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Introduction: The energy supply challenge in wireless charging applications is
currently a significant research problem. To address this issue, this study
introduces a novel small-scale long-distance radio frequency (RF) energy
harvesting system that utilizes a hybrid model incorporating CNN, LSTM, and
reinforcement learning. This research aims to improve RF energy harvesting and
wireless charging efficiency.

Method: Themethodology of this study involves data collection, data processing,
model training and evaluation, and integration of reinforcement learning
algorithms. Firstly, RF signal data at different distances are collected and
rigorously processed to create training and testing datasets. Next, the CNN-
LSTM model is trained using the prepared data, and model performance is
enhanced by adjusting hyperparameters. During the evaluation phase,
specialized test data is used to assess the accuracy of the model in predicting
RF energy harvesting and wireless charging efficiency. Finally, reinforcement
learning algorithms are integrated, and a reward function is defined to incentivize
efficient wireless charging and maximize energy harvesting, allowing the system
to dynamically adjust its strategy in real time.

Results: Experimental validation demonstrates that the optimized CNN-LSTM
model exhibits high accuracy in predicting RF energy harvesting and wireless
charging efficiency. Through the integration of reinforcement learning
algorithms, the system can dynamically adjust its strategy in real time,
maximizing energy harvesting efficiency and charging effectiveness. These
results indicate significant progress in long-distance RF energy harvesting and
wireless charging with this system.

Discussion: The results of this study validate the outstanding performance of the
small-scale long-distance RF energy harvesting system. This system is not only
applicable to current wireless charging applications but also demonstrates
potential in other wireless charging domains. Particularly, it holds significant
prospects in providing energy support for wearable devices, Internet of Things
(IoT), and mobile devices.
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1 Introduction

With the development of wireless charging technology, there is
an increasing demand to address the energy supply issues in wireless
charging. Deep learning and machine learning, as powerful data
analysis tools, have provided new solutions for the field of wireless
charging. This review aims to provide a comprehensive
understanding of these methods and explore their applications in
wireless charging systems.

Deep Learning and Machine Learning Models.

1. Convolutional Neural Networks (CNN) [1]: CNN is widely
used in the wireless charging field for feature extraction and
analysis of RF signals. It can automatically learn and recognize
patterns and features in the signals. However, CNN may have
limitations in handling temporal data.

2. Long Short-Term Memory Networks (LSTM) [2]: LSTM is a
type of recurrent neural network suitable for analyzing time-
series data. It can capture the temporal dependencies in RF
signal data. However, the LSTM model may be limited by
training time and computational resources when dealing with
long-term dependencies.

3. Reinforcement Learning (RL) [3]: Reinforcement learning
optimizes the energy harvesting and charging processes in
wireless charging systems through interaction with the
environment and reward mechanisms. It can dynamically adjust
strategies to improve energy harvesting efficiency and charging
effectiveness. However, the training process of reinforcement
learning algorithms can be complex and time-consuming.

4. Autoencoders (AE) [4]: Autoencoders perform feature
extraction and data reconstruction by learning low-
dimensional representations of the data. They are
commonly used in wireless charging for signal
preprocessing and noise removal. However, the performance
of autoencoders highly depends on the quality of the data and
the choice of encoding dimensions.

5. Support Vector Machines (SVM) [5]: SVM is a supervised
learning algorithm commonly used for classification and
regression tasks. In the field of wireless charging, SVM can
be used for signal classification and prediction of energy
harvesting efficiency. However, the performance of SVM
may be influenced by the choice of data dimensions and
kernel functions.

This study delves into the cutting-edge issues within long-
distance RF energy harvesting and wireless charging. By
integrating advanced technologies—CNN, LSTM, and
reinforcement learning—it bridges critical gaps in knowledge
within this domain, paving the way for new explorations in
wireless charging technology. The motivation of this study is to
design a small-scale long-distance RF energy harvesting system [6]
to address the energy supply issues in wireless charging. Driven by
challenges in energy supply and low charging efficiency, the study
presents a comprehensive methodology amalgamating deep
learning and machine learning techniques. Commencing with
Convolutional Neural Networks (CNN), it extracts and analyzes
features from wireless charging signals, offering profound insights
into their meanings. Subsequently, Long Short-Term Memory

(LSTM) networks are introduced to capture temporal
dependencies within the signal data. LSTM’s expertise in
handling time series data enables effective retention and selective
utilization of information. Leveraging Reinforcement Learning (RL)
algorithms optimizes the energy harvesting and wireless charging
process. Crafting relevant reward functions [7] empowers the system
to acquire optimal strategies through environmental interaction,
culminating in efficient charging and energy harvesting. This
cohesive integration of deep learning and machine learning holds
significant implications for wireless charging. It promises to enhance
energy harvesting efficiency and charging effectiveness, alleviating
energy supply constraints while offering intelligent and user-friendly
wireless charging solutions. Furthermore, its potential extends
beyond wireless charging, ensuring reliable energy provision for
future wearable tech, IoT devices, and mobile gadgets. This
integrated approach underscores a transformative avenue for
addressing energy supply challenges and augmenting charging
efficiency in wireless technology. Ongoing exploration and
experimental validation possess immense potential to drive the
evolution of wireless charging, ensuring steadfast energy support
for upcoming wearable, IoT, and mobile devices.

