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In this paper, an improved SEIR model of fractional order is investigated to
describe the behavior of malware propagation in the wireless sensor network.
Firstly, the malware propagation model of fractional order is established based on
the classical SEIR epidemic theory, the basic reproductive number is obtained by
the next-generation method and the stability condition of the model is also
analyzed. Then, the inverse approach for the uncertainty propagation based on
the discrete elementmethod and least square algorithm is presented to determine
the unknown parameters of the propagation process. Finally, the optimal control
strategy is also discussed based on the adaptive model. Simulation results show
the proposed model works better than the propagation model of integer order.
The error of proposed model is smaller than integer order models.
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1 Introduction

Wireless sensor network (WSN) is a distributed communication system, which is
composed of a large number of sensor nodes with wireless communication and sensing
capabilities [1]. Nowadays, WSN is widely applied to build decision support system to
overcome many difficult problems in the real world, such as transport, medical, military and
so on. However, due to the limited resource in battery energy and low radio bandwidth
condition, WSN is always an easy target of manymalware attacks, and the nodes inWSN can
easily fall victim to some of malware attacks [2, 3]. WSNs are vulnerable to malware attacks
because the nodes are typically small, have limited battery power, limited computation and
communication capabilities, and limited storage capacity, which leaves them with no
complex hardware structures or security defences to protect their systems. WSN attack
sources are primarily divided into internal and external networks, where attacks from outside
the network have no special access to the WSN, but in-network attacks can be viewed as
WSNS participants and have the right to use system resources. Major attacks on WSNs’
physical layer include blocking, jamming, and tampering; Major attacks on the data link
layer include contention attacks, unfair attacks, and burnout attacks; The primary attacks on
the network layer include worm attacks, traffic analysis attacks, eavesdropping attacks,
selective forwarding attacks, denial of service attacks, and sybil attacks; The attack on the
transport layer is primarily a flooding attack. According to statistics, the number of malicious
programs is growing every year, causing serious damage to WSNs. The malware disrupts
WSNs’ service availability and data privacy by interfering with or blocking communication
of the data collected by the nodes, by eavesdropping on collected data, or by draining the
nodes’ battery capacity [4–7].
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Recently, the propagation of malicious programs in WSN has
become a hotspot [8–12]. A number of studies have been conducted
across the world, and some important studies have been published.
In these studies, researches point out the spreading behavior of the
malware is quite similar with the epidemic spreading in the
population [8]. When an infected node spreads the malicious
programs to its neighboring nodes across the network, it also
means this node tries to attack its neighboring nodes. Then, the
susceptible neighboring nodes maybe become an infected node or an
exposed node with a certain probability. Finally, few nodes are still
susceptible in this WSN if the users do not update the system to
protect nodes from attacking. Therefore, the epidemic model can be
applied to describe the behavior of malware propagation, and many
approaches are proposed based on the classical epidemic model for
infectious diseases. For example, authors in Ref. [9] proposed a
nonlinear malware propagation model based on the delayed
differential equations in WSNs, and analyzed the local stability of
the proposed model. In those proposed models, SIRD model is the
most adopted to characterize the spreading of malware. In these
works, the nodes are divided into four classes, susceptible nodes(S),
infection nodes(I), death nodes(D) and recovered nodes(R). The
relationship between these classes is shown as follows,

S′ t( ) � γS t( ) 1 − S t( )
R t( )( ) − βS t( )I t( ) − ηS t( ) + δR t − τ( ),

I′ t( ) � βS t( )I t( ) − ϵI t( ) − ηI t( ),
R′ t( ) � ϵI t( ) − ηR t( ) − δR t − τ( ),
S t( ) + I t( ) + R t( ) +D t( ) � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1.1)

Where γ is the intrinsic rate, β is the contact rate between susceptible
nodes and infected nodes, η is the death rate of nodes, δ is the rate for
nodes becoming susceptible after recovered at the period of τ and ϵ is
the rate for nodes from infection class to the recovered class. The
recovered nodes maybe become susceptible nodes again because of
protection failures. The delay term τ is the protective period of the
recovered nodes. At the end of this period, some recovered nodes
will re-enter the susceptible class.

