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Hierarchical buckling is a novel phenomenon observed in elastic fibers subjected
to transverse confinement; however, the deformation mechanisms and modal
transitions of this unique phenomenon remain to be elucidated. This paper
investigates the hierarchical buckling of elastic fibers with elliptical (circular)
cross-sections under transverse confinement through analytical derivations
and numerical simulations. Various magnitudes of hierarchical buckling of
fibers are observed with the variation of the controlled elastic matrix stiffness.
An analytical solution is first derived for the fiber’s buckling phenomenon, and the
hierarchical buckling is accomplished through the superposition of buckling at
various modes. The theoretical results are validated against the finite element
simulations with good agreement. It is demonstrated from the parametric results
that the hierarchical buckling phenomenon is primarily influenced by the stiffness
of the external transverse confinement (matrix), which is defined as a
dimensionless parameter. It is thus illustrated from the computational results
that the buckling of elastic fibers within a solid or fluid matrix can be controlled
and customized. The present work provides theoretical guidance for the
application of elastic fibers in stretchable conductor fibers and flexible
electronic devices.
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1 Introduction

Elastic fibers lose stability under compression and undergo a buckling phenomenon to
transition into a newminimum energy state. The buckling of fibers was previously considered
as a form of failure, which was undesired due to the loss of the original configurations.
However, this was later on demonstrated as a strategy to tailor the performance of soft and
smart materials. Recently, shrinkage buckling has been employed in the preparation of
conductors to improve tensile and ductile strengths [1–4]. Elastic fibers can be prepared to
have various geometries, including U-shaped, spiral, and others [5–7], and to be extremely
ductile. In recent work, it was observed that elastic fibers embedded in an external elastic
matrix suffered from a wavy buckling configuration, resulting from shrinkage after the release
of pre-stretch, as shown in Figure 1A. Through high-magnification SEM images, it can be
observed that the elastic fiber is buckled into a wavy configuration superimposed with smaller
waves, establishing a hierarchical buckling phenomenon [7], as illustrated in the conceptual
diagram of Figure 1B. The hierarchy of buckling provides the option to customize the buckling
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phenomenon to achieve the functional requirements specific to
certain scenarios. From a practical perspective, such buckling
structures have been widely applied in electronic devices, including
wearable electronics[8,9], flexible displays [10], energy devices,
sensors [11], resonators, and electromagnetic wave absorbers
[12–15]. By adopting a suitable buckling structure, the
functionality of the devices can be further enhanced.

Until present, several analytical and numerical models have been
developed to investigate the buckling and instability of fibrous
materials. Dayan et al. [16] investigated the behavior of an elastic
fiber constrained by flexible and rigid tubes under a compressive force
through theoretical, numerical, and experimental methods. They
emphasized the deviation in behavior between a compressed fiber
constrained by a deformable tube and a fiber confined within a rigid
cylinder. Su et al. [17] utilized the classical Euler beam theory to
investigate the buckling problem of a slender elastic rod embedded in
an elastic matrix. They determined the critical conditions for the
transition of the rod from a planar wave to a non-planar coiled
structure. Xiao et al. [18] categorized the buckling of an elastic rod
under cylindrical transverse confinement into four specific
deformation modes: initial two-dimensional (2D) shape, small
three-dimensional (3D) shape, 3D helix shape and 3D alpha shape.
They also investigated the critical axial displacement at the transitional
point between those four deformation modes. Interestingly, a film
[19,20] or ribbon [21–23] attached to an elastic substrate can also
produce a buckling structure. The selection of substrates in these
models is diverse, ranging from single-layered substrates and
multilayered solid elastic substrates [20] to fluid substrates [23,24].
They exhibited similarities to the buckling of fibers under transverse
confinement [6] and illustrated the varied structural responses among
systems with different substrates. In addition, similar phenomena can
be observed in studies with the same confinement conditions, such as
cell microscopy [25,26], oil push rod [27] and plant root growth [28].
Most of the aforementioned studies focus on single-level buckling,
with only a few analyzing hierarchical buckling. Based on this
situation, in order to better explain the problem of hierarchical
buckling of elastic fibers, the dimensionless theory is utilized in
this paper for the analytical derivation. The dimensionless theory