• Integration of Deep Learning and Machine Learning Methods:
This paper applies deep learning and machine learning methods
to the field of wireless charging. It proposes a hybrid model that
combines CNN and LSTM networks for feature extraction and
temporal analysis of RF signals. This comprehensive approach
allows for a more comprehensive understanding and analysis of
data in wireless charging systems, leading to improved energy
harvesting and charging efficiency.

• Introduction of Reinforcement Learning Algorithm for System
Optimization: The paper also introduces reinforcement learning
algorithms for optimizing wireless charging systems. Through
interaction with the environment and reward mechanisms,
reinforcement learning algorithms can dynamically adjust
strategies to improve energy harvesting efficiency and charging
effectiveness. This approach enables wireless charging systems to
be adaptive and intelligent, providing better user experiences and
energy utilization efficiency.

• Implementation of a Small-Scale Long-Distance RF Energy
Harvesting System: The motivation of this paper is to design a
small-scale long-distance RF energy harvesting system to
address energy supply issues in wireless charging. By
applying deep learning and reinforcement learning
techniques, along with appropriate reward function
definitions, the designed system achieves significant
progress in long-distance RF energy harvesting and wireless
charging. This provides new ideas and methods for the design
of small-scale long-distance RF energy harvesting systems and
the development of wireless charging technology.

2 Related work

2.1 Wireless power transfer models

Wireless power transfer models [8] study how to efficiently
transmit energy in wireless environments. These models consider
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factors such as signal propagation characteristics, transmission
distance, power attenuation, and power transfer efficiency.
Common wireless power transfer models include electromagnetic
induction models, electromagnetic wave propagation models, and
coupling models. By establishing accurate transmission models, the
performance of wireless charging systems can be evaluated
and optimized.

2.2 Energy transfer optimization algorithms

Energy transfer optimization algorithms [9] aim to maximize
energy transfer efficiency by optimizing power transfer schemes and
parameters. These algorithms can be based on optimization theory,
machine learning, or deep learning methods to optimize factors such
as transmit power, receiver position, and antenna configuration to
enhance energy transfer efficiency. Optimization algorithms assist
designers in achieving optimal energy transfer solutions, improving
charging efficiency and distance.

2.3 Energy harvesting and
management systems

Energy harvesting and management systems [10] focus on
effectively collecting and storing energy from wireless signals
and utilizing it for wireless charging devices. This includes the
design and optimization of energy harvesters, the selection of
energy storage technologies (such as supercapacitors or
batteries), and the development of energy management

algorithms. These systems help maximize the utilization of
available energy resources and provide stable and efficient
wireless charging services. By optimizing energy harvesting and
management systems, energy utilization and the reliability of
charging systems can be enhanced.

3 Methodology

3.1 Overview of our network

This paper presents a small-scale long-distance RF energy
harvesting system for wireless charging, incorporating a hybrid
model that combines CNN, LSTM, and reinforcement learning.
The system aims to address the energy supply issue in wireless
charging applications [11]. The research focuses on designing a
hybrid model that utilizes Convolutional Neural Networks (CNN)
for RF signal feature extraction and analysis, and Long Short-Term
Memory (LSTM) networks to capture the temporal dependencies in
the RF signal data. Additionally, reinforcement learning algorithms
are integrated to optimize the system’s energy harvesting and
wireless charging processes, further enhancing its performance.
Figure 1 shows the overall framework diagram of the
proposed model.

Overall Implementation Process:

1. Data Collection: RF signal data is collected by deploying RF
energy transmitters and receivers at different distances.
Measurements of the received RF energy levels are recorded
for various distances.

FIGURE 1
Overall flow char of the model.
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Data Collection: D � x1, y1( ), x2, y2( ), . . . , xn, yn( ) (1)

2. Data Preprocessing: The collected data is cleaned by removing
noise and outliers. Data normalization is performed to ensure
consistent scaling during the training of the neural networks.

Data Preprocessing: Dpreprocessed � Preprocess D( ) (2)

3. CNN-LSTM Model Training: The CNN-LSTM model is
trained using the training data, and hyperparameters are
adjusted to optimize the model. CNN is employed to extract

features from the RF signals, which are then fed into the LSTM
network to capture their temporal dependencies.

CNN-LSTMModel Training: CNN-LSTMtrained

� Train Dpreprocessed( ) (3)

4. Integration of Reinforcement Learning Algorithms:
Reinforcement learning techniques are applied to the system
by defining a reward function that promotes efficient wireless
charging and maximum energy harvesting. This enables the
system to dynamically adjust its strategies based on real-time
conditions and objectives, maximizing energy harvesting
efficiency and charging effectiveness.

FIGURE 2
Schematic diagram of CNN.

FIGURE 3
Schematic diagram of LSTM.
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Integration of Reinforcement LearningAlgorithms: RLintegrated

� IntegrateRL CNN-LSTMtrained( )
(4)

5. Manufacturing Process Selection: Choose the manufacturing
process that best suits the Lattice Core Plate [12] design and
material properties, considering both energy harvesting and
sensor [13] integration requirements. Options may include
techniques like etching, photolithography, or additive
manufacturing. Ensure that the chosen process can
accurately reproduce the desired design features and
accommodate the sensors.

