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This contribution proposes two third-order numerical schemes for solving time-
dependent linear and non-linear partial differential equations (PDEs). For spatial
discretization, a compact fourth-order scheme is deliberated. The stability of the
proposed scheme is set for scalar partial differential equation, whereas its
convergence is specified for a system of parabolic equations. The scheme is
applied to linear scalar partial differential equation and non-linear systems of
time-dependent partial differential equations. The non-linear system comprises a
set of governing equations for the heat andmass transfer of magnetohydrodynamics
(MHD) mixed convective Casson nanofluid flow across the oscillatory sheet with the
Darcy–Forchheimer model, joule heating, viscous dissipation, and chemical
reaction. It is noted that the concentration profile is escalated by mounting the
thermophoresis parameter. Also, the proposed scheme converges faster than the
existing Crank-Nicolson scheme. The findings that were provided in this study have
the potential to serve as a helpful guide for investigations into fluid flow in closed-off
industrial settings in the future.
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1 Introduction

Electromagnetism and fluid mechanics share a modern scientific field called
magnetohydrodynamics (MHD). The electromagnetic force, which has been widely
exploited in many industries, such as semiconductor crystal growth, liquid metal blankets
in nuclear fusion reactors, and steel-making processes, significantly hinders the flow of
conducting materials.

Levitation of drops, dynamo modelling of planets, electromagnetic pumps, and other
technologies. In light of these advancements, it is crucial to research significantMHD flows such
as rotating, free-surface, and natural convection in rectangular ducts. Numerical analyses are
being utilized to examine MHD flows that are more composite due to recent advancements in
computational approaches. This Special Issue emphasized numerical and computational
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methods for deciphering and analyzingmore complexMHDprocesses
[1]. Miura [2] examined magneto hydrodynamic incompressible
turbulence driven by gyro-viscous terms and Hall by numerical
simulations of freely decaying, nearly isotropic, and homogeneous
turbulent flow. He discovered that the Hall and gyro-viscous variables
modify the energy transfer in the equations of motion to be
predominantly forward transfer, while the magnetic energy transfer
stays dominating.

The problem to be tackled in the present work is the Casson
nanofluid flow across oscillatory surfaces with effects of joule heating,
thermal radiations, and chemical reaction. Casson nan fluid is
preferable to Newtonian-based nan fluid flow as cooling and
friction-reducing agents [3]. Casson introduced the Casson fluid
model for the movement of viscoelastic liquids in 1959. Stress at
which no flow occurs should be provided by the Casson fluid, a shear-
thinning fluid, which should have infinite viscosity at zero rates of
shear and zero viscosity at infinite rates of shear. Casson fluid includes
honey, jelly, sauce, soup, and other things [4]. Ali et al.’s [5]
investigation of the Casson fluid flow on a tilted sheet included the
Soret-Dufour effects. Manideep et al. [6] studied the fluid Casson flow
on vertically inclined sheets. Shamshuddin et al. [7] conducted a
statistical analysis of a chemical reaction’s impact on the Casson fluid
flow on a sloped plate [8]; Vijayaragavan and Kavitha estimated the
Casson fluid flow over a tilted plate. Taking into account the current
hall, Prasad et al. [9] studied Casson fluid flow on an inclined sheet.
The inclined Casson fluid flow on a permeable sheet was studied by
Jain and Parmar [10]. The angle effect was considered in Sailaja et al.
[11].’s study of the Casson fluid flow on a vertical sheet. Casson fluid
flow was investigated by Rawi et al. [12] on a slanted sheet to take
nanoparticles into account. Rauju et al. [13] discussed Casson fluid
flow on a vertically inclined sheet in their study. The Casson fluid
model performs better with blood.

According to the literature, chemical reactions can be divided into
boundary or single-phase volumetric reactions, while homo-
heterogeneous reactions depend on both. In cases like the creation
of smog, first-order homogeneous chemical processes are discussed.
The hydrometallurgical and chemical industries are particularly
affected by the results of chemical processes involving mass
transfer. Since they are inversely correlated with species
concentration, reaction rates are frequently thought of as first
order. Outside chemicals trigger chemical reactions in the water or
the atmosphere. Heat is frequently produced between two species
when chemical processes occur, the existence of reactions, and viscous
dissipation. The unsteady MHD flow over an extended surface with
varying viscosity was studied by Kishan and Hunegnaw [14] while it
was embedded in an incredibly porous material. By involving energy
and reaction over a parabolic surface using a finite element approach,
Y. M. Chu et al. [15] examine the enhancement of thermal energy and
solute particles using hybrid nanoparticles. References [16, 17] provide
additional details.

A phenomenon of warmth transmission by radiation could be
thermal radiation. Due to the high thermal effects involved in the
production of electrical engineering and industrial significance can be
seen in the cooling of metallic items, paper plates, petroleum pumps,
and chips and their effects on MHD [3, 18–20] flows. Applications of
radiation effects in physics and engineering processes are considerable.
It significantly affects space technology, which studies the thermal
effects of various fluxes, and processes that warm solids or liquids. The
impacts of thermal radiation might be extremely important in

controlling heat transfer in the polymer manufacturing industry,
where the value of the materials is focused on heat-maintaining
qualities. A bi-viscosity fluid confined in a highly trapezoidal cavity
is analyzed by Nasir et al. [21] under the influence of thermal and
magnetic forces. According to Kumar et al., the non-linear thermal
radiation influence needs to be studied to analyze MHD shear-
thickening fluid motion through stretchy geometry, according to
Kumar et al. [22]. The effects of thermal radiations on heat
transfer for Casson fluid flow in porous media across a non-
linearly growing surface are examined by Pramanik [23]. Refs
[24–27] provide more details about recent investigations.

