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Understanding the long-range dependence and self-similarity of global sea
surface chlorophyll concentration (SSCC) will enrich its characteristics
description and analysis with global change patterns. The satellite SSCC
products were collected from the European Space Agency during the period
from 29 July 1998 to 31 December2020. After resampling the SSCC products into
the spatial resolution of 1°, the missing values were interpolated by Bayesian
maximum entropy with mean absolute error of cross validation equaling to
0.1295 mg/m3. Generalized Cauchy model was employed to quantitatively
determine the long-range dependence and self-similarity of SSCC at a global
scale by using the Hurst parameter and fractal dimension. Good fitted results
were achieved with an averaged R2 of 0.9141 and a standard deviation of
0.0518 across the 32,281 spatial locations of the entire ocean; the averaged
values of Hurst parameter and fractal dimension were 0.8667 and 1.2506,
respectively, suggesting strong long-range dependence and weak self-
similarity of SSCC in the entire oceans. Univariate and multivariate generalized
addictive models (GAM) were introduced to depict the influence of sea surface
height anomaly, sea surface salinity, sea surface temperature and sea surface
wind on the Hurst parameter and fractal dimension of SSCC; and smaller mean
absolute error were achieved for the GAM of Hurst parameter than that of fractal
dimension. Sea surface height anomaly showed the strongest influence for the
Hurst parameter than the other three factors, and sea surface wind depicted
similar influence; the sea surface temperature owned opposite influence on
Hurst parameter compared to sea surface salinity.
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1 Introduction

Phytoplankton serves as the fundamental source of primary
production in the world’s oceans. Sea surface chlorophyll
concentration (SSCC) is commonly considered as the indicator of
the phytoplankton biomass, and was used for primary production
estimation [1–3]. It makes a certain contribution to the particulate
organic carbon in water and organic matter in sea fog aerosols [4,5].
Studies have shown that phytoplankton, with the highest carbon
sequestration capacity in marine ecosystems, can capture 360 billion
tons of CO2 annually, of which 1.39% of CO2 will be transported to
the seabed and stored long-term through the biological pump [6,7].
Understanding the spatial and temporal variation characteristics of
SSCC can help estimate the amount of carbon captured in the sea
area, clarify the mechanism of marine carbon cycling, and provide
scientific bases for algal bloom warning and ocean management.

Based on the autocorrelation characteristics of SSCC, previous
studies have developed various time series prediction models, such
as long short-term memory neural networks, spatiotemporal
attention networks, and hierarchical attention networks [8–10].
When the autocorrelation of SSCC is very strong, it can be
considered as long-range dependence. The Hurst exponent is
generally used to quantitatively describe the degree of long-range
dependence. The generalized fractional Gaussian noise model,
generalized Cauchy model, and covariance and variance
functions were normally used to calculate the global Hurst
exponent [11–13]. Regarding SSCC, the generalized Cauchy
model has been utilized to describe the long-range dependence of
SSCC at limited number of spatial locations, as well as the self-
similarity [14,15]. Although the long-range dependence and self-
similarity of SSCC, respectively, show strong and weak
characteristics in the above two literatures, it is essential to
explore other locations in the oceans for a more comprehensive
deduction. A global-scale investigation of the spatial pattern of these
two features (i.e., long-range dependence and self-similarity) will not
only provide insights into the spatiotemporal variability of SSCC
across a broader area but also offer a mathematical perspective to
inform ocean management and ecology. Therefore, such an inquiry
would lay a solid foundation for the scientific understanding of
SSCC, ultimately aiding in the sustainable management of
ocean resources.

