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In this paper, we propose a novel photonic crystal fiber (PCF) with double-layer
rings for transmitting orbital angular momentum (OAM). The substrate of PCF is a
pure silicon base. The inner circle is doped with Fluoride to reduce the refractive
index (RI), and the transmission domain is doped with Germanium dioxide to
increase the RI. On the outer side of the transmission ring, air holes are regularly
arranged to restrict the beam transmission within the transmission layer. After
calculation, the proposedOAM fiber can effectively support 118OAMmodes in the
range of 1.3–1.75 μmwith excellent characteristics. In addition, we also found that
proposed fiber has “bandgap-like” mode field characteristics.
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1 Introduction

Optical communication is one of the important communication methods, and is highly
favored with its high capacity and high speed. In recent years, conventional optical
communication technology is getting closer to Shannon’s limit. Therefore, wavelength
division multiplexing (WDM) [1], mode division multiplexing (MDM) [2] and other
multiplexing technologies have become the primary directions of optical
communication. Among them, orbital angular momentum (OAM) beam is an excellent
carrier beam [3–5]. OAMwas proposed by Allen [6] in 1992 and has made a big splash in the
field of optical communication. The vortex beam has the phase factor of eilφ and the phase
distribution is vortex-shaped. Most importantly, OAM theoretically has infinite orthogonal
modes in Hilbert space, which provides a very ideal transmission channel for optical
communication.

In recent years, the research of OAM transmission fibers has focused on ring core fibers
(RCFs) and photonic crystal fibers (PCFs).OAM-RCFs include step index RCF [7], graded
index RCF [8], refractive index modulated (RI- modulated) RCF [9], etc. OAM-RCFs
improve the characteristics by making corresponding changes of transmission layer rings to
make them more compatible with OAM transmission. The design principle of OAM-PCF is
that the periodic arrangement of air holes restricts the beam propagating in the fiber core. By
adjusting the number [10], arrangement [11], shape [12] of air holes, the supported OAM
number by the fiber is greatly increased. There are also some studies on setting transmission
rings in PCF, which are RI-modulated. The transmission layer works with the air holes to
confine the beam. The fiber combining RCF and PCF has good characteristics for
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transmitting OAM. In addition, some special rotating fibers [13] also
have unique advantages in transmitting OAM.

In this paper, we propose a PCF containing a double layer of
rings. The inner ring is doped with Fluoride to reduce the RI, and the
transmission layer is doped with Germanium dioxide to increase the
RI. Air holes are regularly arranged on the outside of the
transmission layer to restrict the beam within the transmission
layer. After calculation, our proposed fiber can support
118 OAM modes in the range of 1.3 μm–1.75 μm and has
excellent features such as large mode field and flat dispersion. In
addition, proposed fiber also shows characteristics of “bandgap-
like PCF".

2 Structure of the designed PCF with
double-layer rings

The schematic diagram of our proposed OAM fiber with double
layer rings is shown in Figure 1. We dope two layers of rings in the
silicon-based PCF. The inner ring is fluoride doped to reduce the RI,
and the outer ring is germaniμm dioxide doped to improve the RI.
The double-layer circular structure fiber effectively improves the RI
difference between the transmission layer and the substrate. The
radius of the fiber cladding r1 is 62.5 μm r2 is 32 μm, and the
thickness of the fluoride doped layer is d1 = 1 μm with a RI of 1.43.
The thickness of the high refractive index layer (HRIL) of the
germanium dioxide doped layer is d2 = 2 μm with a RI of 1.48.

Outside the HRIL we set the air holes arranged periodically. r3 is
37 μm, and the diameter of the air holes d is 6 μm. The air hole
spacing Λ is 2 μm. The number of air holes from the inner layer to
the outer layer is 30, 36, and 40. In the outermost layer, we set the
perfect match layer (PML) with a thickness of 7.5 μm. PML acts as a
near-ideal absorber or radiator domain. Therefore, PML reduces the
influence of beam reflection and improves the calculation accuracy.

3 Characteristics of PCF with double-
layer rings

3.1 Number of OAM modes

According to the fiber coupling mode theory, OAM can be
formed by coupling the even and the odd mode of the same vector
mode in the fiber [14]:

σ±OAM±l � HEeven
l+1,1 ± jHEodd

l+1,1
σ ∓OAM±l � EHeven

l−1,1 ± jEHodd
l−1,1

{ (1)

where l represents the order of the OAM and vector modes. The
positive and negative of σ represents the spin direction. even and odd
denote the even and odd modes of the vector modes, respectively.
The imaginary number j represents the phase difference of π/2.

In the field of optical communication, increasing the
communication capacity is very important. And using OAM as a
transmission carrier, the number of modes determines the
communication capacity. For OAM transmission fibers,
increasing the RI of the transmission layer will increase the
OAM numbers. But this results in higher losses. For example,
Sulfur-based doping is chosen as the HRIL. Although this
increases the number of supported OAM modes, it raises the
confinement loss (CL), which is not conducive to the long-
distance transmission of the beam.