Joule heating is when current energy is modified to heat because of
flow in resistance. It’s a good range of applications, like in industries
and technology. The Joule heating effect occurs when an electric
current flows through a conductor and causes heat to be generated.
The Joule heating effect is used in many industrial processes and
devices. In addition to food processing and scanning microscopes,
infrared-thermal images, electrical radiative heaters, light bulbs,
laboratory water baths, electric tabletop hotplates, clothes irons,
hand tools, fan heaters, hair dryers, and cartridge heaters are
among the several uses for heating effects of a joule. The
researchers and engineers reviewed the Joule heating effect in their
respective fields of study in light of the abovementioned applications.
The fluid temperature rose for the joule heating parameter for a
hyperbolic tangent nanofluid in porous media in a study by Alaidrous
et al. [28]. In addition to taking into account the features of the
Cattaneo-Christove heat flux theory, Hafeez et al. [29] explored the
Oldroyd-B nan non-Newtonian fluid flow. According to this work, the
concentration of Oldroyd-B nanofluid increases for thermophoresis.
An investigation by Khan et al. [30] determined that the force field
parameter increases the nan fluid velocity profile in Casson nanofluid
flow through a rotating cylinder that is hydromagnetic in three
dimensions, with consequences of entropy and Joule heating.
Kumar et al. [31] used the shot method and the RK4 scheme to
examine the effects of the Joule heating effect on the flow of
Williamson nano fluid toward the stretching sheet. The entropy of
the system rises as the Brinkman parameter is advanced. As a cylinder
shrinks, a highly hybrid nanofluid flows through it. Khashi’ie et al. [32]
investigated the effects of Joule heating and warmth transmission.
Uddin et al. [33] identified the multiple features of the Joule heating
effect on the mixed convection MHD flow. Our investigation leads us
to the conclusion that the fabric magnetic parameter enhanced the
skin friction coefficient. Kazemi et al. [34] proposed an analytical
solution for the fourth-grade nan fluid flow along the duct walls in
viscous dissipation and Joule heating forces. According to their
research, heat transport via duct walls may reduce by up to 40%
when the Hartman number is raised. Rasheed et al. [35] investigated
the Jeffery nano liquid MHD boundary flow over an extended cylinder
with heat generation and absorption consequences. The
Darcy–Forchheimer flow of Williamson fluid over a Riga plate
under the effects of suction/injection has been explained in [36].
The heat and mass transfer were also considered with the effect of heat
consumption/generation. For solving the ODEs in the presented
phenomenon, both numerical and analytical studies were carried
out. The numerical solution was based on applying Matlab solver
bvp4c, and the analytical study was based on the analytical method
named homotopy analysis method. From the obtained results, it was
seen that fluid temperature was raised by increasing radiation
parameters. A Buongiorno nanofluid model has been considered in
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[37] for investigating electro-magneto hydrodynamic flow over a Riga
plate. A nanofluid model was considered with Cattaneo-Christov’s
heat flux and generalized Fick’s law. A study of MHD micropolar
ferrofluid flow over a stretching surface has been given in [38]. Using
the similarity transformations, the governing equations of flow were
reduced into a set of ODEs and solved by Matlab solver bvp4c. It was
observed that stream function and velocity declined by enhancing
magnetic parameters. Matrix nanocomposites are materials with
various applications because of their thermophysical properties.

An all-encompassing numerical study of the many physical
features of steady MHD Von Kármán’s flows of chemically
reacting nanofluids that can occur over a rotating disk in the
presence of a radially applied magnetic field has been performed in
[39]. This is done under the assumption that the disk surface is
impermeable and heated convectively, in which case the vertical
nanoparticles’ mass flux has practically vanished. Examining how
the generalized heat transport affects the free convection flow of a
viscous nanofluid in a cylinder is what [40] is all about. The heat
transfer equation is generalized using the generalized
Atangana–Baleanu time-fractional differential operator.

The study for the dispersion of matric nanocomposite material on
magnetized nanofluid flow over the coaxial disks was given in [41].
The prominence of the permeability function was also examined
numerically. The calculated results showed that the increasing
nanolayer thickness had escalated thermal phenomena and effective
nanolayer thermal conductivity. It was also noticed that the Nusselt
number was enhanced by incrementing hybrid nanoparticles volume
fraction. Ferrofluid is made up of tiny magnetic particles and uses in
inertial and viscous damping, dynamic sealing and magnetic drug
targeting. The study of this fluid has been given in [38], and the
stretching sheet caused the flow. For solving ODEs obtained by
applying transformations to the governing equations of the fluid
flow, Matlab solver bvp4c has been employed. It was observed that
stream function and velocity declined by enhancing magnetic
parameters. In [42], an infinite medium was used to investigate a
thermoelastic diffusion model of fractional order. An inclined
temperature field was transmitted through the spherical cavity. The
eigenvalue technique solved the differential equation in the form of
vector-matric equation in the Laplace transform domain. An
analytical solution for the displacement, temperature, and
concentration was found in the Laplace domain. A finite element
method is one of the numerical methods that can be considered to
solve ordinary and partial differential equations. This method has been
considered in [43] to study the dual-phase-lag model on thermoelastic
interaction subjected to a ramp type of heating. The method was
proposed to solve the problem and found the solutions for
displacement, temperature and stress. A comparison for some
results was also given with three theories. Some more recent work
on MHD flow can be found [44–46].

The motivation of this contribution is based on the modifications
of analytical methods which have been done earlier, and this effort is
not to modify some numerical method. The modification of the
numerical method is the main objective of this work and its
application to some applied problems in science or engineering.
The numerical technique is applied to Casson fluid flow over the
oscillatory plate. The non-Newtonian MHD fluid has applications in
heat storage beds, textile industries, irrigation problems and polymer
composite industries.

In literature, numerous numerical methods exist for solving
different types of problems in science and engineering. Some
methods discretize only the time variable in the time-dependent
PDEs. The time discretization methods can be classified into two
types. One of these types of methods is an explicit class of methods,
and the second is an implicit class of methods. Explicit methods
mostly have smaller stability regions than those provided by some
implicit methods. Explicit methods are easy to employ for any non-
linear problem, but implicit types of methods require linearized
differential equations. Also, the systems of equations obtained by
employing implicit methods are required to solve by any software
solver solving equations, or these systems require any other iterative
method. In this contribution, the Gauss-Seidel iterative method is
employed for solving equations after applying the proposed numerical
scheme. The proposed numerical schemes are constructed on three-
time levels. The first stage is constructed on two-time levels, whereas
the second stage uses the information of three-time levels to find the
solution at some particular time level. So, a second stage requires any
other method based on two levels to find the solution at the first time
level. The scheme is applied to two problems: one is a linear problem,
and the second is a system of non-linear PDEs. The system of non-
linear parabolic equations is obtained from the phenomenon of
nanofluid flow over the oscillatory sheet. Effects of heat and mass
transfer, thermal radiation, viscous dissipation, and joule heating are
also considered. The system is first reduced into dimensionless PDEs
and later solved by the proposed scheme with fourth-order compact
discretization in space. Analytical and numerical methods can be used
to solve considered flow problems. The numerical methods may
comprise the finite element method and high-order finite difference
approaches that can be used to discretize time and spatial terms in the
given PDE. Since this contribution aims to propose a numerical
method, its application to the flow problem is also given. Because
of this study, more computational schemes can be constructed that
will have more advantages than these schemes.

2 Numerical scheme

The proposed numerical scheme is a two-stage scheme consisting
of explicit and implicit stages. The explicit stage is the forward Euler
method, whereas the implicit stage comprises some unknown
parameters. The first stage finds the problem’s solution at some
unknown time level. The second stage of the scheme uses the
information of the solution computed from the first stage of the
scheme and finds a solution at (n + 1)th time level. For proposing a
scheme, consider the time-dependent partial differential equation in
the form of

zu

zt
� f u,

z2u

zx2
( ), (1)

subject to the boundary conditions

u t,−L( ) � α1, u t, L( ) � α2, (2)
where α1 and α2 are constants which have the same dimensions as the
dependent variable u, and the initial condition can be given as

u 0, x( ) � g x( ), (3)
where g(x) is the function that only depends on x.
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The first stage of the scheme is given as,

�un+1
i � un

i + Δtzu
zt

∣∣∣∣∣∣∣ni , (4)

This stage 4) requires only the information of the dependent
variable computed at the previous time level. The next stage consists of
a difference equation that contains some unknown parameters. The
second stage of the scheme with unknown constant parameters
a1, a2, a3 & a4 can be expressed as:

un+1
i � un

i + Δt a1
zu

zt

∣∣∣∣∣∣∣ n+1i
+ a2

zu

zt

∣∣∣∣∣∣∣ ni + a3
z�u

zt

∣∣∣∣∣∣∣ ni{ } + a4 Δt( )2z
2u

zt2

∣∣∣∣∣∣∣∣
n

i

, (5)