To improve the performance of the classical epidemic models,
many improved SIRD model are proposed to describe the behavior
of the malware propagation in WSNs. For example, Soodeh, et al
proposed a new propagation model called SEIRS-QV based on the
classical SIR model. In this model, all the nodes are categorized into
six classes to describe the spread of malware propagation [10].
Comparing with the classical SIRD model, the exposed class,
vaccinated class and quarantine class are added in their works,
the proposed system are more complex in this model. The numerical
simulation shows the results of SEIRS-QV are appreciably better
than the classical models. Many researchers analyzed the
characteristics of the proposed model and discussed the stability
condition of the model. Hernndez, et al analyzed a new theoretical
model to describe the spread of malicious programs in WSNs [11].
The local and global stability of the equilibrium point of the
theoretical model are analyzed in their works. Kumari, et al
proposed a new malware propagation model with nonlinear
incidence and sigmoid type removal rate [12]. In their work, the
global stability and optimal control are analyzed. The majority of

previous studies have focused onmodeling malware propagation but
ignored the characteristics ofWSNs. Due to the characteristics of the
WSNs, the propagation model of epidemic in population can not be
used in WSNs directly usually. In addition, most of the proposed
models are the integer order differential equations, which is not an
effective tool for characterizing the behaviors of a complex network.
To overcome these weaknesses, manymodels based on the fractional
differentiation are proposed to describe the spread the epidemic. For
example, Ahmed, et al discussed the fractional order differential
equations model for nonlocal epidemic and applied the model to
analyze several common infectious diseases [13]. Momani, et al
proposed the fractional SIR epidemic model of childhood diseases
[14]. Coll, et al proposed a discrete fractional order model to analyze
the behavior of an epidemic process based on the discrete version of
G-L fractional derivative operator [15]. However, there are few
studies about malware propagation based on the fractional order
have been discussed. The behavior of different types of malwares is
very different. For this reason, we discuss the baseline model such as
a fractional order SEIR model. In future work, we will construct an
improved epidemic model for the different traits of the malware
based on the proposed model. Therefore, a new fractional order
model is proposed to describe the behavior the spread of the
malware propagation in this paper.

The rest of the paper is organized as followed. The malware
propagation delay model of fractional order is established based on
the SEIR epidemic theory in Section 2. Then, the basic reproduction
number of the proposed model is derived, and local stability is
analyzed in this section. The main contribution of this paper is
briefly summarized in Section 2. Then, the inverse approach for the
uncertainty propagation based on the discrete element method is
presented to estimate the unknown parameters of propagation in
Section 3. The adaptive model is established to determine the
optimal control strategy of the system update frequency. In
Section 4, the results of numerical simulation are discussed to
evaluate the performance of the proposed model and the classical
model. Finally, the conclusions and further works are discussed in
Section 5.

2 Malware propagation model of
fractional order

In this section, a fraction order differential equations model is
proposed to describe the propagation process of malware in WSNs.
In this model, all the nodes are divided into four groups, susceptible,
infected, recovered and exposed. We amused the total number of
nodes in WSNs is always a constant. Therefore,

S t( ) + I t( ) + R t( ) + E t( ) � 1. (2.1)
We denote by S(t), I(t), R(t), E(t) the density of susceptible, infected,
recovered and exposed nodes at time t, respectively.