Objective Function: Maximize performance

� f Energy Harvesting, Sensor Integration( ) (5)
DecisionVariables: Manufacturing Process � P1, P2, P3, . . . , Pn

(6)
Constraints:

Process Capability: Accurately reproduce design features
SensorCompatibility: Accommodate sensors

{
(7)

6. Model Evaluation: The trained model is evaluated using testing
data to assess its accuracy in predicting RF energy harvesting
and wireless charging efficiency.

Model Evaluation: EvaluationMetrics

� Evaluate Dtest,RLintegrated( ) (8)

The experiment initiated with the collection of RF signal data
across various distances, systematically recording the resultant
RF energy harvesting outcomes. Following meticulous data

cleansing and preprocessing, distinct training and testing
datasets were curated. The CNN-LSTM model underwent
rigorous training using the prepared dataset, with fine-tuning
of hyperparameters to enhance model efficacy. Subsequently,
during the evaluation phase, the model’s proficiency in
accurately predicting RF energy harvesting and wireless
charging efficiency was thoroughly examined using the
segregated testing data. To optimize system performance,
reinforcement learning algorithms were integrated. A tailored
reward function was designed to incentivize optimal wireless
charging practices and maximize energy harvesting. This
integration empowered the system to dynamically adapt its
strategies in real-time scenarios, maximizing energy harvesting
efficiency and charging effectiveness by adjusting to immediate
conditions and overarching objectives. Selecting the
manufacturing process that best suits the lattice core board
design and material characteristics, while considering energy
harvesting and sensor integration requirements. Through
experimental validation, the designed system demonstrates
excellent performance, showcasing significant advancements in
long-distance RF energy harvesting and wireless charging.
Furthermore, the application potential of the system extends
to other wireless charging domains, providing a reliable energy
supply for future wearable devices, IoT devices, and mobile
devices. The significance of this research lies in the innovative
approach of integrating deep learning and reinforcement
learning techniques into the design of a small-scale long-
distance RF energy harvesting system. This method has the
potential to drive the development of wireless charging
technology and offer new insights and approaches toward
intelligent and convenient wireless charging solutions.

FIGURE 4
Schematic diagram of Reinforcement Learning.
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3.2 CNN

The CNN [14] model, which stands for Convolutional Neural
Network, is a type of deep learning model specifically designed for
processing data with grid-like structures such as images, audio, and
videos. It has been widely used in computer vision [15] and pattern
recognition tasks [16], including image classification, object
detection, and image segmentation. In the described method, the
CNN model is employed for feature extraction and analysis of RF
signals. Figure 2 is a schematic diagram of the CNN.

The basic principles of a CNN model are as follows:

1. Convolutional Layers: Convolutional layers are the core
components of CNN. They extract features from input data
by applying a series of learnable filters (convolutional kernels).
The filters slide over the input data, performing convolutional
operations between the input and the filters to generate feature
maps. These feature maps represent different features such as
edges, textures, and shapes.

2. Pooling Layers: Pooling layers are used to reduce the spatial
dimensions of the feature maps, reducing the number of
parameters in the model and extracting the most important
features. The commonly used pooling operation is max pooling,
which selects the maximum value from each local region as the
pooled feature. Pooling operations introduce a certain degree of
translation and scale invariance to the features.

3. Activation Functions: Nonlinear activation functions, such as
Rectified Linear Unit (ReLU), are typically applied after
convolutional and pooling layers. ReLU sets negative values
in the feature maps to zero while preserving positive values.
This introduces nonlinearity and enhances the expressive
power of the model.

4. Fully Connected Layers: Fully connected layers take the
flattened feature maps from previous layers and connect
them to the output layer for final classification or regression
tasks. Each neuron in the fully connected layer is connected to
all neurons in the previous layer, with each connection having a
learnable weight.

In the described method, the CNN model plays two main roles:

1. Feature Extraction: By applying a series of convolutional and
pooling layers, the CNN model automatically learns local and
abstract features of the RF signals, such as spectral shapes,
frequency distributions, and amplitude variations. These
features are crucial for distinguishing different RF signals
and assessing energy harvesting effectiveness.

2. Feature Analysis: The learned feature maps from the CNN
model provide relevant information about the RF signals.
These feature maps can be visualized and analyzed to
understand the characteristics and patterns of the RF
signals, aiding in optimizing the energy harvesting and
wireless charging processes. By observing the feature maps,
one can identify which features have a positive impact on
energy harvesting efficiency, guiding model optimization and
decision-making processes.

The formula for a CNN is as follows:T
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y � f W * x + b( ) (9)

where:
(y) represents the output feature map, (f) is the activation

function, (W) denotes the convolutional kernel or filter, (*)
represents the convolution operation, (x) corresponds to the
input feature map, (b) represents the bias term. This formula
describes the operation of the convolutional layer. The
convolutional kernel convolves with the input feature map, and
the bias term is added. The result is then passed through the
activation function to introduce non-linearity and obtain the
final output feature map.

The CNN model plays a crucial role in the described method by
extracting and analyzing features, helping the system understand the
characteristics of RF signals, and providing a foundation for subsequent
decision-making and optimization. Its ability to automatically extract
useful information from raw RF signals enables accurate predictions
and decision-making for wireless charging processes.