is a widely employed analytical method in the fields of mathematics
and physics. It is utilized to enhance the comprehension and
description of various problems. There has been considerable
recent work on reducing the complexity of problems by removing
the effects of scale in physical phenomena through the use of
dimensionless theories, and this approach has yielded excellent
results [29–35]. Therefore, we developed a dimensionless analytical
solution to investigate the buckling hierarchy of elastic fibers with
using elliptical cross-sections under transverse confinement, through
the superposition of buckling of various buckling modes. For the
establishment of a theoretical model, the fiber shape and elasticity
are the critical parameters for the simulation of their counterparts.
Moreover, in recent studies, the cross-section selection for the elastic
fibers was basically the ideal circular or rectangular shape, which may
affect the accuracy of the calculated results. Consequently, an irregular
elliptical shape in this paper instead of the ideal circular shape to better
reflect the actual situation.

In this paper, a theoretical model is established for the buckling
phenomenon in sheath-core structural systems. The remainder of the
paper is organized as follows: In Section 2, an analytical derivation of
the hierarchical buckling phenomenon for elastic fibers with elliptical/
circular cross-sections is conducted for the first time. The effect of
the external solid/fluid substrates was investigated through their
transformation to equivalent stiffness. A finite element (FE) model
is established in Section 3 to verify the theoretical derivation. Finally,
we present numerical examples to investigate several factors that may
impact the hierarchical buckling effect observed in elastic fibers, and
themode transition law of buckling.We found that themorphology of
buckling and its associated characteristic scales can be tailored by
varying the geometric and material parameters of the system.

2 Theoretical framework

2.1 Model establishment

A 3D sheath-core theoretical model was established to analyze
the aforementioned experimental buckling phenomenon, as shown

FIGURE 1
(A) SEM images of the fibers were prepared under 900% pre-stretching conditions. (Zhou et al. Copyright 2020); (B) Concept diagram of
hierarchical buckling.
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in Figure 2A. Since the fibers were pre-stretched, dried, and then
released, they experienced to axial compression. We adopted the
Winkler foundation model to simulate the effect of the external
confinement from either the elastic or fluid matrix [36–39]. The
stiffness of the model is denoted as C that is acted only in the
transverse direction. The external elastic matrix is shown in
Figure 2B. For the sake of generality, fibers with elliptical cross
sections were selected as the research of interests in the present
work. The experimental phenomenon reveals that the buckling of
the elastic fibers with elliptical cross-sections was different from the
3Dbuckling of fibers with circular cross-sections [17,18]. The elliptical
fiber would buckle in the direction with the weaker moment of inertia
(Iy> Iz), which is denoted as the y-direction in this particular situation.
As shown in Figures 2C,D, Iy and Iz are the moments of inertia in two
directions, respectively. It is equal to the average of the reconciliation
between the main moment of inertia If = 2IyIz/(Iy + Iz). The fiber was
simplified to a homogeneous fiber [40].

2.2 Theoretical derivation

Here we start from the energy expression to analyze the critical
buckling phenomenon of the elastic fibers with transverse confinement
based on the theoreticalmodel illustrated in Figure 2B. According to the
principle of potential energy, it can be obtained:

Ub + Us − ΔT � 0 (1)
where Ub is the bending energy of the elastic fiber, Us is the elastic
energy of the matrix,ΔT is the external work done by the compression
force. The bending energy Ub of the elastic fiber is expressed as:

Ub � EfIf
2

∫L

0

d2w

dx2
( )dx (2)

where Ef and If denote the Young’s modulus and moment of inertia
of the fiber, respectively, w is the transverse deflection of the elastic
fiber, and L is the length of the elastic fiber. In the meantime, the
elastic energy of the matrix is expressed as:

Us � C

2
∫L

0
w2dx (3)

where C is the stiffness of the spring, the magnitude of which
represents the confinement of the matrix. Under a compression
force P, ΔT can be expressed as:

ΔT � P

2
∫L

0

dw

dx
( )

2

dx (4)

Substituting Equations (2–4) into Eq. 1 yields the nonlinear
equation for the deflection of the elastic fiber [41]:

EfIf
2

∫L

0

d2w

dx2
( )

2

dx + C

2
∫L

0
w2dx − P

2
∫L

0

dw

dx
( )

2

dx � 0 (5)

It was previously demonstrated in literature [41–46] that rod
buckling could be solved by assuming trigonometric functions for
the transverse deflection curve of a simply-supported fiber, which
can thus be expressed in terms of a series expansion as [47]:

w � ∑n�∞
n�1

An sin
nπx

L
(6)

where An represents the amplitude of an elastic fiber buckling, and n
is the modal number. By substituting Eq. 6 into Eq. 5, An is

FIGURE 2
(A) Model of the sheath-core system; (B) simplified model of the sheath-core system with fibers (in blue) and the spring acting in the transverse
direction attached to the fiber; (C, D) Moment of inertia of the y and z axes for different cross sections; (C) Round cross-section; (D) Elliptical
cross-section.
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completely eliminated and the dimensionless critical buckling load
of the fiber can be obtained as [48]:

fcr � n2 + c2

n2π4
(7)

where f = PL2/π2EfIf and c = (CL4/EfIf)
1/2 are the dimensionless

compression load and the dimensionless spring stiffness,
respectively. It is thus demonstrated from Eq. 7 that the
magnitudes of critical buckling loads at various modes are
dependent on the dimensionless parameter c and modal number
n. In the meantime, the hierarchical buckling phenomenon could be
triggered through the superposition of buckling at two
modal numbers.

Following the derivation in Eq. 7, we generated the
dimensionless critical buckling load for each modal number
utilizing the material properties of the polymer (poly (3,4-
ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS))
[7]. We selected the elastic Young’s modulus and mean moment
of inertia of the fiber as Ef = 59 GPa and If = 8.25 × 10−4 mm4,
respectively. The length of the fiber was assumed as L = 100 mm. The
dimensionless spring stiffness was assumed as c = 320.5. Figure 3
presents the dimensionless critical loads for various modal numbers,
we discovered that the critical buckling load did not monotonically
increased at increasing modal numbers. In this particular case, it
could happen that buckling loads at two different modal numbers
are coincident at the same value, leading to the existence of
hierarchical buckling phenomenon.

To test this idea, we assumed two specific modesm and v (m≠v),
the critical buckling load with the same magnitude was triggered,
which indicates:

m2 + c2

m2π4
� v2 + c2

v2π4
(8)

more specifically, we have:

c2 � π4m2v2 (9)

which is actually the condition that triggers the buckling of the same
magnitude at two different modes. The superposition of the two
buckling morphologies yields the hierarchical buckling configuration.
Furthermore, it is obtained from Eq. 9 that the buckling phenomenon
is also dependent on transverse confinement. Therefore, we analyzed
the influence of the dimensionless spring stiffness c on the buckling
phenomenon. Figure 4 illustrates the dimensionless critical buckling
load fcr as functions of dimensionless spring stiffness c. The critical
buckling load at each mode was found to monotonically increase with
the increase of dimensionless spring stiffness. In addition, the
interjection of the curves indicates the triggering of two joint
buckling phenomenon at different modes, which means the
hierarchical buckling phenomenon appears at a given
dimensionless spring stiffness c. Although the external elastic
matrix was equated to a spring in this paper, there is still no
explicit transformation relation between the stiffness and elastic
matrix. For the purpose of establishing the FEA parameters for the
spring in the subsequent section, we investigate this problem below.