Susceptible nodes become exposed when the infected by either
an exposed or an infected neighbor node at the rate of γ. The
susceptible nodes of γ(I + E)S nodes will move into exposed class.
Different with classical SEIR model, users can update the system on
the nodes to protect nodes from attacking of infected nodes and
exposed nodes over a period of τ1 in WSN. After this period, the
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recovered nodes will become susceptible again. R (t − τ1) nodes will
enter susceptible class. Therefore, the control strategy of update
frequency is very important. The high frequency means the network
is safe, but the cost will be high. Due to the updated strategy, δS
nodes will enter removed class from susceptible class. The
relationship between susceptible and other classes is shown as
follows:

C
0D

α
t S t( ) � −γ I + E( )S − δS + R t − τ1( ). (2.2)

We denote by C
0D

α
t S(t) is the symbol of α order fractional derivative,

γ is the contact rate and δ is the rate of the users decide to update the
system.

Considering that different definitions of fractional calculus can
be obtained from different perspectives, there is still no unified
definition expression of fractional calculus in mathematics, so we
first need to follow different definitions of fractional differential,
such as Grnwald-Letnikov definition [16], Riemann–Liouville
definition [17] and Caputo definition [18], properties and
calculation methods. In this paper, we adapt the Caputo
definition of derivative operator, which is defined in the
following form.

C
0D

α
t S t( ) � 1

Γ m − α( )∫
t

0
t − τ( )−α−1+m dm

dτm
S τ( )dτ, m − 1< α<m.

(2.3)
In many senses, the order of derivative is always less than 1. Then,
Eq. 2.3 can be rewritten in the following form.

C
0D

α
t S t( ) � 1

Γ 1 − α( )∫
t

0
t − τ( )−α−1+m d

dτ
S τ( )dτ, (2.4)

where Γ(x) is the gamma function.
The density of exposed nodes will increase when the susceptible

nodes are infected by its neighbor node. After a period of τ2, the
exposed nodes of E (t − τ2) will develop an infected. In addition, the
exposed nodes of δE will move into recovered class when the users
decide to update the system. The relationship between exposed and
other classes is shown as follows:

C
0D

α
t E t( ) � γ I + E( )S − E t − τ2( ) − δE. (2.5)

Infected nodes will move into recovered class when the system
on the infected nodes updated at the rate of η, η > δ. The exposed
nodes will move into infected class over the exposed period of τ2.
Therefore, the relationship between infected and other classes are
shown as follows:

C
0D

α
t I t( ) � E t − τ2( ) − ηI. (2.6)

The density of recovered nodes will increase when the users
updated the system. After the protected period, the recovered nodes
will become susceptible again. The relationship between recovered
and other classes are shown as follows:

C
0D

α
t R t( ) � δS + δE + ηI − R t − τ1( ). (2.7)

Based on the analysis above, the relationship between four
groups in the proposed model to describe the behavior of the
malware propagation is shown in Figure 1.

Above all, the malware propagation model of fractional order
based on the SEIR theory can be represented as Eq. 2.8.

C
0D

α
t S t( ) � −γ I + E( )S − δS + R t − τ1( ),

C
0D

α
t E t( ) � γ I + E( )S − E t − τ2( ) − δE,

C
0D

α
t I t( ) � E t − τ2( ) − ηI,

C
0D

α
t R t( ) � δS + δE + ηI − R t − τ1( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.8)

The recovered nodes will become susceptible again after the
protected period of τ1, it means that a rate of the recovered nodes
become susceptible approximately at any time. After some period of
τ2, the exposed node develops an infected. It also means that a rate of
the exposed nodes become infected approximately at any time. To
simplify theoretical analysis, we transform the system Eq. 2.8 into a
non-delay system, which is the common way in epidemic model
analysis. Then, the non-delay model can be rewritten as Eq. 2.9.