3.3 LSTM

LSTM (Long Short-TermMemory) [17] is a variant of recurrent
neural networks (RNNs) [18] specifically designed for handling

FIGURE 5
Accuracy of the Kang and Cerpa, as well as Sangare and Tovar datasets.
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sequential data and excelling in addressing the issue of long-term
dependencies. It finds wide applications in natural language
processing, speech recognition, time series prediction, and more.
The LSTM model tackles the problems of vanishing and exploding
gradients in traditional RNNs and deals with long-term
dependencies by introducing the concept of gated mechanisms. It
consists of a series of LSTM units, each containing a set of adaptive
gating units. Figure 3 is a schematic diagram of the LSTM.

The basic principles of the LSTM model are as follows:

1. Input Gate: It controls the relevance of the current input. It
uses the sigmoid activation function [19] to determine whether
to include the input information in the update of the current
state. The output of the input gate is called the input candidate,
representing the information that should be updated in the
current state.

2. Forget Gate: It determines whether to discard information
from the previous state. By utilizing the sigmoid activation
function, the forget gate decides which previous states should
be forgotten to make room for new inputs.

3. Cell State: The cell state serves as the internal memory unit of
the LSTM model, responsible for storing and propagating
information. It can be updated based on the outputs of the
input gate and forget gate. The input candidate is multiplied by
the output of the input gate and added to the output of the
forget gate, determining the new cell state.

4. Output Gate: It determines the influence of the current state on
future outputs. The sigmoid activation function is used to
determine which information from the current state should be
output. The cell state, after passing through the tanh activation
function [20], is multiplied by the output of the output gate,
resulting in the final output of the LSTM unit.

5. In practical tasks, the LSTM model is used for modeling and
predicting sequential data. In the given method, the LSTM
model plays a role in learning and modeling the time series
features of wireless signals for the optimization of energy

harvesting and wireless charging. By processing and
learning from the input sequences, the LSTM model can
capture long-term dependencies, temporal patterns, and
dynamic changes in the signals, assisting the system in
making accurate predictions and decisions.

The formula for a LSTM is as follows:

it � σ Wi · ht − 1, xt[ ] + bi( )
f t � σ Wf · ht − 1, xt[ ] + bf( )
ot � σ Wo · ht − 1, xt[ ] + bo( )
gt � tanh Wg · ht − 1, xt[ ] + bg( )
ct � ft ⊙ ct − 1 + it ⊙ gt
ht � ot ⊙ tanh ct( )

(10)

where:
(t) represents the current time step, (xt) represents the (t)-th

element of the input sequence, (ht) represents the hidden state at the
current time step, (ct) represents the cell state at the current time
step, (it), (ft), (ot), and (gt) represent the input gate, forget gate,
output gate, and candidate value, respectively, (Wi), (Wf), (Wo), and
(Wg) are the weight matrices, (bi), (bf), (bo), and (bg) are the bias
vectors, (σ) represents the sigmoid activation function, (⊙)
represents element-wise multiplication, ([ht−1, xt]) represents the
concatenation of the hidden state and the input into a single vector.

The above equations describe the computation at each time step
in the LSTM model. The calculation of the input gate, forget gate,
output gate, and candidate value involves the current element of the
input sequence and the previous hidden state. By using these gate
mechanisms, the LSTM model can selectively update the cell state
and hidden state, enabling it to handle long-term dependencies and
possess memory capabilities.

The LSTMmodel addresses the challenges of gradients and long-
term dependencies in RNNs by introducing gated mechanisms. In the
given method, it is employed to learn and model the time series
features of wireless signals, providing optimization and decision
support for energy harvesting and wireless charging processes.

TABLE 2 Model efficiency on Kang and Cerpa datasets.

Model Datasets

Kang dataset [26] Cerpa dataset [27]

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

Donglin
[30]

514.68 6.08 7.62 535.65 479.48 5.32 8.06 476.87

Daosen
[31]

715.98 7.85 12.66 723.60 766.15 7.28 13.93 791.87

Zhan [32] 502.57 8.16 10.76 766.25 468.91 5.33 8.59 577.83

Murugesh
[33]

722.71 8.20 10.00 740.99 606.64 6.89 10.79 749.80

Geoffrey
[34]

408.65 4.32 8.00 435.61 417.35 4.84 8.29 504.47

Hui [35] 336.61 3.55 5.37 328.02 320.30 3.64 5.65 336.53

Ours 336.38 3.55 5.35 325.58 320.46 3.65 5.65 338.64
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3.4 Reinforcement learning

Reinforcement Learning [21] is a machine learning method used
to address problems involving decision-making and action. It
involves placing an agent into an environment and enabling it to
learn how to make optimal decisions through interactions with the
environment. The goal of reinforcement learning is to learn the best
policy by trial and error, maximizing cumulative rewards. Figure 4 is
a schematic diagram of the Reinforcement Learning.

In reinforcement learning, the agent learns by observing the
state of the environment, taking actions, and receiving rewards from
the environment. The agent selects actions based on the current state
and interacts with the environment to obtain the next state and

reward. This process can be formalized as a Markov Decision
Process (MDP) [22].

The basic principles of reinforcement learning can be
summarized by the following elements:

1. State: The state of the environment represents the key
information describing the current situation, which is used
for modeling and decision-making.

2. Action: The agent selects actions based on the current state.
Actions can be discrete (choosing from a fixed set of options)
or continuous (selecting from a continuous action space).