The purpose of our design is to reduce the RI difference between
the transmission layer and the substrate as much as possible if the
loss caused by the doped HRIL is acceptable. This will result in a
significant improvement in the number of transmission modes. The
outer ring is doped with Germanium dioxide andHRILis doped with
Fluoride. On the outside of the HRIL, air holes are periodically
arranged, which can reduce the RI of the substrate. Figure 2 shows
the mode field distribution of higher order modes. After calculation,

FIGURE 1
The schematic diagram of proposed OAM fiber with double-layer rings.
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the OAM fiber can effectively support 118 modes in range of
1.3 μm–1.75 μm.

3.2 Effective refractive index and its
differences

We analyzed the supported modes from 1,300 nm to 1750 nm.
The effective refractive index (ERI) is defined as:

neff � β

k0
(2)

where β is the propagation constant, k0 is the wave number in a
vacuum. Figure 3A shows the variation of the ERI with wavelength
for some vector modes. As the wavelength increases, the ERI of the
vector modes all decrease. Among them, the ERI of the higher-order
mode EH29,1 is the lowest, and the ERI is 1.44832 at 1.75 μm. In
addition, the ERI’s variation between different wavelengths of the
same mode increases gradually as the mode order rises.

FIGURE 2
(A)Mode field distribution of HE31,1. (B) Z-direction electric field of HE31,1. (C)Mode field distribution of EH29,1. (D) Z-direction electric field of EH29,1.

FIGURE 3
(A) neff of the some vector modes. (B) Δneff of some vector modes.

FIGURE 4
CL of some vector modes.
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ERID reflects the quality of the OAM formed by vector mode
coupling. According to the fiber degeneracy mode theory, HEl+1,1 and
EHl-1,1 will degenerate when the ERI is close to forming the LP mode.

This is unfavorable for the formation of OAM because we prefer the
coupling of odd and evenmodes of the same vectormode. It is generally
believed that when the ERID of HEl+1,1 and EHl-1,1 is above 10

–4, the
formation of LP mode will be avoided. Figure 3B shows the variation of
ERID with wavelength. The ERID decreases as the mode order
increases. Among them, the ERID between HE31,1 and EH29,1 is the
lowest to 0.000102. Although the model we designed can also support
higher-order vector modes, we discarded them because they do not
satisfy the ERID condition for forming OAM.

3.2.1 Confinement loss
The CL reflects the loss of the light propagating through the

fiber. The CL is defined as [15, 16]:

CL � −2π
λ

20
ln 10( )10

6Im neff( ) dB/m( ) (3)

TABLE 1 The number of OAM modes and CL of the recently proposed OAM
fiber.

References CL OAM number Year

[12] 10–8~10–6 dB/m 42 2020

[24] 10–8 dB/m 56 2020

[25] 10–10–10–8 dB/m 30 2020

[26] 10–8 dB/m 80 2020

[27] 10–9 dB/m 76 2018

This Paper 10–11–10–9 dB/m 118 2023

FIGURE 5
EMA of some vector modes.

FIGURE 6
Nonlinear coefficient of some vector modes.

FIGURE 7
Dispersion of some vector modes.

FIGURE 8
Dispersion values for all vector modes at 1550 nm.
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where λ is wavelength, and Im(neff) is the imaginary part of the neff.
Figure 4 shows the CL’s variation of some vector modes over
wavelength. For wavelength from 1.3 μm to 1.75 μm, the CL of
most vector modes oscillates in the range of 10–11–10–9 dB/m. The
lower transmission loss can ensure more effective transmission of
information. Table 1 shows the number of OAM modes and CL of
other OAM fibers. It indicates that the number of OAM modes
supported by designed OAM fiber is higher, and the CL is smaller.

Theoretically, light is confined inside transmission layer owe to
the HRIL [17, 18], but it will also be leaked out inevitably because the
outer layer of the HRIL is a silicon-based substrate with higher RI
than the inner low refractive index layer (LRIL), and the leakage
from the outer layer will be more serious. Air holes outside the HRIL
can effectively prevent the leakage of light waves and thus reduce CL.

3.3 Effective mode area and nonlinear
coefficient

The effective mode area (EMA) and nonlinear coefficient are
important parameters to evaluate the beam propagation quality [19].
The EMA represents the energy concentration, and the nonlinear
coefficient is used to characterize the nonlinear effect of the fiber
[20]. Since the effective mode field area is inversely proportional to
the nonlinear coefficient, we need to increase the effective mode field
area in optical communication. The higher effective mode field area
and the lower nonlinear coefficient improve the optical signal-to-
noise ratio. The EMA is given by [21, 22]:

Aeff � ∫∫ E x, y( )∣∣∣∣ ∣∣∣∣2dxdy( )2
∫∫ E x, y( )∣∣∣∣ ∣∣∣∣4dxdy (4)

where E(x, y) is the field distribution of the transverse electric field.
The nonlinear coefficient is defined as [21]:

γ � 2πn2
λAeff

(5)

where n2 is the nonlinear index for fused silica, and n2 =
2.6 × 10−20m2W−1. Figure 5 shows the variation of the EMA with
wavelength for some modes. The EMA becomes larger with the
increase of mode order. The EMA of all vector modes is above
320 μm2, and the EMA of HE31,1 reaches 577.763 μm

2 at 1.75 μm.
The greater EMA reflects the higher energy concentration and
smaller nonlinear coefficient.