C
0D

α
t S t( ) � −γ I + E( )S − δS + 1

τ1
R,

C
0D

α
t E t( ) � γ I + E( )S − 1

τ2
E − δE,

C
0D

α
t I t( ) � 1

τ2
E − ηI,

C
0D

α
t R t( ) � δS + δE + ηI − 1

τ1
R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2.9)

The basic reproductive number is a key parameter to represent the
infected numbers in an average infection period. Firstly, note that
global stability of a malware-free equilibrium (MFE) was introduced
[19]. We can calculate the malware-free equilibrium point PF* �
(S*, E*, I*, R*) by solving the following equations:

−δS* + 1
τ1
R* � 0,

S* + R* � 1.

⎧⎪⎪⎨⎪⎪⎩ (2.10)

FIGURE 1
Flow chart of the malware propagation model.
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Then, the malware-free equilibrium point PF* is shown as

S* � 1
1 + δτ1

,

E* � 0,

I* � 0,

R* � δτ1
1 + δτ1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2.11)

The Similar method is used to calculate the endemic equilibrium
point (EE) of the above model PE = (S**, E**, I**, R**), which can be
calculated from the following equations.

−γ I** + E**( )S** − δS** + 1/τ1R** � 0,
γ I** + E**( )S** − 1/τ2 + δ( )E** � 0,
δS** + δE** + ηI** − 1/τ1R** � 0,
S** + E** + I** + R** � 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2.12)

So the endemic equilibrium pointPE* is shown as

S** � η + δητ2
γ + ηγτ2

,

E** � τ2 −η2 + ηγ − δη2τ1 − δη2τ2 + η2γτ2 − δ2η2τ1τ2( )
γ + η2γτ22 + ηγτ1 + η2γτ1τ2 + δη2γτ1τ

2
2 + δηγτ1τ2

,

I** � −η + γ − δητ2 + ηγτ2 − δ2ητ1τ2
γ + η2γτ22 + ηγτ1 + η2γτ1τ2 + δη2γτ1τ

2
2 + δηγτ1τ2

,

R** � τ1δ
2ητ2 + γτ1δη

2τ22 − τ1δη
2τ2 + γτ1δητ2 + τ1δη + γτ1η

2τ2 − τ1η
2 + γτ1η

γ + η2γτ22 + ηγτ1 + η2γτ1τ2 + δη2γτ1τ
2
2 + δηγτ1τ2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2.13)

According to the next matrices generation method (NGM) [20,
21], which can be used to evaluate the stability of the MFE. The main
advantage of the NGM is that it allows ones to ignore any uninfected
classes and focus only on the infected classes. There are two infected
classes in the proposed model. Let X = (E,I)T, the model Eq. 2.9 takes
the following form:

zX

zt
� F − V, (2.14)

where F � γS(E + I)
0

( ) and V �
1
τ2

E + δE

− 1
τ2

E + ηI

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

We define f and v as the Jacobian matrices of F and V evaluated
at the malware-free equilibrium point PF:

f � zF

zX
( )|PF

� γS* γS*
0 0

( ) �
γ

1 + δτ1

γ

1 + δτ1

0 0

⎛⎜⎜⎝ ⎞⎟⎟⎠, (2.15)

v � zV

zX
( )|PF

�
1
τ2

+ δ 0

− 1
τ2

η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2.16)

The basic reproductive number R0 is the largest eigenvalue of the
matrix fv−1 given by the Eqs. 2.15, 2.16:

fv−1 �
γ τ2η + 1( )

η δτ1 + 1( ) δτ2 + 1( )
γ

η δτ1 + 1( )
0 0

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠. (2.17)

Hence, the basic reproductive number corresponding to the DFE is
in the following form.

R0 � ρ fv−1( ) � γ τ2η + 1( )
η δτ1 + 1( ) δτ2 + 1( ). (2.18)

The Jacobian matrix of proposed model at PF is shown as
follows:

J �

−γ I* + E*( ) − δ −γS* −γS* 1
τ1

γ I* + E*( ) γS* − 1
τ2

− δ γS* 0

0
1
τ2

−η 0

δ δ η − 1
τ1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.19)

The corresponding characteristic equation is shown as Eq. 2.20.