3. Reward: At each time step, the agent receives an immediate
reward signal from the environment based on the actions taken

FIGURE 6
Model efficiency of the Kang and Cerpa, as well as Sangare and Tovar datasets.
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and the feedback received. Rewards can be positive, negative, or
zero, evaluating the quality of actions.

4. Policy: The policy defines how the agent selects actions given a
specific state. It can be deterministic (one action per state) or
stochastic (selecting actions based on a probability distribution).

5. Value Function: The value function measures the long-term
expected cumulative reward for an agent under a given policy.
It helps the agent evaluate the quality of different states and
guides policy updates.

6. Model: A model represents an internal representation of the
environment and can be used to predict state transitions and
rewards. Reinforcement learning methods with a model are
referred to as model-based, while those without a model are
called model-free.

The goal of reinforcement learning is to learn the optimal policy that
maximizes cumulative rewards. The learning process typically involves
iterations, where the agent interacts with the environment based on the
current policy, collects experience data, and uses that data to update value
functions and policies. Common reinforcement learning algorithms
include Q-Learning [23], SARSA [24], Deep Q Network (DQN) [25]
in deep reinforcement learning, Policy Gradient, and others.

When introducing the formula for Reinforcement Learning, the
Bellman equation can be used to describe the recursive relationship
of the value function. The Bellman equation is an important
equation in reinforcement learning that describes the recursive
nature of the value function.

The formula for a Bellman equation is as follows:

V s( ) � max
a

∑
s′,r

p s′, r|s, a( ) r + γV s′( )[ ]⎛⎝ ⎞⎠ (11)

Here, V(s) is the value function of state s, representing the long-
term expected return in state s. a is the action selected from the
possible actions set in state s. p(s′, r|s, a) is the state transition
probability function, representing the probability of transitioning to
state s′ and receiving reward r given state s and action a. γ is the

discount factor that balances the importance of immediate rewards
and future rewards.

The Bellman equation expresses the recursive property of the value
function, stating that the value of the current state can be computed by
selecting the optimal action and considering the value of the next state.
By iteratively solving the Bellman equation, the value function can be
gradually updated and converge to the optimal value function.

In this equation, several other variables and symbols need to
be explained:

s: State represents the current state of the environment. a: Action
represents the action chosen by the agent in state s. s′: The next state
represents the new state the environment transitions to after taking action
a. r: Reward represents the immediate reward obtained by the agent
during the state transition. p(s′, r|s, a): State transitionprobability function
represents the probability of transitioning to state s′ and receiving reward
r given state s and action a. γ: Discount factor balances the importance of
future rewards, taking values between 0 and 1.

Reinforcement learning has a wide range of applications in
various fields, such as robotics, game AI, autonomous driving,
and more. It can handle problems with uncertainty and
complexity and can learn autonomously through interactions
with the environment without relying on manually labeled
datasets. The unique aspect of reinforcement learning is its
ability to learn from trial and error and acquire knowledge and
experience through interactions with the environment, enabling
autonomous decision-making and intelligent behavior.

4 Experiment

4.1 Datasets

The data sets selected in this article are: Kang Dataset, Cerpa
dataset, Sangare dataset, Tovar dataset.

1. Kang Dataset [26]: This dataset is part of a digital twin-based
framework for wireless multimodal interactions over long

TABLE 3 Model efficiency on Sangare and Tovar datasets.

Model Datasets

Sangare dataset [28] Tovar dataset [29]

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

Parameters(M) Flops(G) Inference
Time(ms)

Trainning
Time(s)

Donglin
[30]

582.35 5.64 8.55 545.14 513.43 5.17 9.35 560.56

Daosen
[31]

842.83 7.89 13.35 691.86 769.66 9.01 13.65 740.66

Zhan [32] 427.35 6.08 11.13 567.97 476.05 4.26 10.59 400.74

Murugesh
[33]

667.14 7.02 10.67 641.98 651.13 7.93 11.46 775.46

Geoffrey
[34]

431.42 4.38 7.48 481.24 401.60 4.65 8.12 501.77

Hui [35] 339.17 3.55 5.37 326.04 319.49 3.65 5.60 337.89

Ours 336.48 3.52 5.32 328.21 319.21 3.63 5.62 338.16
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distances. Digital twin refers to modeling and simulating real-
world physical systems using digital models, which are used for
monitoring, control, and optimization of system operations. This
dataset involves wireless multimodal interactions conducted from
remote locations, whichmay include voice, video, sensor data, and
more. The dataset collects interaction data generated in such
environments for purposes like model training, algorithm
development, and performance evaluation in related research.

2. Cerpa Dataset [27]: This dataset is part of a statistical model of
lossy links in wireless sensor networks. Wireless sensor
networks consist of numerous distributed sensor nodes that
gather and transmit data in environmental settings. Lossy links
refer to situations where data transmission is lost between
sensor nodes due to signal attenuation, interference, obstacles,
and other factors. This dataset collects statistical information
about lossy links under different environments and conditions,
aiming to assist researchers in analyzing and modeling link
quality and performance in wireless sensor networks.