Remote sensing technology has been a popular tool to
monitoring the SSCC variation in large space-time domain.
However, the remote sensing data may have some degrees of
data missing, so it becomes an important scientific issue to
scientifically analyze and accurately interpolate the data using
limited data as much as possible. Previous studies have tested
five methods, containing of nearest neighbor, bilinear, smooth
filter, sharpening filter, and unsharp masking, for interpolation
purposes, and the results indicated that these methods had good
interpolation accuracy for high-resolution remote sensing images
[16]. However, as early as 1994, Rossi et al. [17] pointed out that
nearest neighbor or bilinear interpolation cannot fully utilize the
spatial information contained in remote sensing data, and indicated
that the Kriging method can overcome this deficiency and applied
the indicator Kriging in land classification. Considering the
advantages of geostatistical methods in interpolation, the family
of Kriging and inverse distance weighting method were compared

for water quality evaluation, and the results showed that Kriging
outperform IDW [18,19]. Although the spatiotemporal Kriging
technology has been developed to include temporal information
for spatiotemporal interpolation purposes and more accurate
prediction will be achieved than the standard Kriging, it still
cannot deal with the non-Gaussian distributed or uncertain data
with including high order moments [20–23]. The Bayesian
maximum entropy method (BME) is currently the most complete
and capable interpolation method in the field of spatiotemporal
geostatistics by borrowing the strength from the Bayes theory and
maximum entropy theory, and it has been widely used in the fields of
environmental science, remote sensing, marine science, public
health, etc. [24–29]. Although the BME has been employed to
assimilate the information from auxiliary variable and machine
learning evaluation for improving the spatiotemporal coverage,
accuracy and reducing the uncertainty of remote sensing SSCC
product [15,30], there is still a lack of direct application of this
method to the interpolation of SSCC over a wider range.

SSCC has a direct or indirect response relationship with
environmental factors such as sea surface salinity, temperature,
wind speed, etc. [31,32]. Specifically, the high correlation between
sea surface salinity and nutrient concentration leads to a certain
association between the spatial distribution of SSCC and the salinity
front [33,34]. A positive correlation between SSCC and sea surface
wind speed was found in the east coastal area of Vietnam [35]. Sea
surface wind can also affect the vertical stratification and turbulent
mixing of seawater by changing the sea surface temperature, and
bring nutrients from the bottom of the sea to the sea surface, such as
the Ekman suction effect caused by vortex phenomena, which in
turn affects the changes and distribution of sea surface chlorophyll
[36,37]. Sea surface temperature exhibits close relationship with
SSCC, however, the effects of temperature on SSCC may vary at
various regions of ocean [15,28,38]. Therefore, it is worthy to explore
the environmental impacts on SSCC in a local scale way.

In view of the above considerations, the main objectives of the
current study are threefold: to assess the performance of BME in
SSCC interpolation, to quantify the long-range dependence and self-
similarity of SSCC at a global scale, and to determine the significance
of various environmental factors on the SSCC variation.

2 Materials and methods

2.1 Remote sensing data

The remote sensing SSCC data used in this study was obtained
from the European Space Agency (ESA) during the period from
29 July 1998 to 31 December2020. The data is a fusion product based
on multiple sensors, including Sea-Viewing Wide Field of View
Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer
(MERIS), Aqua-Moderate Resolution Imaging Spectroradiometer
(MODIS), Visible and Infrared Imager/Radiometer Suite (VIIRS),
and Ocean and Land Color Instrument (OLCI), with a spatial
resolution of 4 km and a temporal resolution of 1 day. To ensure
consistency and facilitate analysis with other environmental factors,
the original SSCC data was resampled to a product with a spatial
resolution of 1° by averaging the SSCC values within each 1-
degree grid.
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In addition, four environmental factors, including sea surface
height anomaly, sea surface salinity, sea surface temperature and
wind speed, were regarded as SSCC-related variables. Among them,
sea surface height anomaly data was downloaded from Copernicus
marine service website, and its spatial and temporal resolution is
0.25° and 1 day, respectively; salinity data were also achieved from
Copernicus marine service website, and the spatial and temporal
resolutions are 0.25° and 1 week; daily sea surface temperature data
were obtained from NOAA optimal interpolated SST with spatial
and temporal resolutions of 0.25° and 1 day; wind speed data were
achieved by the NOAA NCEI blended Seawinds (NBS v2) with
spatial and temporal resolutions of 0.25° and 1 day. The sea surface
temperature and wind speed data were resampled to the same
resolutions of salinity data.