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 � 0, (2.20)
where

A3 � τ1 + τ2 + 2δτ1τ2 + ητ1τ2 − S*γτ1τ2 + E*γτ1τ2 + I*γτ1τ2
τ1τ2

,

A2 � δτ1 + δτ2 + ητ1 + ητ2 + δ2τ1τ2 + E*γτ1 + E*γτ2 + I*γτ1 + I*δγτ1τ2 + I*ηγτ1τ2
τ1τ2

+I*γτ2 − S*γτ1 − S*γτ2 + 2δητ1τ2 + E*δγτ1τ2 + E*ηγτ1τ2 − S*δγτ1τ2 − S*ηγτ1τ2 + 1
τ1τ2

,

A1 � η + E*γ + I*γ − S*γ + δητ1 + δητ2 + δ2ητ1τ2 + E*ηγτ1 + E*δηγτ1τ2
τ1τ2

+E*ηγτ2 + I*ηγτ1 + I*ηγτ2 − S*δγτ1 − S*ηγτ2 + I*δηγτ1τ2 − S*δηγτ1τ2
τ1τ2

,

A0 � −E*δγ − E*δγ + I*δγ − I*ηγ
τ1τ2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2.21)

According to the stability theory, the MFE is locally asymptotic
stable if R0 < 1; the EE is locally asymptotic stable if R0 > 1.

3 Optimal control strategy

In this section, the discrete-time malware propagation model of
fractional order is established based on Eq. 2.9. Then, the least
square algorithm is used to solve the inverse problem and estimate
the unknown parameters in the model. Finally, the adaptive model is
proposed to determine the optimal control strategy to reduce the
spreading of malware.

In Eq. 2.9, η and δ are the rate of users updating the system on
the infected nodes and the other nodes, which are always known
parameters, while γ, τ1, τ2, α are the unknown parameters. Firstly,
estimation of these unknown parameters is investigated though the
inverse analysis. Let S [n], E [n], I [n], R [n] represent the number of
nodes in each group at time t = hn, n ∈ N*, which is obtained from
the designed experiment. Denote h as the constant time step [22].

The discrete-time fractional order Caputo operator Δα with
numerical approximation is defined in the following form [23–25],

ΔαX n[ ]� h−α

Γ 2−α( )∑
n

j�0
X n−j+1[ ]−X n−j[ ]( ) j+1( )1−α−h1−α( )

� h−α

Γ 2−α( )∑
n

j�0
bnj.

(3.1)
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Here we denote bnj = (X [n − j + 1] − X [n − j]) ((j + 1)1−α − h1−α).
Hence, the recursive function is obtained as Eq. 3.2. The state X [n +
1] can be calculated from state before,

X n + 1[ ] � ΔαX n[ ] − h−α

Γ 2 − α( ) ∑
n

j�1
bnj⎛⎝ ⎞⎠ Γ 2 − α( )

h−α
+X n[ ]. (3.2)

Then, the discrete-time fractional order model is expressed as the
following form.

ΔαS n[ ] � −γ I n[ ] + E n[ ]( )S n[ ] − δS n[ ] + 1
τ1

R n[ ],

ΔαE n[ ] � γ I n[ ] + E n[ ]( )S n[ ] − 1
τ2

E n[ ] − δE n[ ],

ΔαI n[ ] � 1
τ2

E n[ ] − ηI n[ ],

ΔαR n[ ] � δS n[ ] + δE n[ ] + ηI n[ ] − 1
τ1

R n[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3.3)

Begin from initial state (S [0], E [0], I [0], R [0]), the next state
(Ŝ[1], Ê[1], Î[1], R̂[1]) can be calculated though Eqs. 3.2, 3.3.
Repeating these process, the state
( ̂S[n + 1], ̂E[n + 1], ̂I[n + 1], ̂R[n + 1]) can be calculated from the
state before. The objective of the inverse problem is to minimize the
ordinary least squares norm of measured number of nodes in each
group and the calculated number of nodes in each group. The
objective function is the sum of squared errors between measured
number of each group with calculated, which is shown in the
following form,

