, labeled datasets for
effective training. Future directions in this field could involve
exploring federated learning techniques to enhance privacy and
reduce reliance on centralized data collection. Additionally,
combining multiple deep learning approaches, such as ensemble
models, could further enhance detection capabilities, particularly
against evolving and sophisticated malware threats. The impact of
deep learning on malware detection in cyberspace has been
substantial. These models have revolutionized the field by
providing accurate and efficient means of categorizing malware
into distinct families or types. They empower security researchers
and practitioners to swiftly identify and counter emerging threats,
ultimately strengthening cybersecurity practices. The diversity of
deep learning architectures, including Recurrent Neural Networks
(RNNs) and Deep Convolutional Neural Networks (DCNNs), has
expanded the range of applications in malware detection, making
them a critical tool in the ongoing battle against evolving cyber
threats. As cybersecurity concerns continue to grow, deep learning
emerges as a viable option for advancing the state of the art in
malware identification and analysis.

Frontiers in Physics frontiersin.org25

Redhu et al. 10.3389/fphy.2024.1349463

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


Author contributions

AR: Data curation, Formal Analysis, Investigation,
Writing–original draft, Writing–review and editing. PC: Data
curation, Formal Analysis, Investigation, Writing–original draft,
Writing–review and editing. KS: Conceptualization, Data
curation, Investigation, Methodology, Software, Supervision,
Visualization, Writing–original draft, Writing–review and editing.
TD: Funding acquisition, Project administration, Validation,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Kwon I, Im EG. Extracting the representative API call patterns of malware families
using recurrent neural network. In: Proceedings of the Proceedings of the International
Conference on Research in Adaptive and Convergent Systems; September 20-23, 2017;
ACM: Krakow Poland (2017). p. 202–7.

2. Amin M, Tanveer TA, Tehseen M, Khan M, Khan FA, Anwar S. Static malware
detection and attribution in android byte-code through an end-to-end deep system.
Future generation Comput Syst (2020) 102:112–26. doi:10.1016/j.future.2019.07.070

3. Nobakht M, Javidan R, Pourebrahimi A. DEMD-IoT: a deep ensemble model for
IoT malware detection using CNNs and network traffic. Evolving Syst (2023) 14(3):
461–77. doi:10.1007/s12530-022-09471-z

4. Imamverdiyev Y, Abdullayeva F. Deep learning method for denial of service attack
detection based on restricted Boltzmann machine. Big data (2018) 6(2):159–69. doi:10.
1089/big.2018.0023

5. Eckhart M, Ekelhart A. Digital twins for cyber-physical systems security: state of the art
and outlook. In: Biffl S, Eckhart M, Lüder A, Weippl E, editors. Security and quality in cyber-
physical systems engineering. Cham: Springer International Publishing (2019). p. 383–412.

6. Souri A, Hosseini R. A state-of-the-art survey of malware detection approaches
using data mining techniques. Hum Cent Comput Inf Sci (2018) 8:3. doi:10.1186/
s13673-018-0125-x

7. Malik MI, Ibrahim A, Hannay P, Sikos LF. Developing resilient cyber-physical
systems: a review of state-of-the-art malware detection approaches, gaps, and future
directions. Computers (2023) 12:79. doi:10.3390/computers12040079

8. Razaulla S, Fachkha C, Markarian C, Gawanmeh A, Mansoor W, Fung BCM, et al.
The age of ransomware: a survey on the evolution, taxonomy, and research directions.
IEEE Access (2023) 11:40698–723. doi:10.1109/ACCESS.2023.3268535

9. Deldar F, Abadi M. Deep learning for zero-day malware detection and
classification: a survey. ACM Comput Surv (2023) 56(2):1–37. doi:10.1145/3605775

10. Ali M, Hassen HR, LonesMA, Zantout H. An in-depth review of machine learning
based Android malware detection. Comput Security (2022) 121:102833. doi:10.1016/j.
cose.2022.102833

11. Tayyab U-e.-H, Khan FB, Durad MH, Khan A, Lee YS. A survey of the recent
trends in deep learning based malware detection. J Cybersecur Priv (2022) 2:800–29.
doi:10.3390/jcp2040041

12. Gibert D, Mateu C, Planes J. The rise of machine learning for detection and
classification of malware: research developments, trends and challenges. J Netw Comp
Appl (2020) 153:102526. doi:10.1016/j.jnca.2019.102526

13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al.
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
BMJ (2021) 372:n71. doi:10.1136/bmj.n71

14. Subrahmanyam SSB, Goutham P, Ambati VKR, Bijitha CV, Nath HV. A hybrid
method for analysis and detection of malicious executables in IoT network. Comput
Security (2023) 132:103339. doi:10.1016/j.cose.2023.103339

15. Jain M, Andreopoulos W, Stamp M. Convolutional neural networks and extreme
learning machines for malware classification. J Comp Virol Hacking Tech (2020) 16:
229–44. doi:10.1007/s11416-020-00354-y

16. GulatasKilinc HH, Zaim AH, Aydin MA. Malware threat on edge/fog computing
environments from Internet of Things devices perspective. IEEE Access (2023) 11:
33584–606. doi:10.1109/ACCESS.2023.3262614

17. Zhang N, Xue J, Ma Y, Zhang R, Liang T, Tan YA. Hybrid sequence-based
Android malware detection using natural language processing. Int J Intell Syst (2021)
36(10):5770–84. doi:10.1002/int.22529

18. Chen X. Power system malware detection based on deep belief network classifier.
In: 2022 6th International Conference on Green Energy and Applications (ICGEA); 4th
to 6th March 2022; Singapore (2022). p. 245–9.