FIGURE 9
Base-mode of bandgap-like fiber.

TABLE 2 The EMA and ERI of some of the bandgap-like modes.

Mode EMA(μm2) neff

TE 2,247.9 1.443720765

HEeven
2,1 2,248.6 1.443720919

HEodd
2,1

2,248.9 1.44372092

TM 2,249.8 1.443721093

HEeven
1,1 1,660.5 1.443890031

HEodd
1,1

1,660.5 1.443890032
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Figure 6 shows the nonlinear coefficient variation of some
modes over wavelength. As the wavelength increases, the
nonlinear coefficient decreases. In addition, the nonlinear
coefficient decreases with the mode order, which indicates that
the nonlinear effect of the higher-order mode is weaker and more
conducive to transmission. The nonlinear coefficients are all
below 0.4 km-1 W−1, which indicates the OAM mode supported
by proposed fiber has good transmission characteristics.

3.3.1 Dispersion
In optical communications, dispersion has a significant effect

on the efficiency of information transmission. A large dispersion
causes a high delay. The definition of dispersion is [23]:

D � −λ
c

∂2neff
∂λ2

(6)

Where λ is the wavelength, and c is the speed of light in a
vacuum. Figure 7 shows the variation of partial vector mode
dispersion with wavelength. When the mode’s order is below
HE16,1 and EH14,1, the dispersion is negative. When the order is
higher than these two modes, the dispersion value is positive.
And the absolute value of dispersion increases with the
wavelength. The positive and negative distribution of
dispersion is beneficial to the dispersion compensation of
optical communication network and can improve the accuracy
of information transmission.

In addition, the vector mode has a smaller dispersion and a flat
variation. In the calculated band, the HE31,1 mode has the highest
absolute dispersion value of 60.962 ps/(km·nm) at 1.75 μm and a flat
dispersion curve slope of 0.00348 ps/(km·nm2). Figure 8 shows the
variation of dispersion value with mode order for all vector modes at
1.55 μm. The dispersion values show a monotonic increase with the
increase of mode order.

4 “Bandgap-like” properties of OAM
fiber

Due to the LRIL in proposed fiber, the fiber exhibits the
characteristics of a bandgap-PCF. We call this property

“bandgap-like”. Figure 9 shows the fundamental mode of the
bandgap-like mode field. The main feature is that the beam
propagates on a pure silicon-based substrate with a LRIL
doped with fluoride in its outer layer. Intuitively, the beam
appears to be confined by the LRIL, like light propagating
through air in a bandgap PCF. The ERI of the bandgap-like
mode is lower than the normal vector mode. The fundamental
mode of the bandgap-like mode starts to appear at 1,550 nm
when the ERI is 1.44389.

These bandgap-like modes propagate at the central base with
a large EMA. Table 2 shows the EMA and ERI of some bandgap-
like modes. Furthermore, these modes are highly degenerate.
According to fiber mode theory, the ERI of vector modes that
degenerate to form the same LP mode are very close. Figure 10
shows the mode field distribution of the “bandgap-like” vector
modes and their polarization direction. The white arrow shows
the polarization direction of the electric field. Combined with the
optical fiber mode theory, we can analyze the beam mode by the
polarization of the electric field. The bandgap-like mode HEodd2,1 ,
HEeven2,1 , TM and TE have a very low difference in ERI, which is
consistent with this feature. Although this “bandgap-like” mode
cannot be used to form OAM mode, its large EMA and highly
degenerate properties make it unique. “Bandgap-like” mode of
proposed fiber can be used for optical communication because of
its large field area.

5 Conclusion

In this paper, we propose a PCF fiber with double-layer rings
for transmitting OAM. The RI is modulated by different doping
of the rings. This increases the RI difference between the
transmission layer and the substrate, increasing the supported
OAM numbers. The regular arrangement of air holes also
restricts the light beam. After calculation, the fiber can
support 118 OAM modes in the range of 1.3–1.75 μm. The CL
of most vector modes oscillates in the range of 10–11–10–9 dB/m.
The EMA of all vector modes is above 320μm2, and the nonlinear
coefficients of all modes are below 0.4 km-1 W−1. The dispersion
value is small and changes gently. In addition, the “bandgap-like”

FIGURE 10
Mode field distribution of the bandgap-like vector mode and its polarization direction. (A) TM (B) HEodd

2,1 (C) HEeven
2,1 (D) TE.
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mode field appears in the optical fiber, which is characterized by
large EMA and high degeneracy.
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