G�∑
n

Ŝ n[ ]−S n[ ]( )2+ Ê n[ ]−E n[ ]( )2+ Î n[ ]−I n[ ]( )2+ R̂ n[ ]−R n[ ]( )2( ).
(3.4)

Then, the parameters γ, τ1, τ2, α can be estimated form the solution
of the direct problem in the following form,

γ̂, τ̂1, τ̂2, α � arg min G γ, τ1, τ2, α( ). (3.5)
For estimating the unknown parameters in the propagation

model, the gradient descent algorithm [26] is used for
minimizing the least squares norm Eq. 3.4.

In above control strategy, the control parameters η and δ are
constant in the propagation. In many senses, it may be not the
optimal control strategy. The adaptive model is proposed based on
the parameters γ̂, τ̂1, τ̂2, α obtained before. Denoted c as the unit cost
of update system on one node from attacking in WSNs, which is a
constant. When the endemic equilibrium point reached, the total
cost at time t = hn can be calculated in the following form,

C � c × ηn × I n[ ] + δn × 1 − I n[ ]( )( ), (3.6)

1: Input: Starting point V = [γ, τ1, τ2, α] ∈ R4, a

function zG(V)
zV , step-size β, tolerance θ

2: repeat

3: Calculate zG(V)
zV

4: Update V � V − β zG(V)
zV

5: until ΔX < θ for 100 iterations in sequence

Output: some hopefully minimizing V

Algorithm 1. Gradient Descent Algorithm.

where ηn and δn are the control parameters at time t = hn.

The control strategy is valid if the number of infected nodes and
exposed nodes is larger than the predetermined threshold (Thr). It
can be expressed as the given form,

I n + 1[ ] + E n + 1[ ]<Thr, n � 1, 2, . . . . (3.7)
The density of exposed nodes and infectious nodes at time t =

(n + 1)h can be calculated by the density at time t = nh,

E n + 1[ ] � ΔαE n[ ] − h−α

Γ 2 − α( )∑n

j�1bnj( ) Γ 2 − α( )
h−α

+ E n[ ],

I n + 1[ ] � ΔαI n[ ] − h−α

Γ 2 − α( )∑n

j�1bnj( ) Γ 2 − α( )
h−α

+ I n[ ].

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3.8)

The control parameters ηn and δn are always less than 1 and the
ηn ia larger than δn at each control stage,

FIGURE 2
Model results for suspected nodes.

FIGURE 3
Model results for exposed nodes.
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0< δn, ηn < 1,
ηn > δn.

{ (3.9)

Based on the above analysis, the optimal control parameters ηn
and δn can be obtained from the following model,

η̂n, δ̂n � arg min c × ηn × I n[ ] + δn × 1 − I n[ ]( )( )

s.t.

I n + 1[ ] + E n + 1[ ]<Thr

E n + 1[ ] � ΔαE n[ ] − h−α

Γ 2 − α( )∑n

j�1bnj( ) Γ 2 − α( )
h−α

+ E n[ ],

I n + 1[ ] � ΔαI n[ ] − h−α

Γ 2 − α( )∑n

j�1bnj( ) Γ 2 − α( )
h−α

+ I n[ ],

0< δn, ηn < 1,

ηn > δn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.10)

By solving the nonlinear model, we can get the optimal strategy
of the rate of the update system.

4 Simulations and results

To evaluate the performance of the proposed models, we carry
out the experiments to obtain the data of malware propagation
over a period of 730 unit time. At the beginning of the experiment,
there are 1,000 sensor nodes lying in the WSN. The unknown
malicious programme spread in this WSNs in this period. We set
the initial control parameters η = 0.02 and δ = 0.0003. There are
10,000 nodes in this WSN and the initial state of the WSNs is S
(0) = 0.9, E (0) = 0.1, I (0) = R (0) = 0. According to the obtained
experiment data, the number of susceptible nodes will decrease

FIGURE 4
Model results for infected nodes.