19. He N, Wang T, Chen P, Yan H, Jin Z. An android malware detection method
based on deep autoencoder. In: Proceedings of the Proceedings of the 2018 artificial
intelligence and cloud computing conference; July 2 2018 to July 7 2018; San Francisco,
CA, USA (2018). p. 88–93.

20. Reilly C, O Shaughnessy S, Thorpe C. Robustness of image-based malware
classification models trained with generative adversarial networks. In: Proceedings
of the 2023 European Interdisciplinary Cybersecurity Conference; June 14 - 15, 2023;
Stavanger, Norway (2023). p. 92–9.

21. Shu L, Dong S, Su H, Huang J. Android malware detection methods based on
convolutional neural network: a survey. IEEE Trans Emerging Top Comput Intelligence
(2023) 7:1330–50. doi:10.1109/tetci.2023.3281833

22. Daniel A, Deebalakshmi R, Thilagavathy R, Kohilakanagalakshmi T, Janakiraman
S, Balusamy B. Optimal feature selection for malware detection in cyber physical
systems using graph convolutional network. Comput Electr Eng (2023) 108:108689.
doi:10.1016/j.compeleceng.2023.108689

23. Almaleh A, Almushabb R, Ogran R. Malware API calls detection using hybrid
logistic regression and RNN model. Appl Sci (2023) 13(9):5439. doi:10.3390/
app13095439

24. Rezvy S, Petridis M, Lasebae A, Zebin T. Intrusion detection and classification
with autoencoded deep neural network. In: Proceedings of the Innovative Security
Solutions for Information Technology and Communications: 11th International
Conference, SecITC 2018; November 8–9, 2018; Bucharest, Romania (2019). p. 142–56.

25. D’Angelo G, FiccoM, Palmieri F. Malware detection in mobile environments based on
Autoencoders and API-images. Comput. (2020) 137:26–33. doi:10.1016/j.jpdc.2019.11.001

26. Alotaibi A. Identifying malicious software using deep residual long-short term
memory. IEEE Access (2019) 7:163128–37. doi:10.1109/ACCESS.2019.2951751

27. Liu J, Feng Y, Liu X, Zhao J, Liu Q. MRm-DLDet: a memory-resident malware
detection framework based on memory forensics and deep neural network.
Cybersecurity (2023) 6(1):21. doi:10.1186/s42400-023-00157-w

28. Saxe J, Berlin K. Deep neural network based malware detection using two
dimensional binary program features. In: Proceedings of the 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE); Oct. 20 2015 to Oct.
22 2015; Fajardo, PR, USA (2015). p. 11–20.

29. Li D, Wang Z, Xue Y. Deepdetector: android malware detection using deep neural
network. In: Proceedings of the 2018 International Conference on Advances in
Computing and Communication Engineering (ICACCE); IEEE; 22-23 June 2018;
Paris, France (2018). p. 184–8.

30. Mercaldo F, Santone A. Deep learning for image-based mobile malware detection.
J Comp Virol Hacking Tech (2020) 16(2):157–71. doi:10.1007/s11416-019-00346-7

31. Alqahtani A, Azzony S, Alsharafi L, Alaseri M. Web-based malware detection
system using convolutional neural network. Digital (2023) 3(3):273–85. doi:10.3390/
digital3030017

Frontiers in Physics frontiersin.org26

Redhu et al. 10.3389/fphy.2024.1349463

https://doi.org/10.1016/j.future.2019.07.070
https://doi.org/10.1007/s12530-022-09471-z
https://doi.org/10.1089/big.2018.0023
https://doi.org/10.1089/big.2018.0023
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.3390/computers12040079
https://doi.org/10.1109/ACCESS.2023.3268535
https://doi.org/10.1145/3605775
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.3390/jcp2040041
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1016/j.cose.2023.103339
https://doi.org/10.1007/s11416-020-00354-y
https://doi.org/10.1109/ACCESS.2023.3262614
https://doi.org/10.1002/int.22529
https://doi.org/10.1109/tetci.2023.3281833
https://doi.org/10.1016/j.compeleceng.2023.108689
https://doi.org/10.3390/app13095439
https://doi.org/10.3390/app13095439
https://doi.org/10.1016/j.jpdc.2019.11.001
https://doi.org/10.1109/ACCESS.2019.2951751
https://doi.org/10.1186/s42400-023-00157-w
https://doi.org/10.1007/s11416-019-00346-7
https://doi.org/10.3390/digital3030017
https://doi.org/10.3390/digital3030017
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


32. Chaganti R, Ravi V, Pham TD. Image-based malware representation approach
with EfficientNet convolutional neural networks for effective malware classification.
J Inf Security Appl (2022) 69:103306. doi:10.1016/j.jisa.2022.103306

33. Sl SD, Jaidhar CD. Windows malware detector using convolutional neural
network based on visualization images. IEEE Trans Emerging Top Comput (2019)
9(2):1057–69. doi:10.1109/TETC.2019.2910086

34. Kim JY, Cho SB. Obfuscated malware detection using deep generative model
based on global/local features. Comput Security (2022) 112:102501. doi:10.1016/j.cose.
2021.102501

35. Yang J, Li T, Liang G, He W, Zhao Y. A simple recurrent unit model based
intrusion detection system with DCGAN. IEEE Access (2019) 7:83286–96. doi:10.1109/
access.2019.2922692

36. Won DO, Jang YN, Lee SW. PlausMal-GAN: plausible malware training based on
generative adversarial networks for analogous zero-day malware detection. IEEE Trans
Emerging Top Comput (2022) 11(1):82–94. doi:10.1109/tetc.2022.3170544