The unknown parameters a1, a2, a3 and a4 can be found by using
Taylor series expansions for un+1i and zu

zt|
n

i
, as follows

un+1
i � un

i + Δtzu
zt

∣∣∣∣∣∣∣ ni + Δt( )2
2

z2u

zt2

∣∣∣∣∣∣∣∣
n

i

+ Δt( )3
6

z3u

zt3

∣∣∣∣∣∣∣∣
n

i

+ O Δt( )4( ),
zu

zt

∣∣∣∣∣∣∣ n+1i
� zu

zt

∣∣∣∣∣∣∣ ni + Δtz
2u

zt2

∣∣∣∣∣∣∣∣
n

i

+ Δt( )2
2

z3u

zt3

∣∣∣∣∣∣∣∣
n

i

+ O Δt( )3( ).
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6)

Substituting 4) and 6) into Eq. 5, it is obtained

un
i + Δtzu

zt

∣∣∣∣∣∣∣ni + Δt( )2
2

z2u

zt2

∣∣∣∣∣∣∣∣ni + Δt( )3
6

z3u

zt3

∣∣∣∣∣∣∣∣ni
� un

i + Δt a1
zu

zt

∣∣∣∣∣∣∣ ni + a1Δt
z2u

zt2

∣∣∣∣∣∣∣∣ ni + a1
Δt( )2
2

z3u

zt3

∣∣∣∣∣∣∣∣ ni + a2
zu

zt

∣∣∣∣∣∣∣ ni + a3
zu

zt

∣∣∣∣∣∣∣ ni + a3Δt
z2u

zt2

∣∣∣∣∣∣∣∣ ni{ }
+ Δt( )2a4z

2u

zt2

∣∣∣∣∣∣∣∣ni .
(7)

Comparing coefficients of a1, a2, a3 and a4 from Eq. 7, it is
obtained

1 � a1 + a2 + a3, (8)
1
2
� a1 + a3 + a4, (9)

1
6
� a1

2
. (10)

By solving Eqs. 8–10, the values for a1, a2, a3 and a4 can be obtained as:

a1 � 1
3
, a2 � 1

2
+ a4, a3 � 1

6
− a4. (11)

Therefore, the second stage of the proposed scheme for time
discretization of Eq. 1 can be expressed as:

un+1
i � un

i + Δt 1
3
zu

zt

∣∣∣∣∣∣∣ n+1i
+ 1

2
+ a4( )zu

zt

∣∣∣∣∣∣∣ ni + 1
6
− a4( )z�u

zt

∣∣∣∣∣∣∣ ni{ }
+ a4 Δt( )2z

2u

zt2

∣∣∣∣∣∣∣∣
n

i

. (12)

In Eq. 12, a4 is a free parameter, and the suitable value of this
parameter can be chosen so that the stable solution can be obtained.

Since the suggested scheme is only a time discretization scheme that
can be used to discretize time derivative terms in considered time-
dependent PDEs, it is to be noted that a semi-discrete scheme (12) can
only be used to discretize time derivative terms. Space discretization can
be performed by employing any scheme that discretizes spatial term(s)
in given partial differential equations. For this contribution, a compact
fourth-order scheme is adopted that can be used to discretize space

derivative term(s). The adopted compact scheme requires finding the
additional partial derivative of the given differential equation.

Applying a compact scheme to Eq. 1 using f � z2u
zx2, it gives

zu

zt

∣∣∣∣∣∣∣i � δ2xu
∣∣∣∣i − Δx( )2

12
z4u

zx4

∣∣∣∣∣∣∣∣i. (13)

where δ2xu|i � ui+1−2ui+ui−1
(Δx)2 and Δx is the spatial step.

Since Eq. 13 requires finding a fourth-order spatial derivative
term, which will be found from Eq. 1 using f � z2u

zx2 as

z4u

zx4
� z

zt
δ2xu

∣∣∣∣i. (14)

Substituting Eq. 14 into Eq. 13 gives

zu

zt

∣∣∣∣∣∣∣i � δ2xu
∣∣∣∣i − Δx( )2

12
z

zt
δ2xu

∣∣∣∣i. (15)

Equation 15 can be re-written as

z

zt
u | i + Δx( )2

12
z

zt
δ2xu

∣∣∣∣ i( ) � δ2xu
∣∣∣∣i. (16)

Employing the first stage of the proposed scheme in Eq. 16 yields

�un+1
i + Δx( )2

12
δ2x�u

n+1
i � un

i +
Δx( )2
12

δ2xu
n
i + Δtδ2xun

i . (17)

Applying the second stage of the proposed scheme to Eq. 16, it
follows

un+1
i + Δx( )2

12
δ2xu

n+1
i � un

i +
Δx( )2
12

δ2xu
n
i

+ Δt

1
3
δ2xu

n+1
i + 1

2
+ a4( )δ2xun

i +

1
6
− a4( )δ2x�un+1

i + Δta4
z2u

zt2

∣∣∣∣∣∣∣∣
n

i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (18)

Since Eq. 18 contains second order time derivative term, that can
be found by finding the second partial derivative of Eq. 1 usingf � z2u

zx2.
Alternatively, this second-order partial time derivative in Eq. 18 can be
numerically approximated by the second-order central difference
formula as:

z2u

zt2

∣∣∣∣∣∣∣∣
n

i

� un+1
i − 2un

i + un−1
i

Δt( )2 (19)

Substituting Eq. 19 into Eq. 18, it follows

un+1
i + Δx( )2

12
δ2xu

n+1
i � un

i +
Δx( )2
12

δ2xu
n
i

+ Δt{1
3
δ2xu

n+1
i + 1

2
+ a4( )δ2xun

i +
1
6
− a4( )δ2x�un+1

i } + a4 un+1
i − 2un

i + un−1
i( )
(20)

3 Stability analysis

The stability analysis for linear parabolic PDEs will be presented.
This stability analysis gives the condition on the ratio of temporal step
size and squared spatial step size, called diffusion number. So, a
scheme with a large stability region might be preferred more than
a smaller one. The scheme with a large stability region gives a large
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choice of step sizes and larger intervals for numerical values of involved
parameters. So, the time consumed by the code for those schemes with
large stability regions will be smaller than others. To start the stability
analysis of the proposed scheme for classical or standard parabolic Eq. 1
using f � z2u

zx2. Following transformations will be applied:

�un+1
i � En+1eiIψ , un

i ± 1 � Ene i±1( )Iψ{
un+1
i � En+1eiIψ , un+1

i ± 1 � En+1e i±1( )Iψ

un−1
i � En−1eiIψ} (21)

Substituting some of the transformations from Eq. 21 into Eq. 17
yields

�E
n+1

eiIψ + Δx( )2
12

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ

Δx( )2( )En+1

� EneiIψ + Δx( )2
12

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ

Δx( )2( )En

+ Δt
Δx( )2 e i+1( )Iψ − 2eiIψ + e i+1( )Iψ( )En (22)

where I � ���−1√
.