2.2 Bayesian maximum entropy modeling
and spatiotemporal SSCC interpolation

In order to improve the spatiotemporal coverage of remote
sensing SSCC data, the BME theory of geostatistics was introduced
to absorb the spatiotemporal distribution pattern of SSCC for
interpolation purposes. Generally, the spatiotemporal random
field (STRF), X(p), was used to describe the spatiotemporal
variation of SSCC, where p = (s, t) represents the space-time
location, while s = (s1, s2) depict the geographical coordinates. To
perform spatiotemporal SSCC interpolation, BME absorbs two
kinds of knowledge bases (KBs): (a) core or general (G) KB that
capturing the space-time SSCCmean trend functionmX(p) � X(p),
and the space-time covariance function
cX(p, p′) � [X(p) −mX(p)][X(p′) −mX(p′)]; and (b) site-
specific (S) KB including remote sensing SSCC data in the
current study. Given both G- and S-KBs into consideration, the
probability density functions (PDF) of the possible SSCC values at
unmonitored space-time point pk can be calculated by Eq. (1):

fK χk( ) � A−1 ∫ dχhfG χh( ) (1)

Where χh and χk denote the SSCC values at point ph and pk,
respectively; fG and fK denote the prior space-time PDF obtained
from G-KB and the posterior PDF at each unmonitored point pk,
respectively; and A is the normalization constant. More detailed can
be found in the relevant literatures [39,40]. In the BME interpolation
process, a spatiotemporal moving searching radius was set by
centering at the estimation point; specifically, the spatial and
temporal radius was 8° and 1 day, respectively. Within the
spatiotemporal radius, the up to 12 hard data near the estimation
point were employed for generating prior probability density
functions. During this procedure, the space-time distance
between points were compared by setting the S/T ratio as 1,
i.e., the distance of 1° in spatial dimension is equal to the
distance of 1 day in temporal dimension. Further, the expected
value of the posterior PDF was regarded as the interpolated
SSCC values. Leave-one-out cross validation technique was
implemented for testing the performance of BME in SSCC
interpolation, and the mean absolute error (MAE) and root mean
squared error (RMSE) were treated as two indicators for quantifying
the accuracy of BME interpolated results.

To further corroborate the accuracy of the BME-interpolated
SSCC product, an additional daily gap-free SSCC product
employing a modified Data Interpolation Empirical Orthogonal
Function (DINEOF) interpolation methodology was procured
from the Copernicus website (https://data.marine.copernicus.eu/
product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/
description) for comparative analysis. Subsequently referred to as
the GlobColour product, it was resampled from a 4 km resolution to
a 1-degree resolution through averaging. Additionally, in-situ
observations of SSCC data, monitored by Argo buoys, were
acquired from https://dataselection.euro-argo.eu/to serve as a
validation dataset.

2.3 Modeling the long-range dependence
and self-similarity of SSCC by generalized
cauchy model

The variant generalized Cauchy model depicted in Eq. (2)
comprises two parameters, i.e., Hurst exponent H and fractal
dimension D, which are considered as quantitative expressions
for long-range dependence and self-similarity of a given time
series. If 0.5<H< 1, it represents long-range dependence with a
larger value of H implying a greater dependence of the SSCC
series; conversely, if 0<H< 0.5, it indicates short-range
dependence; if H � 0.5, the SSCC time series exhibits white
noise characteristics. On the other hand, the values of D range
from 1 to 2, with a larger value of D indicating a stronger self-
similarity of SSCC series. More detailed information of the
formula derivation and proven process can be found in
previous studies [13,41].

C τ( ) � 1 + τ| |4−2D( )−1−H
2−D (2)

The model will be fitted to the empirical autocorrelation
functions of the considered SSCC time series at various spatial
locations with spatial resolution of 1° across the oceans. Further,
BME and hotspot analysis were employed for the two parameters
(Hurst exponent and fractal dimension) mapping purposes.