37. Cui Z, Zhao Y, Cao Y, Cai X, ZhangW, Chen J. Malicious code detection under 5G
HetNets based on a multi-objective RBM model. IEEE Netw (2021) 35(2):82–7. doi:10.
1109/mnet.011.2000331

38. Liu Z,Wang R, Japkowicz N, Tang D, ZhangW, Zhao J. Research on unsupervised
feature learning for android malware detection based on restricted Boltzmann
machines. Future Generation Comp Syst (2021) 120:91–108. doi:10.1016/j.future.
2021.02.015

39. Jayashree R. Enhanced classification using restricted Boltzmann machine method
in deep learning for COVID-19. Understanding COVID-19: role Comput intelligence
(2022) 425–46. doi:10.1007/978-3-030-74761-9_19

40. Pandey S, Kumar N, Handa A, Shukla SK. Evading malware classifiers using RL
agent with action-mask. Int J Inf Security (2023) 22(6):1743–63. doi:10.1007/s10207-
023-00715-w

41. Kim S, Yoon S, Lim H. Deep reinforcement learning-based traffic sampling for
multiple traffic analyzers on software-defined networks. IEEE Access (2021) 9:47815–27.
doi:10.1109/access.2021.3068459

42. Jahromi AN, Hashemi S, Dehghantanha A, Choo KKR, Karimipour H, Newton
DE, et al. An improved two-hidden-layer extreme learning machine for malware
hunting. Comput Security (2020) 89:101655. doi:10.1016/j.cose.2019.101655

43. Aldehim G, Arasi MA, Khalid M, Aljameel SS, Marzouk R, Mohsen H, et al.
Gauss-mapping black Widow optimization with deep extreme learning machine for
android malware classification model. IEEE Access (2023) 11:87062–70. doi:10.1109/
access.2023.3285289

44. Roy KS, Ahmed T, Udas PB, Karim ME, Majumdar S. MalHyStack: a hybrid
stacked ensemble learning framework with feature engineering schemes for obfuscated
malware analysis. Intell Syst Appl (2023) 20:200283. doi:10.1016/j.iswa.2023.200283

45. He Y, Kang X, Yan Q, Li E. ResNeXt+: attention mechanisms based on ResNeXt
for malware detection and classification. IEEE Trans Inf Forensics Security (2023) 19:
1142–55. doi:10.1109/tifs.2023.3328431

46. Choi S, Bae J, Lee C, Kim Y, Kim J. Attention-based automated feature extraction
for malware analysis. Sensors (2020) 20(10):2893. doi:10.3390/s20102893

47. Agrawal R, Stokes JW, Selvaraj K, Marinescu M. Attention in recurrent neural
networks for ransomware detection. In: ICASSP 2019-2019 IEEE international
conference on acoustics, speech and signal processing (ICASSP); May 12-17, 2019;
Brighton, UK (2019). p. 3222–6.

48. Alkahtani H, Aldhyani THH. Artificial intelligence algorithms for malware
detection in android-operated mobile devices. Sensors (2022) 22:2268. doi:10.3390/
s22062268

49. KrzysztońM, Bok B, LewM, Sikora A. Lightweight on-device detection of android
malware based on the koodous platform and machine learning. Sensors (2022) 22:6562.
doi:10.3390/s22176562

50. Lu K, Cheng J, Yan A. Malware detection based on the feature selection of a
correlation information decision matrix. Mathematics (2023) 11:961. doi:10.3390/
math11040961

51. Lee J, Jang H, Ha S, Yoon Y. Android malware detection using machine learning
with feature selection based on the genetic algorithm. Mathematics (2021) 9:2813.
doi:10.3390/math9212813

52. Cañadas AM, Mendez OM, Vega JDC. Algebraic structures induced by the
insertion and detection of malware. Computation (2023) 11:140. doi:10.3390/
computation11070140

53. Singh AK, Taterh S, Mitra U. An efficient tactic for analysis and evaluation of
malware dump file using the volatility tool. SN COMPUT SCI (2023) 4:457. doi:10.1007/
s42979-023-01844-8

54. Amira A, Derhab A, Karbab EB, Omar N. A survey of malware analysis using
community detection algorithms. ACM Comput Surv (2023) 56(2):1–29. doi:10.1145/
3610223

55. Pereberina A, Kostyushko A, Tormasov A. An algorithm for scheduling of threads
for system and application code split approach in dynamic malware analysis. J Comput
Virol Hack Tech (2023) 19:459–68. doi:10.1007/s11416-023-00473-2

56. Hashida Haidros Rahima Manzil S. Detection approaches for android malware:
taxonomy and review analysis. Expert Syst Appl (2024) 238(Part F):122255. doi:10.1016/
j.eswa.2023.122255

57. Kara I. Fileless malware threats: recent advances, analysis approach through
memory forensics and research challenges. Expert Syst Appl (2023) 214:119133. doi:10.
1016/j.eswa.2022.119133

58. Celdrán AH, Sánchez PMS, Castillo MA, Bovet G, Pérez GM, Stiller B. Intelligent
and behavioral-based detection of malware in IoT spectrum sensors. Int J Inf Secur
(2023) 22:541–61. doi:10.1007/s10207-022-00602-w

59. Bhat P, Behal S, Dutta K. A system call-based androidmalware detection approach
with homogeneous and heterogeneous ensemble machine learning. Comput Security
(2023) 130:103277. doi:10.1016/j.cose.2023.103277

60. Sun N, Ding M, Jiang J, XuW, Mo X, Tai Y, et al. Cyber threat intelligence mining
for proactive cybersecurity defense: a survey and new perspectives. IEEE Commun Surv
Tutorials (2023) 25(3):1748–74. doi:10.1109/COMST.2023.3273282