Dividing both sides of Eq. 22 by eiIψ , it yields

�E
n+1 1 + 1

6
cosψ − 1( )( ) � En + 1

6
cosψ − 1( )En + 2d cosψ − 1( )En.

(23)
Re-write Eq. 23 as

�E
n+1 �

5
6 + 1

6 cosψ + 2d cosψ − 1( )[ ]En

5
6 + 1

6 cosψ
(24)

Substituting transformation from (21) into Eq. 20, it follows:

En+1eiIψ + 1
12

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )En+1

� EneiIψ + 1
12

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )En

+ d
1
3

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )En+1 + 1
2
+ a4( )

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )En + 1
6
− a4( )

e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )�En+1 + a4 En+1 − 2En + En−1( )

(25)

Dividing both sides of Eq. 25 by eiIψ and substituting Eq. 24 into
the resulting equation, it is obtained

En+1 1 + 1
6

cosψ − 1( ) − 2
3
d cosψ − 1( )a4[ ]

� 1 + 1
6

cosψ − 1( ) + 2d
1
2
+ a4( ) cosψ − 1( )[

+ 1
6
− a4( ) cosψ − 1( )

5
6
+ 1
6
cosψ + 2d cosψ − 1( )

5
6
+ 1
6
cosψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − 2a4]En + a4E
n−1. (26)

Equation 26 can be re-written as

En+1 � �aEn + �bEn−1. (27)
where

�a �
5
6+1

6 cosψ+2d(12+a4)(cosψ−1)+(16−a4)(cosψ−1)
5
6+

cosψ
6 +2d(cosψ−1)
5
6+

cosψ
6

{ }−2a4
5
6+cosψ

6 −2
3 d(cosψ−1)−a4

,

�b � a4
5
6+cosψ

6 −2
3 d(cosψ−1)−a4

Since the proposed scheme is constructed on three-time levels,
finding an amplificationmatrix requires onemore equation. Also, note
that the stability condition can be found without constructing an
additional equation. But for this stability analysis, an additional
condition is required. The additional equation is constructed as:

En � En + 0En−1. (28)
The vector matrix equation can be obtained from Eqs. 27, 28 as

En+1

En[ ] � �a �b
1 0

[ ] En

En−1[ ] (29)

The stability condition will be imposed on the Eigenvalues of the
coefficients matrix of Eq. 29, which can be expressed as:

λ1 � �a −
������
�a2 + 4�b

√
2

and λ2 � �a +
������
�a2 + 4�b

√
2

. (30)

The stability conditions can be written as

λ1| |≤ 1and λ2| |≤ 1. (31)
So, if a scheme satisfies condition (31), it will be stable. A more

detailed explanation of the stability condition can be obtained from a
graphical view of condition (31). Those values of diffusion number
″d″ that satisfy condition (31) can be chosen for converged solutions.

4 Problem formulation

This contribution also consisted of the mathematical model of
boundary layer flow over the oscillatory sheet. The mathematical
model will be comprised of a system of parabolic PDEs. One must first
construct a matrix equation and discretize it using the compact
scheme in the spatial direction and the proposed scheme in the
temporal direction before determining the convergence condition
for a system of PDEs. For this reason, consider a matrix vector
equation of the form

zv
zt

� A
z2v
zy2

+ B
zv
zy

+ Cv (32)

where A, B, and C are 3 × 3 matrices, and v is a vector having three
entries. By employing a fourth-order compact discretization to Eq. 31,
the following semi-discretize scheme can be obtained:

z

zt
v | i + Δy( )2

12
δ2yv | i + BA−1δyv | i( )[ ]

� A + C
Δy( )2
12

+ Δy( )2
12

BA−1B( )δ2yv|i
+ B + Δy( )2

12
BA−1C( )δyv|i + Cv|i. (33)

Applying the first stage of the proposed scheme to Eq. 33, is
obtained

�vn+1i + Δy( )2
12

(δ2y�vn+1i + BA−1δy�vn+1i ) − vni −
Δy( )2
12

δ2yv
n
i + BA−1δyvni( )

� Δt A + C
Δy( )2
12

+ Δy( )2
12

BA−1B( )δ2yvni
+ Δt B + Δy( )2

12
BA−1C( )δyvni + ΔtCvni (34)
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Now applying the second stage of the proposed scheme on Eq. 33,
yields

vn+1i + Δy( )2
12

δ2yv
n+1
i + BA−1δyvn+1i( ) − vni −

Δy( )2
12

δ2yv
n
i + BA−1δyvni( )

� Δt a1 A1δ
2
yv

n+1
i + B1δyv

n+1
i + Cvn+1i( ){

+b1 A1δ
2
yv

n
i + B1δyv

n
i + Cvni( ) + c1 A1δ

2
y�v

n+1
i + B1δy�v

n+1
i + C�vn+1i )}(

+e1 vn+1i − 2vni + vn−1i( ) (35)

Theorem 4.1: The scheme given in the form of Eqs. (34)-(35)
converges.

Proof: Let the first stage of the exact scheme be expressed as:

�Vn+1
i + Δy( )2

12
(δ2y �Vn+1

i + BA−1δy �V
n+1
i ) − Vn

i

− Δy( )2
12

δ2yV
n
i + BA−1Vn

i( ) � ΔtA1δ
2
yV

n
i + ΔtB1δyV

n
i + ΔtCVn

i .

(36)
Let the error be �vn+1i − �Vn+1

i � �en+1i and subtracting Eq. 36 from Eq.
34, it is obtained

�en+1i + Δ( )2
12

(δ2y�en+1i + BA−1δy�en+1i ) − eni −
Δy( )2
12

δye
n
i + BA−1δyeni( )

� ΔtA1δ
2
ye

n
i + ΔtB1δye

n
i + ΔtCeni .

(37)
Re-write Eq. 37 as

5
6
�en+1 + Δ( )2

12
(�e

n+1
i+1 + �en+1i−1
(Δy)2 + BA−1δy�en+1i ) − eni −

Δy( )2
12

δ2ye
n
i + BA−1δyeni( )

� ΔtA1δ
2
ye

n
i + ΔtB1δye

n
i + ΔtCeni (38)

Applying the norm on both sides of Eq. 38 and re-write the
resulting equation in the form of

�en+1 ≤ γ1e
n, (39)

where γ1 �
1+(Δy)2

12 ( 4
(Δy)2+

‖BA−1‖
Δy )+4d‖A1‖+c‖B1‖+Δt‖C‖
2
3−Δy

12 ‖BA−1‖ .