The effect of transverse confinement can be specialized as the
elastic or fluid matrix. Therefore, it is important to characterize the
effect of solid or fluidmatrix on the buckling of fiber in a quantitative
manner. For instance, in the case of a fluid substrate, [23,24]) was the
first to realize that its weight could act as an effective stiffness, which
indicates, for a fluid, we could assume the effective stiffness C = ρg,
where ρ is the fluid density and g is the acceleration due to gravity. In
the meantime, regarding the elastic matrix, the equivalent stiffness
could be obtained in terms of the modulus of elastic matrix [49,50]:

C � 16πGm 1 − vm( )
2 3 − 4vm( )K0 l( ) + nπrK1 nπr/l( )/l (10)

where Gm = Em/[2(1 + vm)] and vm are the shear modulus and
Poisson’s ratio of the elastic matrix, K0(*) and K1(*) are modified
Bessel functions of the second kind, r is the radius of the rod, and l is
the length of the rod. For a slender elastic fiber (e.g., r/l ≈ 0) with an
elliptical cross-section, Eq. 10 can be further optimized as:

C � 8πGm 1 − vm( )
ln 2L/n 						

a2 + b2
√( ) (11)

where a and b are the long and short semi-axes of the elliptical cross-
section, respectively. In Figure 5, we plotted the dimensionless
spring stiffness as a function of the dimensionless matrix stiffness
e = EmL

4/EfIf and compared the simplified spring stiffness with the
formula in literature. In Figure 5, it can be seen that the two curves
provide almost identical predictions, proving that the optimization
in Eq. 11 can also be employed in the calculation. FE simulations
were subsequently conducted to validate the theoretical derivation.

3 Numerical simulations

FE simulations were performed to validate the theoretical
derivation through the commercial software package ABAQUS.
In the simulations, small deformations were considered and the
elastic fiber was modeled using element type C3D8R (an 8-node
linear brick). Reduced integration and enhanced hourglass control
are adopted to enable the elements to have an enhanced tolerance of
distortion. The elastic Young’s modulus and Poisson’s ratio of the

FIGURE 3
Dimensionless critical buckling load fcr for different values of
modal number n.
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fiber were Ef = 59 GPa and vm = 0.22 [5], respectively. The mean
diameter and length of the fiber were R = 0.643 mm and L =
100 mm. Articulated boundary conditions were established at
both ends of the elastic fibers (only the axial displacement being
released) and a compressive tendency being imposed. To simulate
the effect of transverse constraints on the elastic fibers, an array of
springs was applied to the outside of the fibers using the elastic
foundation module in the interaction. By utilizing the
transformation relationship between the matrix stiffness and the
spring stiffness discussed in the previous section, we were able to
impose different spring stiffness values. To ensure accuracy and
convergence reliability, we continuously debugged the number and

size of cells. Ultimately, we used 22,000 meshes and 33,033 nodes
with a mesh size of 0.1 mm. We checked the quality of the meshes
using the mesh quality checking system in ABAQUS, which showed
that the number of wrong and warning meshes was zero, indicating
that ourmesh setup was reasonable and correct. Finally, the buckling
analysis was performed using a linear perturbation algorithm (via
the BUCKLE module in ABAQUS).

Figure 6 illustrates the hierarchical buckling modes of the elastic
fibers through the FEA results. In Figure 6, we show the buckling
modes of elastic fibers with four representative configurations, which
combinations of modal superpositions, say c2 = 64π4, 5625π4, 4624π4

and 3600π4 (respectively, a, b, c, and d) in Figure 6. According to Eq. 9,
it can be inferred that Figure 6 present joint buckling phenomenon by
superposition of modes 1 and 8 (Figure 6A), modes 5 and 15
(Figure 6B), modes 4 and 17 (Figure 6C) as well as modes 2 and
30 (Figure 6D), respectively. It is observed that the hierarchical
buckling phenomenon becomes more significant with the
introduction of higher-order buckling modes. The FE simulations
are employed to validate the present result by generating the
dimensionless critical buckling loads as functions of dimensionless
spring stiffness. Figure 7 compares the theoretical prediction and
numerical ones, and it is found that the FE results do not closely fit
with the theoretical calculations. We speculate that the reasons for the
differences between the reduced model (Wrinkler foundation model)
and the FE results is due to shear deformation in the matrix, which the
Wrinkler model does not take into account. However, these
simulation results are qualitatively consistent with the experimental
results and supporting the theoretical analysis in Section 2.