61. Turner A, McCombie S, Uhlmann A. Ransomware-bitcoin threat intelligence
sharing using structured threat information expression. IEEE Security and Privacy
(2023) 21(03):47–57. doi:10.1109/MSEC.2022.3166282

62. Sai Charan PV, Ratnakaram G, Chunduri H, Mohan Anand P, Kumar Shukla S.
DKaaS: DARK-KERNEL as a service for active cyber threat intelligence. Comput
Security (2023) 132:103329. doi:10.1016/j.cose.2023.103329

63. Lin P-C, Hsu W-H, Lin Y-D, Hwang R-H, Wu H-K, Lai Y-C, et al. Correlation of
cyber threat intelligence with sightings for intelligence assessment and augmentation.
Computer Networks (2023) 228:109736. doi:10.1016/j.comnet.2023.109736

64. Sajid MSI, Wei J, Al-Shaer E, Qi D, Abdeen B, Khan L. SymbSODA: configurable
and verifiable orchestration automation for active malware deception. ACM Trans Priv
Secur (2023) 26(4):1–36. doi:10.1145/3624568

65. El-Kosairy A, Abdelbaki N. Deception as a service: intrusion and ransomware
detection system for cloud computing (IRDS4C). Adv Comp Int (2023) 3:9. doi:10.1007/
s43674-023-00056-0

66. Ganfure GO, Wu C -F, Chang Y -H, Shih W -K. RTrap: trapping and containing
ransomware with machine learning. IEEE Trans Inf Forensics Security (2023) 18:
1433–48. doi:10.1109/TIFS.2023.3240025

67. Liu J, Feng Y, Liu X, Zhao J, Liu Q. MRm-DLDet: a memory-resident malware
detection framework based on memory forensics and deep neural network.
Cybersecurity (2023) 6:21. doi:10.1186/s42400-023-00157-w

68. Daghmehchi Firoozjaei M, Samet S, Ghorbani AA. Parent process termination: an
adversarial technique for persistent malware. J Cyber Security Tech (2023) 1–26. doi:10.
1080/23742917.2023.2246229

69. Naeem H, Dong S, Falana OJ, Ullah F. Development of a deep stacked ensemble
with process based volatile memory forensics for platform independent malware
detection and classification. Expert Syst Appl (2023) 223:119952. doi:10.1016/j.eswa.
2023.119952

70. Chen T, Zeng H, Lv M, Zhu T. CTIMD: cyber threat intelligence enhanced
malware detection using API call sequences with parameters. Comput Security (2024)
136:103518. doi:10.1016/j.cose.2023.103518

71. Ilca LF, Lucian OP, Balan TC. Enhancing cyber-resilience for small and medium-
sized organizations with prescriptive malware analysis, detection and response. Sensors
(2023) 23:6757. doi:10.3390/s23156757

72. Geng JX, Wang J, Fang Z, Zhou Y, Wu D, Ge W. A Survey of strategy-driven
evasion methods for PE malware: transformation, concealment, and attack. Comput
Security (2023) 137:103595. doi:10.1016/j.cose.2023.103595

73. Ilca LF, Lucian OP, Balan TC. Enhancing cyber-resilience for small and medium-
sized organizations with prescriptive malware analysis, detection and response. Sensors
(2023) 23(15):6757. doi:10.3390/s23156757

74. Vasani V, Bairwa AK, Joshi S, Pljonkin A, Kaur M, Amoon M. Comprehensive
analysis of advanced techniques and vital tools for detecting malware intrusion.
Electronics (2023) 12(20):4299. doi:10.3390/electronics12204299

75. Singh A, Ikuesan RA, Venter H. MalFe—malware feature engineering generation
platform. Computers (2023) 12(10):201. doi:10.3390/computers12100201

76. Zhang S, Wu J, Zhang M, Yang W. Dynamic malware analysis based on API
sequence semantic fusion. Appl Sci (2023) 13(11):6526. doi:10.3390/app13116526

77. Taher F, AlFandi O, Al-kfairy M, Al Hamadi H, Alrabaee S. DroidDetectMW: a
hybrid intelligent model for android malware detection. Appl Sci (2023) 13(13):7720.
doi:10.3390/app13137720

78. Akhtar MS, Feng T. Evaluation of machine learning algorithms for malware
detection. Sensors (2023) 23(2):946. doi:10.3390/s23020946

79. Taher F, Al Fandi O, Al Kfairy M, Al Hamadi H, Alrabaee S. A proposed artificial
intelligence model for android-malware detection. Informatics (2023) 10(3):67. doi:10.
3390/informatics10030067

80. Alhashmi AA, Darem AA, Alashjaee AM, Alanazi SM, Alkhaldi TM, Ebad SA,
et al. Similarity-based hybrid malware detection model using API calls. Mathematics
(2023) 11(13):2944. doi:10.3390/math11132944