Now consider the second stage of the exact scheme for Eq. 32 can
be expressed as:

Vn+1
i + Δy( )2

12
δ2yV

n+1
i + BA−1δyVn+1

i( ) − Vn
i −

Δy( )2
12

δ2yV
n
i + BA−1δyVn

i( ) � Δt a1 A1δ
2
yV

n+1
i({

+B1δyV
n+1
i + CVn+1

i ) + b1 A1δ
2
yV

n
i + B1δyV

n
i + CVn

i( )
+c1 A1δ

2
y
�Vn+1
i + B1δy �V

n+1
i + C �Vn+1

i )}(
+e1 Vn+1

i − 2Vn
i + Vn−1

i( ). (40)
Subtracting Eq. 40 from Eq. 35 gives

en+1i + Δ( )2
12

δ2ye
n+1
i + BA−1δyen+1i( ) − eni −

Δy( )2
12

δ2ye
n
i + BA−1δyeni( )

� Δt a1 A1δ
2
ye

n+1
i + B1δye

n+1
i + Cen+1i( ){

+a2 A1δ
2
ye

n
i + B1δye

n
i + Ceni( )

+a3 A1δ
2
y�e

n+1
i + B1δy�e

n+1
i + C�en+1i )}(

+a4 en+1i − 2eni + en−1i( ) (41)
Re-write Eq. 41, as

5
6
I.D − a1dA1 − a4( )en+1i

� − Δy( )2
12

en+1i+1 + en+1i−1
Δy( )2 + BA−1δyen+1i( )

− eni −
Δy( )2
12

δ2ye
n
i + BA−1δyeni( )

� Δt a1 A1δ
2
ye

n+1
i + B1δye

n+1
i + Cen+1i( ){

+a2 A1δ
2
ye

n
i + B1δye

n
i + Ceni( )

+a3 A1δ
2
y�e

n+1
i + B1δy�e

n+1
i + C�en+1i )}(

+a4 −2eni + en−1i( ) (42)
Applying norm on both sides of Eq. 42 and collecting the
coefficients of en+1i on the left-hand side of the resulting equation,
it yields

en+1 ≤ γ5e
n + γ6e

n−1 +M O Δt( )3, Δy( )4( )( ) (43)

where γ5 � γ3
γ2
, γ6 � γ4

γ2

and

γ2 � ‖56 I.D − a1dA1 − a4‖ − 1
3 − Δy

12 ‖BA−1‖ − a3da1‖A1‖ − ca1‖B1‖

γ3 � 1 + Δy( )2
12

4

Δy( )2 + BA−1%%%% %%%%
Δy( ) + d 4a2 A1‖ ‖ + 4a3 A1‖ ‖γ1{ }

+ c a2 B1‖ ‖ + a3 B1‖ ‖γ1{ } + Δt a2 C‖ ‖ + a3 C‖ ‖γ{ }
+ 2a4, γ4 � a4, c � Δt

Δx

Let max(en, en−1) � en−1

Re-write inequality (43) as

en+1 ≤ �γen−1 +M O Δt( )3, Δy( )4( )( ). (44)

where �γ � γ5 + γ6.
Let n � 1 in (44). It yields

e2 ≤ �γe0 +M O Δt( )3, Δy( )4( )( ) (45)

Since the initial condition is exact so e0 � 0, and therefore inequality
(45) becomes,

e2 ≤M O Δt( )3, Δy( )4( )( ) (46)

Let n � 2 in (44), and this yields

e3 ≤ �γe1 +M O Δt( )3, Δy( )4( )( ) (47)

Let the error be bounded at first-time level i.e. |e1|≤ �B and (47)
becomes
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e3 ≤ �γ�B +M O Δt( )3, Δy( )4( )( ) (48)

Substituting n � 3 in (44) yields

e4 ≤ �γe2 +M O Δt( )3, Δy( )4( )( )≤ 1 + �γ( )M O Δt( )3, Δy( )4( )( )
(49)

Substituting n � 4 in (44) gives

e5 ≤ �γe3 +M O Δt( )3, Δy( )4( )( )≤ �γ2 + 1 + �γ( )M O Δt( )3, Δy( )4( )( )
(50)

If this is continued, then for finite ″m, ″ following one of the
inequality is obtained

e2m ≤ �γm−1 + �γm−2 + . . . + �γ + 1( )M O Δt( )3, Δy( )4( )( )
� �γm − 1

�γ − 1
( )M O Δt( )3, Δy( )4( )( ). (51)

Or

e2m ≤ �γm + �γm−1 + �γm−2 + . . . + �γ + 1( )M O Δt( )3, Δy( )4( )( )
� �γm + �γm − 1

�γ − 1
( )M O Δt( )3, Δy( )4( )( ). (52)

For infinite ″m″ the infinite geometric series . . . + �γm + �γm−1 + . . . +
�γ + 1 will converge if |�γ|≤ 1.

5 Numerical examples

Two examples will be presented to check the scheme’s
accuracy and convergence. The first example will be scalar
linear parabolic PDE, and the second will be the system of
parabolic equations arising in the boundary layer flow over the
oscillatory sheet.

Example 5.1: Consider the following parabolic equation

zu

zt
� z2u

zx2
(53)

subject to the boundary conditions

u t, 0( ) � 0 � u t, π( ) (54)
and the initial condition is given as

u 0, x( ) � sin x( ). (55)
The exact solution to the problem (53)-(55) is

u(t, x) � e−t sin(x). Equation 53 with boundary and initial
conditions (54)–(55) is solved with the existing Crank-
Nicolson scheme and proposed scheme. The space
discretization is performed with a fourth-order compact
scheme. The two schemes are compared in Figure 1. Figure 1
shows the error norm over iterations consumed by both schemes.
Since the proposed scheme is more accurate than the existing
Crank-Nicolson scheme, it converges faster than the existing
scheme using the same step sizes for both schemes.

Example 5.2: Casson NanoFluid Flow Over Oscillatory Sheet
Consider laminar, incompressible, unsteady, and unidirectional

mixed convective Casson fluid flow over the oscillatory sheet. Let the

sheet be moving with velocity Uw � U+ cos (aωt*) or U+ sin (aωt*).
Let the x*-axis be placed along the plate and y*-axis be placed
perpendicular to the plate. Initially, the plate is at rest, and then it
starts to move in positive x*-axis. Consider the effects of Joule heating,
thermal radiation, and chemical reaction. Under the assumption of
boundary layer theory, considering Darcy Forcheimmer’s
characteristics and [47], the governing equations of the flow can be
expressed as:

zu*
zt*

� ] 1 + 1
β

( ) z2u*

zy*2
+ g β+ T − T∞( ) + β1 T − T∞( )2 + β2 C − C∞( ) + β3 C − C∞( )2( )

− σB2
+

ρ
u* − ]

kp
u* − Fu*2

(56)
zT

zt*
� α

z2T

zy*2
+ ]
Cp

1 + 1
β

( ) zu*
zy*

( )2

+ σB2
+

ρCp
u*2

+ τ DB
zC

zy*
zT

zy*
+ DT

T∞

zT

zy*
( )2( ) (57)

zC

zt*
� DB

z2C

zy*2
+ DT

T∞

z2T

zy*2
− k1 C − C∞( ), (58)

subject to the boundary conditions,

u* t*, y*( ) � Uo cos aωt*( ) orUo sin aωt*( ), T t*, y*( ) � Tw, C t*, y*( ) � Cw when y* � 0,
u* t*, y*( ) → 0, T T*, y*( ) → 0, C t*, y*( ) → 0, when y* → ∞,

}
(59)

For reducing Eqs. 55–58 to dimensionless PDEs, the following
transformation are considered:

u � u*
U0

, y �
��
ω

]

√
y*, t � ωt*, θ � T − T∞

Tw − T∞
, ϕ � C − C∞

Cw − C∞
(60)

Under transformations (60), Eqs. 56–59 can be expressed as:

zu

zt
� 1 + 1

β
( ) z2u

zy2
−Mu − Ku − Fru

2 + λ1θ + λ1μ1θ
2 + λ2ϕ + λ2μ2ϕ

2,

(61)
zθ

zt
� 1
Pr

1 + 4
3
Rd( ) z2θ

zy2
+ Ec 1 + 1

β
( ) zu

zy
( )2

+MEcu
2 +Nb

zθ

zy

zϕ

zy

+Nt
zθ

zy
( )2

(62)
zϕ

zt
� 1
Sc

z2ϕ

zy2
+ 1
Sc

Nt

Nb

z2θ

zy2
− γϕ (63)

subject to the dimensionless boundary conditions

u t, y( ) � cos at( )or sin at( ), θ t, y( ) � 1, ϕ t, y( ) � 1when y � 0,
u t, y( ) → 0, θ t, y( ) → 0,ϕ t, y( ) → 0when y → ∞ .