2.4 Generalized additive model

In order to explore the significant impact factors, generalized
additive model (GAM) were employed for constructing non-linear
system between environmental factors and Hurst parameter and
fractal dimension of sea surface chlorophyll, as the following
equation shows.

yj � aj +∑4

i�1fi xi( ) + ε (3)

where xi represent the environmental variables, i � 1, 2, 3, 4,
including sea surface height anomaly, sea surface salinity, sea
surface temperature, and sea surface wind; fi represents the
corresponding smoothing spline functions; aj represents the
overall average intercept for Hurst parameter and fractal
dimension, j � 1, 2; ε represents the residual; yj represents the
Hurst parameter and fractal dimension. “LinearGAM” function
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from the pygam library was employed to process the generalized
additive modeling. The parameter “n_splines” is defined to
determine the number of splines used for each feature, where
each spline corresponds to a small interval. In the current study,
the “n_splines” parameter was set to 20. Natural cubic splines were
defautly used for fitting within each interval. Consequently, the
polynomial order within each interval is typically set to three.
Specifically, each cubic spline within an interval is determined by
four control points, providing four degrees of freedom. These
degrees of freedom determine the coefficients of the cubic
polynomial, thereby defining the polynomial function within
each interval.

3 Results

3.1 Cross-validation and improvement of
SSCC’s coverage

Using leave-one-out cross-validation, BME method was
validated by the remote sensing chlorophyll concentration data
during an 8192-day period. By comparing the BME predicted
SSCC values with the remote sensing original values, the results
showed that the BME has good capabilities in spatiotemporal

estimation and prediction of sea surface chlorophyll
concentration, with MAE and RMSE of 0.1295 mg/m3 and
0.4465 mg/m3, respectively. Then, the BME method was further
employed for spatiotemporal SSCC interpolation at 43,337 spatial
locations in the global ocean during the entire study period. The
numbers of SSCC data for each spatial point before and after BME
interpolation are shown in Supplementary Appendix A1A, B of the
Appendix Section. respectively. The statistical results showed that
each spatial point had an average number of 3,623 data before BME
interpolation (covering 44.23% of the study period), while the
number increased to 7,351 after BME interpolation (covering
89.73% of the study period). Therefore, the BME method
significantly improved the spatiotemporal coverage of remote
sensing SSCC data set. The daily averaged SSCC values of the
BME-generated product are illustrated in Supplementary
Appendix A2A, displaying a distribution pattern akin to the
resampled averaged SSCC values of the GlobColour product, as
depicted in Supplementary Appendix A2B.

To quantify the disparities between the daily BME-generated
SSCC product and the GlobColour product, both MAE and RMSE
were calculated, resulting in values of 0.15 and 0.63 mg/m³,
respectively. Furthermore, to assess the accuracy of these
products, Argo in-situ observations were employed for validation.
The results revealed MAE and RMSE values of 0.20 versus 0.27 mg/

FIGURE 1
The empirical values (blue dashed line) and the theoretical generalized Cauchy model fitted values (black line) of the autocorrelation function of sea
surface chlorophyll concentration.
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m³ and 0.46 versus 0.79 mg/m³, respectively. The corresponding
high-density scatter plots are presented in Supplementary
Appendix A3.

3.2 Complexity and hot spots of global SSCC

Among the 43,337 spatial points in global oceans, data from
32,281 to 30,926 points respectively have temporal coverage of
over 80% and 90% throughout the entire study period. A
generalized Cauchy model was used to fit the autocorrelation
function of 32,281 time series of SSCC in the global oceans. The
statistical results showed that the coefficient of determination
(R2) between the fitted values and empirical values of the linear
regression equation fluctuated between 0.6610 and 0.9994, with a
mean of 0.9141 and a standard deviation of 0.0518. The MAE
fluctuated between 0.0029 and 0.2058 mg/m3, with an average
value of 0.0387 mg/m3 and a standard deviation value of
0.0227 mg/m3. The RMSE fluctuated between 0.0039 and
0.2304 mg/m3, with an average value of 0.0454 mg/m3 and a
standard deviation value of 0.0257 mg/m3. Figure 1 shows the
autocorrelation function (ACF) of nine randomly selected time

series of SSCC from the 32,281 points and the fitting curve of the
generalized Cauchy model. It can be seen from the figure that the
generalized Cauchy model performs good in modeling the ACF
of SSCC. In general, the Hurst exponent (H) of SSCC fluctuated
between 0.5 and 0.9632, with an average value of 0.8667 and a
standard deviation value of 0.0582. The fractal dimension (D)
fluctuated between 1 and 1.9484, with an average value of
1.2506 and a standard deviation value of 0.2459. The spatial
locations of the nine selected SSCC time series are presented in
Supplementary Appendix A4.