Frontiers in Physics frontiersin.org27

Redhu et al. 10.3389/fphy.2024.1349463

https://doi.org/10.1016/j.jisa.2022.103306
https://doi.org/10.1109/TETC.2019.2910086
https://doi.org/10.1016/j.cose.2021.102501
https://doi.org/10.1016/j.cose.2021.102501
https://doi.org/10.1109/access.2019.2922692
https://doi.org/10.1109/access.2019.2922692
https://doi.org/10.1109/tetc.2022.3170544
https://doi.org/10.1109/mnet.011.2000331
https://doi.org/10.1109/mnet.011.2000331
https://doi.org/10.1016/j.future.2021.02.015
https://doi.org/10.1016/j.future.2021.02.015
https://doi.org/10.1007/978-3-030-74761-9_19
https://doi.org/10.1007/s10207-023-00715-w
https://doi.org/10.1007/s10207-023-00715-w
https://doi.org/10.1109/access.2021.3068459
https://doi.org/10.1016/j.cose.2019.101655
https://doi.org/10.1109/access.2023.3285289
https://doi.org/10.1109/access.2023.3285289
https://doi.org/10.1016/j.iswa.2023.200283
https://doi.org/10.1109/tifs.2023.3328431
https://doi.org/10.3390/s20102893
https://doi.org/10.3390/s22062268
https://doi.org/10.3390/s22062268
https://doi.org/10.3390/s22176562
https://doi.org/10.3390/math11040961
https://doi.org/10.3390/math11040961
https://doi.org/10.3390/math9212813
https://doi.org/10.3390/computation11070140
https://doi.org/10.3390/computation11070140
https://doi.org/10.1007/s42979-023-01844-8
https://doi.org/10.1007/s42979-023-01844-8
https://doi.org/10.1145/3610223
https://doi.org/10.1145/3610223
https://doi.org/10.1007/s11416-023-00473-2
https://doi.org/10.1016/j.eswa.2023.122255
https://doi.org/10.1016/j.eswa.2023.122255
https://doi.org/10.1016/j.eswa.2022.119133
https://doi.org/10.1016/j.eswa.2022.119133
https://doi.org/10.1007/s10207-022-00602-w
https://doi.org/10.1016/j.cose.2023.103277
https://doi.org/10.1109/COMST.2023.3273282
https://doi.org/10.1109/MSEC.2022.3166282
https://doi.org/10.1016/j.cose.2023.103329
https://doi.org/10.1016/j.comnet.2023.109736
https://doi.org/10.1145/3624568
https://doi.org/10.1007/s43674-023-00056-0
https://doi.org/10.1007/s43674-023-00056-0
https://doi.org/10.1109/TIFS.2023.3240025
https://doi.org/10.1186/s42400-023-00157-w
https://doi.org/10.1080/23742917.2023.2246229
https://doi.org/10.1080/23742917.2023.2246229
https://doi.org/10.1016/j.eswa.2023.119952
https://doi.org/10.1016/j.eswa.2023.119952
https://doi.org/10.1016/j.cose.2023.103518
https://doi.org/10.3390/s23156757
https://doi.org/10.1016/j.cose.2023.103595
https://doi.org/10.3390/s23156757
https://doi.org/10.3390/electronics12204299
https://doi.org/10.3390/computers12100201
https://doi.org/10.3390/app13116526
https://doi.org/10.3390/app13137720
https://doi.org/10.3390/s23020946
https://doi.org/10.3390/informatics10030067
https://doi.org/10.3390/informatics10030067
https://doi.org/10.3390/math11132944
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


81. Herrera-Silva JA, Hernández-Álvarez M. Dynamic feature dataset for ransomware
detection using machine learning algorithms. Sensors (2023) 23(3):1053. doi:10.3390/
s23031053

82. Lockett A, Chalkias I, Yucel C, Henriksen-Bulmer J, Katos V. Investigating IPTV
malware in the wild. Future Internet (2023) 15(10):325. doi:10.3390/fi15100325

83. Nachaat Mohamed. Current trends in AI and ML for cybersecurity: a state-of-the-
art survey. Cogent Engineering (2023) 10:2. doi:10.1080/23311916.2023.2272358

84. Sun H, Shu H, Kang F, Guang Y. ModDiff: modularity similarity-based malware
homologation detection. Electronics (2023) 12(10):2258. doi:10.3390/electronics12102258

85. Fedorchenko E, Novikova E, Fedorchenko A, Verevkin S. An analytical review of
the source code models for exploit analysis. Information (2023) 14(9):497. doi:10.3390/
info14090497

86. Buriro A, Buriro AB, Ahmad T, Buriro S, Ullah S. MalwD&C: a quick and accurate
machine learning-based approach for malware detection and categorization. Appl Sci
(2023) 13(4):2508. doi:10.3390/app13042508

87. Djenna A, Bouridane A, Rubab S, Marou IM. Artificial intelligence-based malware
detection, analysis, and mitigation. Symmetry (2023) 15(3):677. doi:10.3390/
sym15030677

88. Cha HJ, Yang HK, Song YJ, Kang AR. Intelligent anomaly detection system
through malware image augmentation in IIoT environment based on digital twin. Appl
Sci (2023) 13(18):10196. doi:10.3390/app131810196

89. Babbar H, Rani S, Sah DK, AlQahtani SA, Kashif Bashir A. Detection of android
malware in the Internet of Things through the K-nearest neighbor algorithm. Sensors
(2023) 23(16):7256. doi:10.3390/s23167256

90. Gazzan M, Sheldon FT. Opportunities for early detection and prediction of
ransomware attacks against industrial control systems. Future Internet (2023) 15(4):
144. doi:10.3390/fi15040144

91. Khalid O, Ullah S, Ahmad T, Saeed S, Alabbad DA, AslamM, et al. An insight into
the machine-learning-based fileless malware detection. Sensors (2023) 23(2):612. doi:10.
3390/s23020612

92. Ba’abbad I, Batarfi O. Proactive ransomware detection using extremely fast
decision tree (efdt) algorithm: a case study. Computers (2023) 12(6):121. doi:10.
3390/computers12060121

93. Zhang S, Hu C, Wang L, Mihaljevic MJ, Xu S, Lan T. A malware detection
approach based on deep learning and memory forensics. Symmetry (2023) 15(3):758.
doi:10.3390/sym15030758