}
(64)

The parameters are defined as follows:

λ1 � gβ+ Tw − T∞( )
ωu+

, λ2 � gβ2 Cw − C∞( )
ωu+

, M � σB2
+

ωρ
, K � ]

ωkp
,

Fr � cb
ωkp

1
2
, Pr � ]

α
,

Rd � 4σ*T3
∞

kk*
, Ec � U2

+

cp Tw − T∞( ), Nb � τDB Cw − C∞( )
]

,

Nt � τDT Tw − T∞( )
]T∞

, Sc � ]
DB

, γ � k1
ω
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For solving Eqs. 61–64, the proposed scheme in time direction
with fourth-order compact scheme discretization in space is
employed. But, the compact scheme requires the
computation of a fourth-order spatial partial derivative, which
is given as

z4u

zy4
� 1
1 + 1

β

z3u

zy2zt
+M

z2u

zy2
+ λ

z2u

zy2
+ Fr�u

z2u

zy2
− λ1

z2θ

zy2
− λ1μ1

�θ
z2θ

zy2
[

−λ2 z
2ϕ

zy2
− λ2μ2�ϕ

z2ϕ

zy2
] (65)

Employing the fourth-order scheme to Eq. 61, which yields

zu

zt

∣∣∣∣∣∣∣i � 1 + 1
β

( ) δ2yui − Δy( )2
12

z4u

zy4

∣∣∣∣∣∣∣∣ i[ ] −Mui − λui − Fr�uui + λ1θi

+ λ1μ1θiθi + λ2�ϕϕi + λ2μ2�ϕϕi

(66)
Since the fourth-order spatial derivative is found in Eq. 65, so

substituting Eq. 65 into Eq. 66 and the following equation can be
obtained

z

zt
ui + Δy( )2

12
δ2yui( ) � 1 + 1

β
− Δy( )2

12
Fr�ui − Δy( )2

12
M + λ( )( )δ2yui

− M + λ( )ui − Fr�uiui + Δy( )2
12

λ1 1 + μ1
�θi( )δ2yθi

+ Δy( )2
12

λ2 1 + μ2�ϕi( )δ2yϕi + λ1 1 + μ1
�θi( )θi + λ2 1 + μ2�ϕi( )δ2yϕi (67)

Employing the first stage of the proposed scheme to Eq. 67, which
is an explicit scheme, that gives

�un+1
i + Δy( )2

12
δ2y�u

n+1
i − un

i −
Δy( )2
12

δ2yu
n
i � ΔtHn

i (68)

Employing the second stage of the proposed scheme on Eq. 67,
which is an implicit stage of the scheme, yields

un+1
i + Δy( )2

12
δ2yu

n+1
i − un

i −
Δy( )2
12

δ2yu
n
i

� Δt a1H
n+1
i + a2H

n
i + a3 �H

n+1
i ] + a4 un+1

i − 2un
i + un−1

i( )[ (69)
where

Hn
i � 1 + 1

β
− Δy( )2

12
Fr�u

n
i −

Δy( )2
12

M + λ( ))δ2yun
i − M + λ( )un

i(
−Fr�u

n
i u

n
i +

Δy( )2
12

λ1 1 + μ1
�θi( )δ2yθni + Δy( )2

12
λ2

1 + μ2�ϕ
n
i )δ2yϕn

i + λ1 1 + μ1
�θ
n

i )θni + λ2 1 + μ1�ϕ
n
i )δ2yϕn

i(((
First, employ a compact scheme on Eq. 62 for spatial

discretization. The semi-discrete equation can be expressed as

z

zt
θi + Δy( )2

12
δ2yθi + μδyui+

μ3δyθi
( )[ ] � P1δ

2
yθi + P2δ

2
yui + P3δyui

+ P4δyθi + P5δyϕi +MEc�uiui

(70)

where

δ � Ecδyui, δ1 � Ec 1 + 1
β

( )δyui, δ2 � 1 + 1
β
, δ3

� Nbδyϕi +Ntδyθi, P1 � 1
Pr

1 + 4
3
Rd( ) + Δy( )2

12
δ3, P2

� Δy( )2
12

MEc�ui + Δy( )2
12

δ3
Pr

1 + 4
3
Rd

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠δ1, P3

� δ1 − Δy( )2
12

M + λ + Fr�ui( ) + Δy( )2
12

δ3PrMEc�ui

1 + 4
3
Rd

, P4

� Δy( )2
12

δλ1 + Δy( )2
12

δλ1μ1
�θi, P5 � Δy( )2

12
δλ2 + Δy( )2

12
δλ2μ2

For time discretization, applying the first stage of the proposed scheme
to Eq. 70, which gives

�θ
n+1
i + Δy( )2

12
δ2y
�θ
n+1
i + δδy�u

n+1
i + δ3δy�θ

n+1
i( ) − �θ

n

i

− Δy( )2
12

δ2y
�θ
n

i + δδy�u
n
i + δ3δy�θ

n

i ) � ΔtGn
i( (71)

Employing the second stage of the proposed scheme to Eq. 70 gives

θn+1i + Δy( )2
12

δ2yθ
n+1
i + δδyu

n+1
i + δ3δyθ

n+1
i( ) − θni

− Δy( )2
12

δ2yθ
n
i + δδyu

n
i + δ3δyθ

n
i( )

� Δt a1G
n+1
i + a2 �G

n+1
i + a3G

n
i{ } + a4 θn+1i − 2θni + θn−1i( ) (72)

where

Gn
i � P1δ

2
yθ

n
i + P2δ

2
yu

n
i + P3δyu

n
i + P4δyθ

n
i + P5δyϕ

n
i +MEc�uiu

n
i

For getting a semi-discrete equation, applying a compact scheme
to Eq. 63, is obtained

z

zt
ϕi +

Δy( )2
12

δ2yϕi[ ] � 1
Sc

+ Δy( )2
12

γ[ ]δ2yϕi +
1
Sc

Nt

Nb
δ2yθi − γϕi (73)

To get a fully discrete equation, employing the first stage of the
proposed scheme to Eq. 73 and gives

�ϕ
n+1
i + Δy( )2

12
δ2y�ϕ

n+1
i − ϕn

i +
Δy( )2
12

δ2yϕ
n
i � ΔtFn

i (74)