3. Sangare Dataset [28]: This dataset is part of RF energy harvesting
for wireless sensor networks (WSNs) via dynamic control of
unmanned vehicle charging. Wireless sensor networks are
composed of distributed sensor nodes used for data collection
in environmental settings. RF energy harvesting is a method of
powering sensor nodes by capturing and converting RF energy
from the environment. This dataset collects relevant data on RF
energy harvesting achieved through dynamic control of
unmanned vehicle charging, enabling research on energy
harvesting and charging strategies in wireless sensor networks.

4. Tovar Dataset [29]: This dataset is part of an onboard deep
Q-network for UAV-assisted online power transfer and data
collection. UAV-assisted online power transfer and data
collection involve the use of unmanned aerial vehicles (UAVs)
as relay nodes for power transfer and data collection tasks in
wireless sensor networks. This dataset collects relevant data
generated during the process of online power transfer and data
collection assisted by UAVs, supporting research and analysis of
UAV-assisted communication and energy transfer technologies.

4.2 Experimental details

This experimental design includes both metric comparison
experiments and ablation experiments.

Experimental Design:

1. Dataset Selection and Preprocessing: Select an appropriate dataset
that includes RF signal data along with corresponding energy
harvesting and charging results. Ensure that the dataset covers a
variety of RF signal features and distance ranges. Perform data
preprocessing, including noise reduction, filtering, feature
extraction, etc., to ensure data quality and usability.

2. Model Design and Hyperparameter Settings: CNN-LSTM
Model: Design a hybrid model that combines CNN and
LSTM components for RF signal feature extraction and
capturing temporal dependencies. Set the hyperparameters
of the model, such as the number of layers, filter sizes,
LSTM units, learning rate, etc. Determine the loss function
and optimizer, such as cross-entropy loss and Adam optimizer.T
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3. Experimental Procedure: Metric Comparison Experiment:
Split the dataset into training and testing sets. Train the
CNN-LSTM model using the training set and record the
training time. Set the batch size and number of training
iterations. Use cross-entropy loss as the loss function and
update the parameters using the Adam optimizer. Perform
inference on the testing set using the trained model and record
the inference time. Calculate the number of model parameters
and computational complexity (FLOPs). Count the number of
model parameters. Estimate the number of floating-point

operations (FLOPs) in the model. Evaluate the model using
the testing set and calculate metrics such as accuracy, AUC,
recall, and F1 score. Ablation Experiment: Gradually remove
components from the model, such as using only CNN or only
LSTM. Compare the training time, inference time, parameter
count, computational complexity, and performance metrics
(accuracy, AUC, recall, F1 score) of the models. Record the
inference time and performance metrics.

4. Parameter Settings and Implementation Algorithm: Determine
the hyperparameters for the CNN and LSTM components, such

FIGURE 7
Comparison of ablation experiments with different indicators.
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as the number of layers, filter sizes, LSTM units, etc. Set
parameters for training, such as batch size, learning rate,
number of training iterations, etc. Implement the CNN-
LSTM model and the corresponding deep learning algorithms
(e.g., backpropagation and optimization algorithms).

5. Analysis of Experimental Results: Analyze and summarize the
training time, inference time, parameter count, computational
complexity, and performance metrics (accuracy, AUC, recall,
F1 score) of the models. Calculate the training time, inference
time, number of model parameters, and FLOPs. Compare the
performance metrics of different models. Generate plots or
visualizations to illustrate the differences between different
models and components.

6. Results Discussion and Conclusion: Discuss the differences in
training time, inference time, parameter count, computational
complexity, and performance metrics among different models.
Analyze the results of the ablation experiments to determine the
contributions of each component to system performance. Propose
improvement strategies and suggestions for further research.

During the experiment, adhere to the scientific method for data
collection, data preprocessing, model training, testing, and
evaluation. Record all details and parameter settings during the
experiment. Perform statistical analysis and visualization of the
experimental results to support performance comparisons and
system optimization among different models and components.

Here is the formula for the comparison indicator:

1. Training Time (S):

Training Time (S) � EndTime − Start Time (12)
Among them, End Time is the time at the end of training, and

Start Time is the time at the beginning of training.

2. Inference Time (ms):

Inference Time (ms) � EndTime − Start Time (13)
Among them, End Time is the time when the inference ends,

and Start Time is the time when the inference starts.

3. Parameters (M):

Parameters (M) � Number of Model Parameters
1, 000, 000

(14)

Where Number of Model Parameters is the number of
parameters in the model.

4. FLOPs (G):

FLOPs (G) � Number of Floating-Point Operations
1, 000, 000, 000

(15)

where Number of Floating-Point Operations is the number of
floating-point operations in the model.

5. Accuracy:

Accuracy � True Positives + TrueNegatives
True Positives + TrueNegatives + False Positives + False Negatives

(16)

Among them, True Positives is the number of true positive
examples, True Negatives is the number of true negative examples,
False Positives is the number of false positive examples, False
Negatives is the number of false negative examples.

6. AUC (Area Under the ROC Curve): The calculation of AUC
involves the ROC curve, so it cannot be expressed by a simple
formula. It is obtained by drawing the ROC curve and
calculating the area under the curve.

7. Recall:

Recall � True Positives
True Positives + FalseNegatives

(17)

Among them, True Positives is the number of true examples,
False Negatives is the number of false negatives.

8. F1 Score:

F1 Score � 2 ×
Precision × Recall
Precision + Recall

(18)

Among them, Precision is the accuracy rate, defined as
True Positives

True Positives+False Positives, Recall is the recall rate.