94. Saridou B, Moulas I, Shiaeles S, Papadopoulos B. Image-based malware detection
using α-cuts and binary visualisation. Appl Sci (2023) 13(7):4624. doi:10.3390/
app13074624

95. Alabrah A. A novel neural network architecture using automated correlated
feature layer to detect android malware applications. Mathematics (2023) 11(20):4242.
doi:10.3390/math11204242

96. Lu J, Ren X, Zhang J, Wang T. CPL-net: a malware detection network based on
parallel CNN and LSTM feature fusion. Electronics (2023) 12(19):4025. doi:10.3390/
electronics12194025

97. Aboaoja FA, Zainal A, Ali AM, Ghaleb FA, Alsolami FJ, Rassam MA. Dynamic
extraction of initial behavior for evasive malware detection. Mathematics (2023) 11(2):
416. doi:10.3390/math11020416

98. Deng L, Wen H, Xin M, Li H, Pan Z, Sun L. Enimanal: augmented cross-
architecture IoT malware analysis using graph neural networks. Comput Security (2023)
132:103323. doi:10.1016/j.cose.2023.103323

99. Kumar EP, Priyanka S. A comprehensive survey on hardware-assisted malware
analysis and primitive techniques. Comp Networks (2023) 235:109967. doi:10.1016/j.
comnet.2023.109967

100. Vashishtha LK, Chatterjee K, Rout SS. An Ensemble approach for advance
malware memory analysis using Image classification techniques. J Inf Security Appl
(2023) 77:103561. doi:10.1016/j.jisa.2023.103561

101. Lv M, Zeng H, Chen T, Zhu T. CTIMD: cyber threat intelligence enhanced
malware detection using API call sequences with parameters. Comput Security (2023)
136:103518. doi:10.1016/j.cose.2023.103518

102. Khan SH, Alahmadi TJ, Ullah W, Iqbal J, Rahim A, Alkahtani HK, et al. A new
deep boosted CNN and ensemble learning based IoT malware detection. Comput
Security (2023) 133:103385. doi:10.1016/j.cose.2023.103385

103. Kara I. Fileless malware threats: recent advances, analysis approach through
memory forensics and research challenges. Expert Syst Appl (2023) 214:119133. doi:10.
1016/j.eswa.2022.119133

104. Liu C, Lu J, FengW, Du E, Di L, Song Z. MOBIPCR: efficient, accurate, and strict
ML-based mobile malware detection. Future Generation Comp Syst (2023) 144:140–50.
doi:10.1016/j.future.2023.02.014

105. Kumar S, Panda K. SDIF-CNN: stacking deep image features using fine-tuned
convolution neural network models for real-world malware detection and classification.
Appl Soft Comput (2023) 146:110676. doi:10.1016/j.asoc.2023.110676

106. Zhu H, Wei H, Wang L, Xu Z, Sheng VS. An effective end-to-end android
malware detection method. Expert Syst Appl (2023) 218:119593. doi:10.1016/j.eswa.
2023.119593

107. Kishore P, Barisal SK, Mohapatra DP, Mall R. An efficient two-stage pipeline
model with filtering algorithm for mislabeled malware detection. Comput Security
(2023) 135:103499. doi:10.1016/j.cose.2023.103499

108. Bhat P, Behal S, Dutta K. A system call-based android malware detection
approach with homogeneous and heterogeneous ensemble machine learning. Comput
Security (2023) 130:103277. doi:10.1016/j.cose.2023.103277

109. Banik A, Singh JP. Android malware detection by correlated real permission
couples using FP growth algorithm and neural networks. IEEE Access (2023) 11:
124996–5010. doi:10.1109/access.2023.3323845

110. Perez AJ, Zeadally S, Tan DK. Detecting mobile malware associated with global
pandemics. IEEE Pervasive Comput (2023) 22:45–54. doi:10.1109/mprv.2023.3321218

111. Chen YH, Lin SC, Huang SC, Lei CL, Huang CY. Guided malware sample
analysis based on graph neural networks. IEEE Trans Inf Forensics Security (2023) 18:
4128–43. doi:10.1109/tifs.2023.3283913

112. Lee H, Kim S, Baek D, Kim D, Hwang D. Robust IoT malware detection and
classification using opcode category features on machine learning. IEEE Access (2023)
11:18855–67. doi:10.1109/access.2023.3247344

113. Al-Andoli MN, Sim KS, Tan SC, Goh PY, Lim CP. An ensemble-based parallel
deep learning classifier with PSO-BP optimization for malware detection. IEEE Access
(2023) 11:76330–46. doi:10.1109/access.2023.3296789

114. Manthena H, Kimmel JC, Abdelsalam M, Gupta M. Analyzing and explaining
black-box models for online malware detection. IEEE Access (2023) 11:25237–52.
doi:10.1109/access.2023.3255176

115. Abdelwahed MF, Kamal MM, Sayed SG. Detecting malware activities with
MalpMiner: a dynamic analysis approach. IEEE Access (2023) 11:84772–84. doi:10.
1109/access.2023.3266562

116. Lee S, Lee S, Park J, Kim K, Lee K. Hiding in the crowd: ransomware protection
by adopting camouflage and hiding strategy with the link file. IEEE Access (2023) 11:
92693–704. doi:10.1109/access.2023.3309879

117. Shin K, Lee Y, Lim J, Kang H, Lee S. System API vectorization for malware
detection. IEEE Access (2023) 11:53788–805. doi:10.1109/access.2023.3276902

118. Niu W, Wang Y, Liu X, Yan R, Li X, Zhang X. GCDroid: android malware
detection based on graph compression with reachability relationship extraction for
IoT devices. IEEE Internet Things J (2023) 10:11343–56. doi:10.1109/jiot.2023.
3241697