Applying the second implicit stage of the proposed scheme on Eq.
80 gives

ϕn+1
i + Δy( )2

12
δ2yϕ

n+1
i − ϕn

i +
Δy( )2
12

δ2yϕ
n
i

� Δt a1F
n+1
i + a2 �F

n+1
i + a3F

n
i ] + a4

ϕn+1
i − 2ϕn

i +
ϕn−1
i

( )[ (75)

where

Fn
i �

1
Sc

+ Δy( )2
12

γ[ ]δ2yϕn
i +

1
Sc

Nt

Nb
δ2yθ

n
i − γϕn

i

System of Eqs. 61–64 is solved using the proposed scheme with third-
order accuracy in time. The first stage of the scheme can be applied to solve
a given time-dependent parabolic equationwithout using any other scheme.
But the second stage of the scheme requires using any other scheme to find
a solution at the first time level. Two types of numerical schemes have been
proposed.One of these schemes does not require any other scheme to find a
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solution at the first time level, but the second scheme requires either some
estimated solution or a solution found by any different scheme. Mainly,
schemewith higher accuracy converges faster than those having low order
accuracy. So, high-order schemesmay have been preferred over low-order
schemes for finding solutions to parabolic equations with some chosen
error norm. Since the proposed schemes are implicit, an additional
iterative scheme is chosen for solving difference equation(s) obtained
by applying the proposed scheme to given PDE(s). The considered
iterative scheme for this contribution is the Gauss-Seidel iterative
method. This iterative scheme requires some initial guess to begin
finding a solution. The first iteration of the solution is found by
considering the initial guess, and later on, the solution is found by
utilizing previous consecutive iterations. The iterative procedure will
stop if desired criteria are met. The given stopping criteria are based

on the maximum norms of solutions for each equation in the system
computed at two consecutive iterations. In this contribution, an iterative
scheme is considered to solve difference equations obtained by applying
the proposed scheme to parabolic equations. This process finds the
solution at each grid point and time level. The difference equations
can be solved exactly by forming a metric vector equation. But, in this
study, only the iterative procedure is considered. Stability is one of the
most important factors for getting the converged solution. But, the
constructed Matlab code also shows the convergence and divergence

FIGURE 1
Comparison of the proposed scheme with the Crank-Nicolson scheme
for the norm of error over iterations using Nt � 190, Nx � 45, tf � 1, L � π.

FIGURE 2
Comparison of the proposed scheme with the Crank-Nicolson
scheme for finding the maximum norms of errors over iterations using

Nt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.5, Nt � 0.1, Nb � 0.1, Pr � 1, Sc �
1, Rd � 0.25, λ � 0.5, Fr � 1.5, λ1 � 0.1, μ1 � 0.05, λ2 �
0.1, μ2 � 0.1, γ � 0.9, M � 0.5, β � 3.

FIGURE 3
Effect of Casson and magnetic parameters on velocity profile using

Nt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.9, Nt � 0.1, Nb � 0.15, Pr � 1, Sc �
1, Rd � 0.1, λ � 0.1, Fr � 0.1, λ1 � 0.1, μ1 � 0.05, λ2 � 0.1, μ2 � 0.1, γ �
0.9 (A) M = 0.5 (B) β = 3.

FIGURE 4
Effect of porosity parameter and inertia coefficient on velocity
profile using Nt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.9, Nt � 0.1, Nb �
0.15, Pr � 1, Sc � 1, Rd � 0.1, M � 0.9, β � 3, λ1 � 0.1, μ1 � 0.05, λ2 �
0.1, μ2 � 0.1, γ � 0.9 (A) Fr = 0.1 (B) λ = 0.1.
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of the solution that depends on the numerical values of chosen parameters
and values of step sizes in some particular interval.

Figure 2 deliberates comparing the proposed scheme with the existing
Crank-Nicolson scheme. The maximum of norms for the solution of each
Eqs. 61–64 is computed. The norm for the difference between two solutions
computed at two consecutive iterations is found, and a maximum of three
norms over each iteration is displayed in Figure 2. From this Figure 2, it can
be observed that the proposed scheme converges faster than the existing
scheme. Since the proposed scheme gives third-order accuracy in time and

fourth-order in space, whereas Crank-Nicolson provides second-order
accuracy in time and fourth-order in space, it converges faster than the
existing scheme. Figs. 3–9 shows the effect of different parameters on
velocity, temperature, and concentration profiles obtained by applying the
proposed numerical scheme on Eqs. 61–64.

Figure 3 shows the effect of the Casson parameter and magnetic
parameter on the velocity profile. It is seen that the velocity profile declines
by incrementing Casson and magnetic parameters. This fall in velocity

FIGURE 5
Effect of thermal and solutal mixed convection parameters on
velocity profile using Nt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.9, Nt �
0.1, Nb � 0.15, Pr � 1, Sc � 1, Rd � 0.1, M � 0.9, β � 3, Fr � 1.5, μ1 �
0.05, λ � 0.5, μ2 � 0.1, γ � 0.9 (A) λ2 = 0.1 (B) λ1 = 0.1.

FIGURE 7
Effect of thermophoretic and Brownian motion parameters on
temperature profile using Nt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.9, λ1 �
0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd � 0.1, M � 0.9, β � 3, Fr � 1.5,
μ1 � 0.05, λ � 0.5, μ2 � 0.1, γ � 0.9 (A) Nb = 0.15 (B) Nt = 0.1.

FIGURE 6
Effect of Eckert number and radiation parameters on temperature
profile using Nt � 150, Ny � 45, L � 7, tf � 1, λ1 � 0.1, Nt � 0.1, Nb �
0.15, Pr � 1, Sc � 1, λ2 � 0.1, M � 0.9, β � 3, Fr � 1.5, μ1 � 0.05, λ � 0.5,
μ2 � 0.1, γ � 0.9 (A) Rd = 0.1 (B) EC = 0.5.

FIGURE 8
Effect of Schmidt number and reaction rate parameter on
concentration profile using Nt � 150, Ny � 45, L � 7, tf � 1, Ec �
0.5, Rd � 0.25, Pr � 1, Sc � 1, Rd � 0.25, M � 0.5, β � 3, Fr � 1.5, μ1 �
0.05, λ1 � 0.1, λ2 � 0.1, λ � 0.5, μ2 � 0.1, Nb � 0.1, Nt � 0.1
(A) γ = 0.9 (B) Sc = 1.

Frontiers in Physics frontiersin.org10

Nawaz et al. 10.3389/fphy.2023.1072296

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1072296


profile due to the Casson parameter is the consequence of the diffusion
coefficient reduction affecting the flow’s velocity. The rising values of the
magnetic parameter diminish the flow’s velocity because the generation of
Lorentz force in electrically conducting fluid resists the flow’s velocity, and
consequently velocity of theflowdrops. The effect of the porosity parameter
and inertia coefficient on the flow’s velocity is discussed in Figure 4.
Velocity profile de-escalates by enhancing the porosity parameter and
inertia coefficient. Since the fluid’s viscosity resists the flow’s velocity,
increasing the porosity parameter increases the fluid’s viscosity and reduces
the velocity profile. Also, the velocity of the flow de-escalates by enhancing
the inertia coefficient; this is the case when the drag force escalates, resulting
in a decline in the flow’s velocity. The impact of thermal and solutal mixed
convection parameters on the velocity profile is portrayed in Figure 5.