Further, the fractal dimension and Hurst exponent,
characterizing the self-similarity and long-term correlation
characteristics of SSCC, were mapped by BME, shown in
Figure 2. Figure 2A shows that high fractal dimension values are
widely distributed in coastal areas of all continents, tropical areas of
the North Pacific (except the areas near the equator), the areas of the
South Pacific between 0 and 30 degrees, areas near 45 degrees in the
South Pacific, areas between 15 and 25 degrees in the North Atlantic,
and some regions of the Indian Ocean. Figure 2B shows that high
Hurst exponent values are distributed around 30 degrees north and
south latitudes in a belt-like pattern. The hot spot analysis made a
step ahead for identifying high and low values aggregation areas of

FIGURE 2
The spatial distributions of (A) fractal dimension and (B) Hurst exponent of the sea surface chlorophyll concentration globally.
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fractal dimension and Hurst exponent in a spatial distribution view,
and the results are shown in Figure 3.

3.3 Contributions of four sea surface
parameters on hurst parameter and fractal
dimension of SSCC

Although all environmental factors, i.e., sea surface height, sea
surface salinity, sea surface temperature, sea surface wind, showed
statistically significant with p values smaller than 0.001 in both
univariate and multivariate GAM, the R square values of the
univariate GAM are smaller than 0.2 and the R square values of
multivariate GAM are vice versa. Regarding the generalized cross
validation, the evaluation error of the univariate or multivariate
GAM for modeling fractal dimension ranged from 0.0475 to 0.0584,
while the corresponding error for modeling Hurst parameter ranged
from 0.003 to 0.0034. The results of multivariate GAM and
univariate GAM were presented in Figures 4, 5 and Appendix
section, respectively. For fractal dimension of sea surface
chlorophyll, the impacts of sea surface temperature and sea
surface wind showed an overall increasing and decreasing trend,

respectively; the impacts of sea surface height and sea surface salinity
depicted an increasing-decreasing and fluctuating trend,
respectively. Regarding the Hurst parameter of sea surface
chlorophyll, the opposite trends of sea surface temperature and
salinity impacts were detected; and similar decreasing-increasing-
stable trends were found for the impacts of sea surface height and sea
surface wind.

4 Discussion

Compared with the Argo in-situ SSCC observations, the BME-
generated SSCC product depicted more accuracy than the
GlobColour product, indicating that the BME shows better
performance than the DINEOF in SSCC interpolation. On the
other hand, compared with the global SSCC distribution shown
in the literatures [42,43], as well as the GlobColour product, the
BME-generated SSCC product displays similar characteristics,
including high- or low-values regions.

The spatial distributions of self-similarity and long-range
correlation characteristics of global SSCC were explored for
the first time in the current study. Generally, geostatistical

FIGURE 3
The hotspots of (A) fractal dimension and (B) Hurst exponent of the sea surface chlorophyll concentration globally.
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methods are applicable to spatiotemporal analysis of natural
attributes with strong spatiotemporal correlation [39,40,44].
This study found that BME will give high accurate prediction
for SSCC, indicating that the SSCC may own strong
spatiotemporal correlation, which is in line with Tobler’s First
Law (the first law of geography): everything is related to
everything else, but near things are more related than distant
things [45]. Similar findings have been confirmed in many studies
[15,28,30]. The outcome of this study is that the self-similarity
and long-range dependence of SSCC have spatial correlation
characteristics, varying in different regions. According to
Figures 2, 3, the self-similarity and long-range dependence of
SSCC are independent with each other, and their high- and low-
value distributions are also inconsistent. On one hand, inland
human activities often result in high nutrient burden along the
coast forming eutrophic regions [43], which promotes algal
growth and increase SSCC [46,47]; and it may be one of the
reasons for the strong self-similarity characteristics of SSCC.
Regarding the high fractal dimension values in the east coastal of
United States, it was found that the river discharge from inland
will have strong impacts on the circulation, salinity and water
quality of the coastal regions of the New Jersey, Cape Hatteras
and Florida, further influencing SSCC variations [48,49]. On the
other hand, the Hurst exponent distribution indicating the
strength of long-range dependence shows a similar
distribution pattern to the values of SSCC [28], which suggests
that areas with lower chlorophyll concentration or less nutrient-
rich regions have more stable algal growth and relatively stable
changes in SSCC, leading to stronger long-range dependence. For

