- 1CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain
- 2Laboratory of High Energy and Computational Physics, NICPB, Tallinn, Estonia
- 3Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, United Kingdom
The very precise measurement of the anomalous magnetic moment of the muon, recently released by the Muon g-2 experiment at Fermilab, can serve to set stringent constraints on new particles. If the observed 4σ discrepancy from the Standard Model value is indeed real, it will set a tight margin on the scale of the masses and couplings of these particles. Instead, if the discrepancy is simply a result of additional theoretical and experimental uncertainties to be included, strong constraints can be put on their parameters. In this mini-review, we summarize the impact of the latest muon g-2 measurement on new fermions that are predicted by a wide range of new physics models and with exotic quantum numbers and interactions. We will particularly discuss the case of vector-like leptons, excited leptons, and supersymmetric fermions, as well as spin-3/2 isosinglet fermions, which have been advocated recently.
1 Introduction
The Fermilab Muon g − 2 collaboration has recently released [1] a new measurement of the anomalous magnetic moment,
before a new lattice QCD analysis [3] predicted a value that is more agreeing with the SM expectation. When combined with the result of the previous Brookhaven muon experiment [4] which had a deviation of about 3.7σ from the SM expectation, one obtains a final result
which implies a 4.2σ deviation from the SM prediction (if the new lattice result is ignored) [1].
It is extremely tempting to attribute the discrepancy Δaμ to additional contributions from models of new physics beyond the SM and, before the issue of the theoretical uncertainties is resolved, this is the attitude that we choose to take. In any case, if the discrepancy is alleviated or eliminated by a more refined theoretical description, the new measurement would allow to strongly constrain the basic parameters of this new physics and in a way that should be complementary to the direct searches that are performed in the high-energy frontier experiments at the Large Hadron Collider (LHC).
In this review note, we will confront this new and precise (g − 2)μ result with the predictions coming from a variety of models beyond the SM, which contain additional heavy fermions. These particles can have the usual lepton and baryon quantum numbers but come with exotic SU(2)L × U (1)Y assignments.
A well-known example of such a possibility is given by vector-like fermions, when both the left- and right-handed components appear in the same electroweak doublet, allowing for a consistent generation of their masses without the need of the Higgs mechanism. These fermions often occur in grand unified theories [5] and have been advocated e.g. to explain the hierarchies in the SM flavour sector [6–8]. One can also have sequential fermions, such as a fourth generation, or mirror fermions which have chiral properties that are opposite to those of the SM fermions. However, it is necessary to modify the SM Higgs sector in order to evade the strong constraints from the precise determination of the Higgs boson properties at the LHC [9–12]. The mixing of the heavy and light fermions that have the same U (1)Q and SU(3)C quantum numbers gives rise to new interactions [5, 13] which allow for the decays of the heavy states into the lighter ones and to generate contributions which could be observed in highly precise experiments.
Another type of new fermions which have been discussed in the past are excited fermions. They are a characteristic signature of compositeness in the matter sector which was and is still advocated to explain some pattern in the mass spectrum. The SM fermions would then correspond to the ground states of the spectrum and the excited states would decay to the former ones through a magnetic type de-excitation. In the simplest case, the excited fermions have spin and isospin
We will also discuss the case of supersymmetric theories in their minimal version, the so-called minimal supersymmetric extension of the SM or MSSM. In this scenario, the Higgs sector is enlarged to contain two doublet fields and each SM particle or additional Higgs boson has a supersymmetric partner with a spin that differs by
Finally, we will also discuss new particles with a spin higher than unity and, in particular, we will consider the case of a massive electrically neutral and colourless spin-
2 New fermion contributions to the g–2
2.1 Vector-like leptons
For charged heavy leptons with exotic SU(2)L × U (1)Y quantum numbers, except for singlet heavy neutrinos without electromagnetic or weak charges, the couplings to the photon, the W and the Z bosons are unsuppressed. The heavy states mix with the SM leptons in a model-dependent and a possibly rather complicated manner, especially if different fermion generations can mix.
In the following, we will consider as an example the case of vector-like leptons that have been introduced in order to explain flavour hierarchies in the SM; see Refs. [6–8] for detailed studies. Two doublets LL and LR and two singlets EL and ER are introduced with a Lagrangian given by [6].