4 Discussion and results

Based on the experimental observation, the hierarchical buckling
of elastic fibers with elliptical and circular cross-sections, under

FIGURE 4
Dimensionless spring stiffness c versus dimensionless critical buckling load fcr; The dimensionless critical buckling load was plotted for selected
modes n = 1, 2, 3, 4, 5, 8,15, 17 and 30.

FIGURE 5
Comparison of spring estimation. The solid and dashed lines are
the predictions applying Equation 10 and (11), respectively.
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transverse confinement, was investigated through analytical
derivations. It was demonstrated that the elastic fibers’ hierarchical
buckling phenomenon could be generated through triggering of
superposition of buckling at two modes at the same time when the
transverse confinement was satisfied c2 = π4m2v2. In addition, the
hierarchical buckling phenomenon becomesmore significant with the
introduction of higher-order buckling modes. Moreover, hierarchical
buckling can be effectively controlled by changing the Young’s
modulus ratio (e = EmL

4/EfIf) between thematrix and the elastic fibers.

The analyses are in good qualitative agreement with the
experimental results. However, a accurate quantitative
comparison is challenging due to the important role played by
imperfections andmeasurement uncertainties. We expect to take the
following measures to improve the accuracy of the calculations in
our subsequent work: Firstly, refining the computational grid to
increase its density enables better capture of local details and
structural deformations. Secondly, optimizing the accuracy of
boundary conditions is crucial for precise calculation results.

FIGURE 6
FE simulation results: (A) c2 = 64π4, (B) c2 = 5625π4, (C) c2 = 4624π4, (D) c2 = 3600π4.

FIGURE 7
Comparison of theoretical and finite element results for the
prediction of the dimensionless critical buckling load fcr. The solid and
dashed lines indicate theoretical results and FEA results for prediction,
respectively.

FIGURE 8
Relationship between the ratio of long and short axis b/a and
dimensionless critical buckling load fcr.
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Additionally, selecting a more accurate material model that
effectively describes the structural response during loading is
essential. By combining these methods, the accuracy of the
calculations can be significantly improved.

In addition, we have also found that the cross-sectional
geometric characteristics of the fibers influence in the buckling
configuration. In Figure 8, we plotted the relationship between
dimensionless critical buckling loads for different b/a ratios,
based on the theoretical results presented in this paper. For
elliptical cross-sections elastic fibers, the ratio b/a of the short
and long semi-axes of the elliptical cross-sections also affects the
critical buckling load and buckling configuration of the elastic fiber.
The critical buckling load increased as the cross-sections approached
a circular shape. We speculate that when the fiber cross-sections are
sufficiently close to a circular shape, the fibers undergo a transition
from hierarchical buckling to 3D helical buckling [16,17]. However,
the ratio of the short to the long axis of the elliptical cross-section
mainly affects the buckling of the elastic fibers in the form of
hierarchical buckling or 3D helical buckling. It is only a
secondary factor affecting the modal superposition of the fibers.
With the focus of this study being only the explanation of the
hierarchical buckling phenomenon, the specific transition
conditions were not thoroughly examined.

In summary, the analysis we proposed can be employed to
predict the hierarchical buckling phenomenon observed in the
experiment. The main reason in influencing the buckling
phenomenon is the interaction of the matrix with the elastic
fiber. By controlling the stiffness of the external matrix, the
degree of hierarchical buckling of the elastic fibers could be
tailored. It is shown that for a particular spring stiffness C, two
different buckling modes can be simultaneously triggered at the
onset of buckling, and the formation of hierarchical buckling is a
result of the joint action of the two modes. This unique buckling
phenomenon can motivate the development of new path for novel
flexible electronic devices. Moreover, the present work provides
theoretical guidance for the production, design and application of
elastic/hyper-elastic fibers for the future use of buckling mechanisms
to produce devices with controllable and sophisticated hierarchical
structures.
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