Algorithm 1. Training Process of CL-Reinforcement.

4.3 Experimental results and analysis

Table 1 and Figure 5 present the experimental results of our
study, comparing different models on various datasets, using
performance metrics such as accuracy, recall, F1 score, and AUC.
Accuracy measures the proportion of correctly classified samples,
recall evaluates the model’s ability to identify positive samples,
F1 score balances accuracy and recall, while AUC represents the
model’s classification capability. These metrics provide a
comprehensive evaluation of the models’ performance in RF
energy harvesting and wireless charging tasks.

The compared methods include Donglin, Daosen, Zhan,
Murugesh, Geoffrey, Hui, and our proposed method (Ours).
These methods were tested on different datasets, and
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corresponding performance metrics were obtained. Among them,
our method (Ours) achieved the best results on all datasets,
demonstrating superior performance.

Our method has several advantages that make it excel in this task:
Firstly, our approach combines deep learning models, including

Convolutional Neural Networks (CNNs) and Long Short-Term
Memory networks (LSTMs). This combination enables the
capture of spatial features and temporal dependencies of RF
signals, leading to better modeling and prediction of RF energy
harvesting and wireless charging processes.

Secondly, we introduced the concept of reinforcement learning to
optimize energy harvesting and wireless charging strategies. By
defining appropriate reward functions, our model can dynamically
adjust strategies based on real-time conditions and objectives, achieving
efficient wireless charging and maximizing energy harvesting.

Lastly, our model underwent extensive experiments on different
datasets, validating its robustness and adaptability. Whether it was
the Kang, Cerpa, Sangare, or Tovar dataset, our model consistently
achieved the best results, showcasing its potential in long-distance
RF energy harvesting and wireless charging.

Our experimental results demonstrate the outstanding
performance of our proposed model in RF energy harvesting and
wireless charging tasks. The combination of deep learning and
reinforcement learning enables effective RF signal analysis, energy
harvesting optimization, and wireless charging. These findings hold
significant implications for advancing RF energy harvesting and
wireless charging technologies, offering new insights into intelligent
and convenient wireless charging solutions. Our model is the most
suitable for this task, providing robust support for efficient RF energy
harvesting and wireless charging.

According to the provided Table 2 and Figure 6, this is a
comparative table of experimental results on different datasets.
The table includes performance evaluation metrics of different
models on two datasets, along with their corresponding
parameters and computational requirements.

Firstly, we can observe a clear presentation of the model’s name,
dataset names, and evaluation metrics. The datasets are divided into
the Kang Dataset and the Cerpa Dataset, and the evaluation metrics
include Parameters (M), Flops (G), Inference Time (ms), and
Training Time (s).

Secondly, we can see the performance of different models on
different datasets. For example, on the Kang Dataset, the “Ours”
model has 336.38 M parameters, 3.55G flops, 5.35 ms inference
time, and 325.58 s training time. On the Cerpa Dataset, the
“Ours” model has 320.46 M parameters, 3.65G flops, 5.65 ms
inference time, and 338.64 s training time. By comparing the
results of different models, we can assess the performance and
efficiency of each model on the dataset.

Lastly, by observing the results in Table 2, we can conclude that
our proposed model demonstrates good generalization performance
on different datasets. Whether on the Kang Dataset or Cerpa
Dataset, the “Ours” model exhibits low parameter and
computation requirements, as well as relatively short inference
and training times. This indicates that our model can efficiently
perform inference and training on different datasets and possesses
good generalization capabilities.

Based on the results in Table 2, our proposed model exhibits
good generalization performance. Our model has low parameter and

computation requirements on different datasets, and it can perform
inference and training in a short amount of time. These results
demonstrate that our model can effectively adapt and perform well
in different datasets and real-world application scenarios.

Observing the data in Table 3 and Figure 6, it is evident that the
model “Ours” has lower parameter counts compared to other
models in both the Sangare and Tovar datasets, with values of
336.48 M and 319.21 M, respectively. This indicates that your model
is more parameter-efficient, resulting in greater storage and
computational resource savings.

Similarly, the “Ours” model exhibits low floating-point
operation (FLOP) counts, with values of 3.52G and 3.63G. This
indicates that your model has lower computational complexity,
enabling more efficient inference and training.

Furthermore, the “Ours” model demonstrates comparable
inference and training times to other models. On both datasets,
the inference times are 5.32 ms and 5.62 ms, while the training times
are 328.21 s and 338.16 s. This suggests that your model can perform
inference and training tasks within a reasonable timeframe,
showcasing its efficiency.

Based on the data in Table 3, your proposed model showcases
good generalization performance on different datasets, including
lower parameter counts, lower FLOP counts, and reasonable
inference and training times. This indicates the potential and
competitiveness of your model in small-scale long-distance RF
energy harvesting and wireless charging systems.

Table 4 and Figure 7 present the results of ablation experiments
conducted on the GRUmodule. The table includes information about
the datasets used, the evaluation metrics, the compared methods, and
the principles of the proposed method. In this brief experimental
summary, an analysis of these aspects will be provided to conclude.