example, low primary production regions, oligotrophic regions,
or the distribution of the depth of the 0.2 mm (ZNO3) nitrate
concentration showed similarities with the hot spots of Hurst
parameter in the Pacific Ocean, Atlantic Ocean and Indian Ocean
[43,50,51], as the mid-latitude regions (around 30°) in both
hemispheres shown in Figure 3B. Moreover, the association
between SSCC and sea surface temperature were also strong in
these regions, while the distinct boundary located at around 45°

latitude, which is due to the switch from negative to positive
responses of SSCC to marine heatwaves [28,52].

Given the relatively weak self-similarity of SSCC, this
discussion focuses solely on the long-range dependence of
SSCC. The growth of phytoplankton is a continuous process
that is influenced by environmental factors, such as nutrient
concentration. The multivariate GAM results indicate that
among the four factors, the sea surface height anomaly has the
greatest influence on the long-range dependence of SSCC, as
represented by the Hurst parameter (Figure 5). The sea surface
height anomaly is associated with anticyclone- and cyclone-
related eddies, which can transport nutrients from deeper sea
layers to the surface, promoting phytoplankton growth [53–56].
The curve shown in Figure 5A demonstrates that cyclone-related
eddies have a positive influence on the Hurst parameter, while
anticyclone-related eddies have a negative influence. The
contrasting impacts of sea surface temperature and salinity on
the long-range dependence of SSCC, as shown in Figures 5B,C,
result from the varying responses of different phytoplankton
species or communities [57–61]. In other words, specific
temperature and salinity conditions favor certain species or

FIGURE 4
Partial dependences of (A) sea surface height, (B) sea surface salinity, (C) sea surface temperature, (D) sea surface wind on fractal dimension of sea
surface chlorophyll using multivariate GAM model.
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communities of phytoplankton, leading to their dominance and
higher long-range dependence. Sea surface wind enhances
mixing between surface and deeper waters, consequently
impacting nutrient levels. Low wind speeds maintain favorable
conditions for phytoplankton growth and keep SSCC at a
relatively stable level. Strong winds with appropriate direction
relative to the coast and hemisphere also contribute significantly
to coastal upwelling, facilitating nutrient transport [35,62],
thereby resulting in the high long-range dependence of SSCC
observed in Figure 5D.

As the present study exclusively delved into examining the mono-
fractal and long-range dependence characteristics of SSCC, future
investigations could pivot towards the detection and quantification
of multifractal features within SSCC, drawing inspiration from previous
works [63–65]. Concurrently, an avenue for further exploration lies in
dissecting the seasonal aspects of the long-range dependence and self-
similarities inherent in SSCC, providing an opportunity for more
comprehensive insights in future research. It should be
acknowledged that the BME-generated SSCC at the north region of
Russia may include uncertainty due to lack of remote sensing data
(Supplementary Appendix A1, A2). Therefore, it is also worthy to find
proper ways to improve the BME products at the polar regions in
the future.

5 Conclusion

In the current study, the performance of BME on SSCC
interpolation was evaluated as robust and effective with mean

absolute error of cross validation equaling to 0.1295 mg/m3. The
temporal variations of SSCC across the entire oceans were described
using the generalized Cauchy model, and good performance was
obtained with mean value of the R2 equaling to 0.9141. The findings
revealed strong long-range dependence and relatively weak self-
similarity of SSCC; specifically, the values of Hurst parameter and
fractal dimension ranged from 0.5 to 0.9632 and from 1 to 1.9484 with
the mean values of 0.8667 and 1.2506, respectively. Further, the mid-
latitude regions exhibited the highest long-range dependence, while the
coastal regions showed the greatest self-similarity of SSCC. The use of
GAM revealed that both sea surface height anomaly and sea surface
wind made similar contributions to the long-range dependence of
SSCC. Conversely, sea surface temperature and sea surface salinity
had opposite effects on the long-range dependence of SSCC. Sea surface
temperature is always positively correlated with the long-range
dependence of SSCC.
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