FIGURE 5
Model results for recovered nodes.

FIGURE 6
Simulation of the free suspected nodes.

FIGURE 7
Simulation of the infectious nodes.
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within the time. The number of exposed nodes will increase at the
beginning of the experiment and then decrease radially, the
number will keep stable at the end of the experiment. The
number of infected nodes and recovered nodes will increase
within the time.

By using gradient descent algorithm to estimate the parameters
γ, τ1, τ2, α by solving Eq. 3.5 withMATLAB. The results are obtained
γ = 0.000023, τ1 = 56.21,τ2 = 6.10, α = 0.65. We also tried to fit the
integer order model (α = 1) to the experiment data. The results can
be obtained as γ = 0.000112, τ1 = 25.31, τ2 = 11.18.

Based on the estimated parameters, the behavior of propagation
in each group based on the fractional order and integer order are
shown in Figures 2–5.

As Figures 2–5 shown, the fractional order model works better
than the propagationmodel of integer order. Especially, the behavior

of recovered nodes propagation in fractional order is more accuracy
than that in integer order.

Based on the parameters estimated above, the reproductive
number of this malware propagation can be calculated R0 =
0.0137, R0 < 1. However, the number of infected nodes and
exposed is so large, it means the control parameters need to be
improved. The optimal control model is established to estimate the
parameter ηn, δn at time t = nh according to Eq. 3.10 if the number of
infected nodes and exposed is less than 10%.

By solving Eq. 3.7, the performance of the optimal control
strategy is shown in Figures 6–9.

The adaptive control parameters at each time is shown in
Figures 10, 11.

As Figures 10, 11 shown, the control parameters are oscillation
to keeping the number of exposed nodes and infection nodes is less

FIGURE 8
Simulation of the free exposed nodes.

FIGURE 9
Simulation of the infectious nodes.

FIGURE 10
The control parameter η at each time.

FIGURE 11
The control parameter δ at each time.
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than 10% of the total number. The parameters η is larger than δ,
while η is oscillation between 0.18 and 0.095, δ is oscillation between
0.095 and 0. This is the optimal control strategy by solving Eq. 3.10
based on the gradient descent algorithm.

5 Conclusion

In recent years, differential equations of fractional order have
been increasingly used to describe problems in optical systems,
rheology, mechanical systems, signal processing and other
application fields. However, unlike the classical integer order
derivatives, there exists a number of different definitions of
fractional order derivatives and corresponding equations. These
definition differences lead to differential equations of fractional
order having similar form but significantly different properties. It
also means that given a differential equations of fractional order,
there exists no well-defined method to analyze them systematically.
Therefore, it is an urgent task to establish and improve the SEIR
epidemic theory of fractional order.

The malware propagation model of fractional order is
established based on the classical SEIR epidemic theory, and
the stability condition of the model is also analyzed in this paper.
The inverse approach for the uncertainty propagation is
discussed to estimate the unknown parameters in the model
by using the discrete element method and least square
algorithm. Finally, the adaptive control strategy is proposed to
minimizing the number of the infected nodes and exposed nodes
in the WSN at any time. Simulation results show the fractional
order model works better than the propagation model of integer
order and the adaptive control strategy is better than the fixed
control strategy.

There are also some limitations of our work. It must be pointed
out here that the solutions of the time fractional differential
equations are not very smooth in the temporal directions

[23–25]. That means we need to use the L1-scheme on the
graded meshes in order to improve the convergent results. In our
work, many engineering aspects such as protocol, communication
bit rate, noise, delay are not considered. However, we have certain
difficulties in this area of knowledge, which is also the work we need
to consider in the future.
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