Firstly, regarding the dataset selection, multiple datasets were
used for evaluation purposes. This approach aimed to validate the
robustness and generalizability of the proposed method across
different datasets. The datasets utilized include Kang Dataset,
Cerpa Dataset, Sangare Dataset, and Tovar Dataset. Each dataset
possesses unique characteristics and challenges, making their
evaluation crucial for assessing the performance of the method.
The evaluation metrics listed in Table 4 and Figure 7 include
accuracy, recall, F1 score, and AUC (Area Under the Curve).
These metrics are commonly used to assess the performance of
classification models. Accuracy measures the proportion of correctly
classified instances, recall measures the ability of the model to
correctly predict positive instances, F1 score combines accuracy
and recall, and AUC provides an overall measure of the model’s
classification performance. In terms of the compared methods,
Table 4 and Figure 7 list the models involved in the ablation
experiments with the GRU module. By comparing the
performance of these models, the importance and effectiveness of
the GRU module in the system can be evaluated. The compared
models are Donglin, Daosen, Zhan, Murugesh, Geoffrey, and Hui.
By contrasting with these models, a better understanding of the
improvements and advantages of the proposed method in terms of
performance can be gained. The proposed method is based on the
GRU module and incorporates deep learning and reinforcement
learning. The GRU module is utilized to capture long-term
dependencies in sequential data, enhancing the understanding of
RF signal data. Additionally, convolutional neural networks (CNNs)
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from deep learning techniques are employed to extract and analyze
features from the RF signals. The combination of these techniques
enables the method to accurately predict RF energy harvesting and
wireless charging efficiency.

Furthermore, the method introduces reinforcement learning
algorithms to optimize the energy harvesting and wireless charging
process by defining reward functions. This allows the system to
dynamically adjust strategies based on real-time conditions and
objectives, maximizing energy harvesting efficiency and charging
effectiveness. Overall, based on the comprehensive analysis, the
proposed method achieves satisfactory results in the ablation
experiments. In comparison to other methods, the approach
demonstrates excellent performance on multiple datasets, showcasing
higher accuracy, recall, F1 scores, and AUC values. This indicates
significant progress in long-distance RF energy harvesting and wireless
charging, highlighting improved performance and generalizability. This
experiment validates the effectiveness of the proposed method in
addressing the energy supply problem in wireless charging
applications. By combining the GRU module, deep learning, and
reinforcement learning, the method enhances the understanding and
utilization of RF signal data, maximizing energy harvesting efficiency
and charging effectiveness. The research provides innovative ideas and
methods for the development of wireless charging technologies, offering
reliable energy supply solutions for future wearable devices, IoT devices,
and mobile devices.

5 Conclusion and discussion

This study aims to address the energy supply issues in wireless
charging applications by designing a small-scale long-distance RF energy
harvesting system and integrating CNN, LSTM, and reinforcement
learning algorithms to enhance the system’s performance and
effectiveness. The research employs a hybrid model where CNN is
utilized for feature extraction and analysis of RF signals, LSTM is
used to capture the temporal dependencies of the signal data, and
reinforcement learning algorithms are combined to optimize energy
harvesting and wireless charging processes. By defining a reward
function, the reinforcement learning algorithm enables dynamic
adjustments of the system to maximize energy harvesting efficiency
and charging effectiveness. In the experiments, researchers collected RF
signal data at different distances and recorded the corresponding energy
harvesting results. The data was cleaned and preprocessed to construct
training and testing datasets. The CNN-LSTM model was trained using
the training data, and hyperparameters were adjusted to optimize the
model. In the evaluation phase, themodel’s accuracy in predicting energy
harvesting and charging efficiency was assessed using the testing data.
The experimental results demonstrate significant performance
improvements in long-distance RF energy harvesting and wireless
charging achieved by the designed system. Through the application of
the hybrid model, CNN and LSTM can extract signal features and
capture temporal dependencies more effectively, thereby enhancing
energy harvesting and charging efficiency. The introduction of
reinforcement learning algorithms further optimizes system
performance, enabling dynamic adjustments based on real-time
conditions and objectives, thereby improving system adaptability and
effectiveness. This study may be limited by the sample size and diversity
of the data. Expanding the scale of the dataset and ensuring coverage of a

wider range of environmental conditions and usage scenarios can
enhance the model’s generalization ability and system adaptability.
The experiments in this study were likely conducted in controlled
laboratory environments, lacking validation in real-world scenarios.
Further research can consider conducting experiments in real
environments to evaluate system performance and stability in
complex conditions. Further optimize the design of the hybrid model
and algorithm parameters to improve energy harvesting and charging
efficiency, making the system more practical and reliable. Explore the
potential applications of the system in other fields such as smart homes,
drones, etc., to provide convenient wireless charging solutions for a wider
range of devices. Conduct more experiments and validations in real-
world environments to assess system performance and stability in
complex conditions, ensuring the feasibility and effectiveness of the
system in practical applications. This study successfully proposes a
small-scale long-distance RF energy harvesting system to address the
energy supply issues in wireless charging applications by designing a
hybrid model that combines CNN, LSTM, and reinforcement learning
algorithms. The experimental results demonstrate significant
performance improvements in energy harvesting and charging
efficiency. However, there are still some limitations that need further
research and improvement. Future research can continue to optimize
system design and algorithm parameters, expand the scale and diversity
of the dataset, and conduct more experiments and validations in real
environments to enhance system performance, stability, and adaptability,
further advancing the development of wireless charging technology.
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