119. Yu Z, Li S, Bai Y, Han W, Wu X, Tian Z. REMSF: a robust ensemble model of
malware detection based on semantic feature fusion. IEEE Internet Things J (2023) 10:
16134–43. doi:10.1109/jiot.2023.3267337

120. Odat E, Yaseen QM. A novel machine learning approach for android malware
detection based on the Co-existence of features. IEEE Access (2023) 11:15471–84. doi:10.
1109/access.2023.3244656

121. Thummapudi K, Lama P, Boppana RV. Detection of ransomware attacks using
processor and disk usage data. IEEE Access (2023) 11:51395–407. doi:10.1109/access.
2023.3279819

122. Kim C, Chang SY, Kim J, Lee D, Kim J. Automated, reliable zero-day malware
detection based on autoencoding architecture. IEEE Trans Netw Serv Manag (2023) 20:
3900–14. doi:10.1109/tnsm.2023.3251282

123. Jin B, Choi J, Hong JB, KimH. On the effectiveness of perturbations in generating
evasive malware variants. IEEE Access (2023) 11:31062–74. doi:10.1109/access.2023.
3262265

124. Kural OE, Kiliç E, Aksaç C. Apk2Audio4AndMal: audio based malware family
detection framework. IEEE Access (2023) 11:27527–35. doi:10.1109/access.2023.
3258377

125. Yonamine S, Taenaka Y, Kadobayashi Y, Miyamoto D. Design and
implementation of a sandbox for facilitating and automating IoT malware analysis
with techniques to elicit malicious behavior: case studies of functionalities for dissecting
IoTmalware. J Comp Virol Hacking Tech (2023) 19(2):149–63. doi:10.1007/s11416-023-
00478-x

126. Masid AG, Higuera JB, Higuera JRB, Montalvo JAS. Application of the SAMA
methodology to Ryuk malware. J Comp Virol Hacking Tech (2023) 19(2):165–98. doi:10.
1007/s11416-022-00434-1

127. Singh AK, Taterh S, Mitra U. An efficient tactic for analysis and evaluation of
malware dump file using the volatility tool. SN Comp Sci (2023) 4(5):457. doi:10.1007/
s42979-023-01844-8

128. de Lima SM, Souza DM, Pinheiro RP, Silva SH, Lopes PG, de Lima RD, et al.
Next-generation antivirus for JavaScript malware detection based on dynamic features.
Knowledge Inf Syst (2023) 66:1337–70. doi:10.1007/s10115-023-01978-4

129. Sharma A, Gupta BB, Singh AK, Saraswat VK. A novel approach for detection of
APTmalware using multi-dimensional hybrid Bayesian belief network. Int J Inf Security
(2023) 22(1):119–35. doi:10.1007/s10207-022-00631-5

Frontiers in Physics frontiersin.org28

Redhu et al. 10.3389/fphy.2024.1349463

https://doi.org/10.3390/s23031053
https://doi.org/10.3390/s23031053
https://doi.org/10.3390/fi15100325
https://doi.org/10.1080/23311916.2023.2272358
https://doi.org/10.3390/electronics12102258
https://doi.org/10.3390/info14090497
https://doi.org/10.3390/info14090497
https://doi.org/10.3390/app13042508
https://doi.org/10.3390/sym15030677
https://doi.org/10.3390/sym15030677
https://doi.org/10.3390/app131810196
https://doi.org/10.3390/s23167256
https://doi.org/10.3390/fi15040144
https://doi.org/10.3390/s23020612
https://doi.org/10.3390/s23020612
https://doi.org/10.3390/computers12060121
https://doi.org/10.3390/computers12060121
https://doi.org/10.3390/sym15030758
https://doi.org/10.3390/app13074624
https://doi.org/10.3390/app13074624
https://doi.org/10.3390/math11204242
https://doi.org/10.3390/electronics12194025
https://doi.org/10.3390/electronics12194025
https://doi.org/10.3390/math11020416
https://doi.org/10.1016/j.cose.2023.103323
https://doi.org/10.1016/j.comnet.2023.109967
https://doi.org/10.1016/j.comnet.2023.109967
https://doi.org/10.1016/j.jisa.2023.103561
https://doi.org/10.1016/j.cose.2023.103518
https://doi.org/10.1016/j.cose.2023.103385
https://doi.org/10.1016/j.eswa.2022.119133
https://doi.org/10.1016/j.eswa.2022.119133
https://doi.org/10.1016/j.future.2023.02.014
https://doi.org/10.1016/j.asoc.2023.110676
https://doi.org/10.1016/j.eswa.2023.119593
https://doi.org/10.1016/j.eswa.2023.119593
https://doi.org/10.1016/j.cose.2023.103499
https://doi.org/10.1016/j.cose.2023.103277
https://doi.org/10.1109/access.2023.3323845
https://doi.org/10.1109/mprv.2023.3321218
https://doi.org/10.1109/tifs.2023.3283913
https://doi.org/10.1109/access.2023.3247344
https://doi.org/10.1109/access.2023.3296789
https://doi.org/10.1109/access.2023.3255176
https://doi.org/10.1109/access.2023.3266562
https://doi.org/10.1109/access.2023.3266562
https://doi.org/10.1109/access.2023.3309879
https://doi.org/10.1109/access.2023.3276902
https://doi.org/10.1109/jiot.2023.3241697
https://doi.org/10.1109/jiot.2023.3241697
https://doi.org/10.1109/jiot.2023.3267337
https://doi.org/10.1109/access.2023.3244656
https://doi.org/10.1109/access.2023.3244656
https://doi.org/10.1109/access.2023.3279819
https://doi.org/10.1109/access.2023.3279819
https://doi.org/10.1109/tnsm.2023.3251282
https://doi.org/10.1109/access.2023.3262265
https://doi.org/10.1109/access.2023.3262265
https://doi.org/10.1109/access.2023.3258377
https://doi.org/10.1109/access.2023.3258377
https://doi.org/10.1007/s11416-023-00478-x
https://doi.org/10.1007/s11416-023-00478-x
https://doi.org/10.1007/s11416-022-00434-1
https://doi.org/10.1007/s11416-022-00434-1
https://doi.org/10.1007/s42979-023-01844-8
https://doi.org/10.1007/s42979-023-01844-8
https://doi.org/10.1007/s10115-023-01978-4
https://doi.org/10.1007/s10207-022-00631-5
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