Velocity profile rises by augmenting thermal and solutal mixed convection
parameters. The rise in the velocity profile results from the temperature and
concentration difference growth between thewall and the region away from
the plate. Since the rise of temperature and concentration differences
produces faster heat and concentration gradients in the flow, for mixed
convection problems, temperature and concentration gradients are the
factors responsible for generating flow in the fluid. Therefore, the flow’s
velocity develops by growing thermal and solutal mixed convection
parameters. The effect of the Eckert number and radiation parameter
on the temperature profile is discussed in Figure 6. The rising Eckert
number and radiation parameter boost the temperature profile. Since the
temperature profile is affected by the dissipation due to internal friction of
particles in the fluid flow and by improving Eckert number, the
temperature profile escalates. Also, due to the entrance of radiations in
the flow, heat flux increases; therefore, the temperature profile is boosted.

FIGURE 9
Effect of thermophoretic and Brownian motion parameters on
concentration profile usingNt � 150, Ny � 45, L � 7, tf � 1, Ec � 0.5, λ1 �
0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd � 0.25, M � 0.5, β � 3, Fr �
1.5, μ1 � 0.05, λ � 0.5, μ2 � 0.1, γ � 0.9 (A) Nb = 0.1 (B) Nt = 0.1.

FIGURE 11
Contour plot of temperature profile using Nt � 270, Ny � 45, L �
27, tf � 1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd �
0.1, M � 0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(0.5t).

FIGURE 10
Contour plot of velocity profile using Nt � 270, Ny � 45, L � 27, tf �
1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd � 0.1, M �
0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(0.5t).

FIGURE 12
Contour plot of concentration profile using Nt � 270, Ny � 45, L �
27, tf � 1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd �
0.1, M � 0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(0.5t).
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Figure 7 displays the variation of thermophoresis and Brownian motion
parameters on the temperature profile. The temperature profile is escalated
by uprising thermophoresis and Brownian motion parameters. The
increment in the thermophoresis parameter results in the growth of
thermophoresis force, due to which heavy particles of fluid come closer
to the plate, and lighter particles tend to move from the plate to its
surroundings. This procedure of shifting particles improves the
temperature of the flow. The boost in the Brownian motion parameter
improves the random movement of particles in the fluid; therefore, the
temperature profile is boosted. The influence of the Schmidt number and
reaction rate parameter on the concentration profile is depicted in Figure 8.
Concentration profile is de-escalated by rising Schmidt number and
reaction rate parameter values. The increment in the Schmidt number
produces low mass diffusivity, resulting in decay in the concentration
profile. The augmentation in the reaction rate parameter yields the breaking

and forming of particles that slow down the concentration profile. Figure 9
deliberates the variation of thermophoresis and Brownian motion
parameters on the concentration profile. The concentration profile
escalates by raising the values of the thermophoresis parameter, whereas
it de-escalates by increasing the Brownian motion parameter values.
Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15,
Figure 16 show the contour plots of velocity, temperature, and
concentration profiles using sine boundary conditions. The variation of
the oscillatory boundary can be seen in contour plots of velocity and
temperature profiles. Figure 16 shows the comparison of the solution
obtained by the proposed scheme with those obtained by the exact solution
for solving Stokes’ second problem. The obtained results can be verified by
looking at this comparison given in Figure 16.

FIGURE 16
Comparison of the proposed scheme with the exact solution for
Stokes׳ second problem.

FIGURE 13
Contour plot of velocity profile using Nt � 270, Ny � 45, L � 27, tf �
1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd � 0.1, M �
0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(3t).

FIGURE 14
Contour plot of temperature profile using Nt � 270, Ny � 45, L �
27, tf � 1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd �
0.1, M � 0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(3t).

FIGURE 15
Contour plot of concentration profile using Nt � 270, Ny � 45, L �
27, tf � 1, Ec � 01.9, λ1 � 0.1, λ2 � 0.1, Rd � 0.1, Pr � 1, Sc � 1, Rd �
0.1, M � 0.1, β � 2, Fr � 0.1, μ1 � 0.05, λ � 0.1, μ2 � 0.1, γ � 0.9, Nb �
0.15, Nt � 0.1, u(t,0) � sin(3t).
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6 Conclusion

This contribution dealt with numerical schemes for time
discretization of time-dependent PDEs. Two schemes have been
proposed with third-order accuracy in time. According to von
Neumann’s stability analysis and convergence of obtained solution
from Matlab code, the scheme was conditionally stable. Moreover, a
mathematical model for boundary layer Casson nanofluid flow over an
oscillatory sheet has been constructed, influencing joule heating and
chemical reaction. The dimensionless form of the model was solved
with existing and proposed schemes. An iterative scheme was also
adopted to solve discretized or difference equations obtained by
proposing a scheme on the considered system of ODEs. Following
this research, different applications for the current approach may be
developed [48–52]. The main concluding points can be expressed as.

1) The proposed scheme converged faster than the existing Crank-
Nicolson scheme.

2) Results have been validated for the velocity profile of the boundary
layer flow phenomenon.

3) The velocity profile was decayed by enhancing Casson and
magnetic parameters, and growing porosity parameter and
inertia coefficient values inclined it.

4) Increasing values of thermophoresis and Brownian motion
parameters raised the temperature profile.

5) The concentration profile was escalated by incrementing the
thermophoresis parameter.
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Nomenclature

u* Horizontal components of velocity (m.s−1)
σ Electrical conductivity of the fluid (S.m−1)
y* Cartesian co-ordinate (m)
T Temperature of fluid (K)
ν Kinematic viscosity (m2.s−1)
Tw Temperature of fluid at the wall (K)
ρ Density of fluid (kg .m−3)
T∞ Ambient temperature of the fluid (K)
C Concentration of fluid (mol.m−3)
Cw Concentration on the wall (mol.m−3)
DB Brownian diffusion coefficient (m2.s−1)
C∞ Ambient concentration (mol.m−3)
cp specific heat capacity (J.kg−1.K−1)
DT Thermophoresis coefficient (m2.s−1)
E0 Strength of electric field (V .m−1)
B0 Strength of imposed transverse magnetic field (Gaussmeter)
kp Permeability of porous medium (m2)
α Thermal diffusivity (m2.s−1)
k1 Reaction rate parameter (s−1)
cb Drag coefficient

k* mean absorption coefficient (m−1)

σ* Stephan-Boltzmann constant (W .m−2.K−4)
β Casson parameter

μ Dynamic viscosity (kg .m−1.s−1)
M Magnetic parameter

β1 Linear thermal expansion coefficient (K−1)
β3 Linear solutal expansion coefficient (mol.m−3)−1
β2 Non-linear thermal expansion coefficient (K−2)
β4 Non-linear solutal expansion coefficient (mol.m−3)−2
Ec Eckert number

μ1 Thermal non-linear convection parameter

μ2 Solutal non-linear convection parameter

Fr Forchheimer number

λ Permeability of the porous medium

Nb Brownian motion variable

Nt Thermophoresis variable

Rd Radiation parameter

Sc Schmidt number

γ Reaction rate

Pr Prandtl number

λ1 Thermal mixed convection parameter

λ2 Solutal mixed convection parameter

τ Effective heat capacity of fluid
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