130. Pereberina A, Kostyushko A, Tormasov A. An algorithm for scheduling of
threads for system and application code split approach in dynamic malware analysis.
J Comp Virol Hacking Tech (2023) 19:459–68. doi:10.1007/s11416-023-00473-2

131. Seyfari Y, Meimandi A. A new approach to android malware detection using
fuzzy logic-based simulated annealing and feature selection. Multimedia Tools Appl
(2023) 83:10525–49. doi:10.1007/s11042-023-16035-z

132. Alzubi OA, Alzubi JA, Alzubi TM, Singh A. Quantum Mayfly optimization with
encoder-decoder driven LSTM networks for malware detection and classification
model. Mobile Networks Appl (2023) 28:795–807. doi:10.1007/s11036-023-02105-x

133. Ullah F, Ullah S, Srivastava G, Lin JCW, Zhao Y. NMal-Droid: network-based
android malware detection system using transfer learning and CNN-BiGRU ensemble.
Wireless Networks (2023) 1–22. doi:10.1007/s11276-023-03414-5

134. Deng X, Cen M, Jiang M, Lu M. Ransomware early detection using deep
reinforcement learning on portable executable header. Cluster Comput (2023) 1–15.
doi:10.1007/s10586-023-04043-5

135. Balikcioglu PG, Sirlanci M, A. Kucuk O, Ulukapi B, Turkmen RK, Acarturk C.
Malicious code detection in android: the role of sequence characteristics and

disassembling methods. Int J Inf Security (2023) 22(1):107–18. doi:10.1007/s10207-
022-00626-2

136. Gao C, Cai M, Yin S, Huang G, Li H, YuanW, et al. Obfuscation-resilient android
malware analysis based on complementary features. IEEE Trans Inf Forensics Security
(2023) 18:5056–68. doi:10.1109/TIFS.2023.3302509

137. Gopinath M, Sethuraman SC. A comprehensive survey on deep learning based
malware detection techniques. Comp Sci Rev (2023) 47:100529. doi:10.1016/j.cosrev.
2022.100529

138. Zhu H-juan, Gu W, Wang L-min, Xu Z-cheng, Sheng VS. Android malware
detection based on multi-head squeeze-and-excitation residual network. Expert Syst
Appl (2023) 212:118705. doi:10.1016/j.eswa.2022.118705

139. Kumar R, Zhang X, Khan RU, Sharif A. Research on data mining of
permission-induced risk for android IoT devices. Appl Sci (2019) 9:277. doi:10.
3390/app9020277

140. Mustafa Majid A-A, Alshaibi AJ, Kostyuchenko E, Shelupanov A. A review of
artificial intelligence based malware detection using deep learning. Mater Today Proc
(2023) 80(3):2678–83. doi:10.1016/j.matpr.2021.07.012

Frontiers in Physics frontiersin.org29

Redhu et al. 10.3389/fphy.2024.1349463

https://doi.org/10.1007/s11416-023-00473-2
https://doi.org/10.1007/s11042-023-16035-z
https://doi.org/10.1007/s11036-023-02105-x
https://doi.org/10.1007/s11276-023-03414-5
https://doi.org/10.1007/s10586-023-04043-5
https://doi.org/10.1007/s10207-022-00626-2
https://doi.org/10.1007/s10207-022-00626-2
https://doi.org/10.1109/TIFS.2023.3302509
https://doi.org/10.1016/j.cosrev.2022.100529
https://doi.org/10.1016/j.cosrev.2022.100529
https://doi.org/10.1016/j.eswa.2022.118705
https://doi.org/10.3390/app9020277
https://doi.org/10.3390/app9020277
https://doi.org/10.1016/j.matpr.2021.07.012
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463

	Deep learning-powered malware detection in cyberspace: a contemporary review
	1 Introduction
	1.1 Limitations of previous reviews
	1.2 Motivation and objectives of this review
	1.3 Contributions of this review

	2 Survey methodology
	3 Deep learning-powered malware detection in cyberspace
	3.1 Recurrent neural networks
	3.2 Deep autoencoder
	3.3 LSTM
	3.4 Deep neural network
	3.5 Deep Belief Network
	3.6 Deep convolutional neural network
	3.7 Deep generative models
	3.8 Deep Boltzmann machine
	3.9 Deep reinforcement learning
	3.10 Extreme Learning Machine
	3.11 Attention models
	3.12 Summary and interpretability of deep learning models

	4 Comparisons with non deep learning models
	5 Smartphone applications in malware analysis and detection
	6 Recent tools in malware analysis and detection
	6.1 Behavioral analysis tools
	6.2 Threat intelligence platforms
	6.3 Deception tools
	6.4 Memory forensics tools
	6.5 Sandboxing with threat intelligence integration

	7 Open challenges
	8 Future research directions
	9 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