with the LL, ER and LR, EL fields having, respectively, the same and opposite quantum numbers as the SM leptons ℓL, eR; Φ is the SM Higgs doublet. The mass eigenstates are obtained by diagonalizing the mass mixing in L through 2 × 2 unitary matrices, where the mixing angles read tan θL = mL/ML and tan θR = mE/ME. After rotating the fields, the previous Lagrangian becomes
After symmetry breaking, the spectrum will consist of two heavy leptons with masses
The heavy charged and neutral leptons contribute to the anomalous magnetic moment through Feynman diagrams that involve the exchange of 2 W bosons with the neutral lepton and the exchange of two charged states with a Z or Higgs boson. Heavy exotic fermion contributions to leptonic (g − 2) have been also discussed and evaluated in Refs. [6–8, 19–26]. Here, we simply display the contributions to aμ in the limit of small mixing angles, retaining only terms of order
Thus, for ML, ME values of the order of the electroweak symmetry breaking scale v and for large Yukawa couplings to the muon
2.2 Excited leptons
In the case of the charged excited leptons that we will denote by ℓ*, we assume for simplicity that they have spin and isospin
In the equation given above, Λ is the compositeness scale that we will set to the excited lepton mass. This interaction should be generalized to the SU(2)L × UY(1) case where the photon field strength is extended to the Wμν and Bμν ones. In such an extension, that will be used in our analysis below, we will set all the weight factors for the photon and W, Z field strengths to κL/R to simplify the discussion. This also ensure that the excited neutrino has no tree-level electromagnetic couplings [14]. Thus, apart from the masses of the excited leptons that we will also equate,
The contribution Δaμ of the μ* and its partner
where the numerical values of the cL, cR coefficients in these limits are cL ≃ 10 and cR ≃ 5.3, respectively for left-handed Vμ*μL and right-handed Vμ*μR transitions. Note that, according to Ref. [30] on which our analysis is based, in the equation above the approximation
2.3 Supersymmetric particles
In this subsection, we will briefly discuss the contributions to aμ of the superparticles in the minimal supersymmetric extension of the SM (MSSM) [32], namely the one with the chargino-sneutrino and neutralino-smuon loops. These have also been calculated long ago [33–41] and the approximate result, taking into account only the chargino-sneutrino contribution which is an order of magnitude larger than the one of the neutralino-smuon loop, is rather simple and accurate [41].
where tan β is the ratio of vacuum expectation values of the two doublet Higgs fields that break the electroweak symmetry, 1 ≲ tan β ≲ 60 and
We note that the sign of the SUSY contribution is equal to the sign of the higgsino mass parameter μ,
2.4 Spin-3/2 fermions
Among the dimension-7 operators which describe the interactions with the SM fields of a charge and colour neutral SM isosinglet spin-
where a, b, c are two-spinor indices;
The contribution of the spin-
where the functions f1 and f2 are given by
when m3/2 ≫ MW, in the
Eq. 11 gives the contribution from ψ to the magnetic moment at a high-energy scale, and its value has to be run down to the scale of the muon mass. Following Ref. [44] in which the running and matching from several scales to low energies in the case of the muon dipole moments has been derived, and assuming that m3/2 is sufficiently close to the reference value of 250 GeV so that one can fix the renormalization scale μ to this value, one finds a corrected value given by Eq. (11) should be corrected by a factor 0.89.
3 Numerical results
3.1 Spin–1/2 fermions
Our numerical results for the three cases of exotic spin-
FIGURE 1. Contributions to the (g −2)μ from various spin-
A comparison of the predicted results with the new (g − 2)μ Fermilab measurement indicates that all the considered spin-
3.2 Spin–3/2 leptons
The contribution to (g − 2)μ from the higher-spin field as a function of its mass m3/2 and for different values of the parameter cγ is shown in Figure 2 for a new physics scale Λ = 500 TeV. The results can be roughly summarized in terms of the two mass parameters as
when cW, cγ < 1 as expected in the EFT approach. This contribution to (g − 2)μ is consistent with the SM unless the EFT scale is close to the electroweak scale, Λ < 250 GeV, in which case the validity of the EFT approach starts to be questionable. Also, note that Figure 2 slightly violates the bound Eq. 13 for masses close to the EFT scale. This behaviour is simply an artefact of the large logarithm log (m3/2/μ) that is present. In addition, the contribution
FIGURE 2.
As can be seen, for m3/2 ≲Λ = 500 GeV, the spin-3/2 contribution to (g − 2)μ is typically of order 10–10–10−11, more than an order of magnitude below the experimental sensitivity in the most favourable case. For a particle with such mass and couplings, the production cross section at the LHC in the process
Nevertheless, one can obtain an anomalous ψ3/2 contribution close to the measured (g − 2)μ value if both the effective scale Λ and the mass m3/2 of the new particle are close to the weak scale, O (300 GeV). Even for a scale Λ = 500 GeV, the spin-
4 Conclusion
The new measurement of the anomalous magnetic moment of the muon recently performed at Fermilab has a significant deviation from the prediction in the SM, 4.2σ, which is slightly less than the 5σ value traditionally set as the threshold to claim the observation of a new phenomenon. This gives hope that, at last, new physics beyond the SM has been found. This hope is nevertheless tempered by possible additional theoretical uncertainties that have been overlooked and an intense effort would be required in order to settle this crucial issue, hopefully before a new and more precise measurement is released by the experiment. In the meantime, one cannot refrain from interpreting this discrepancy, confront it with various models of new physics beyond the SM and draw the resulting conclusions.
This is what we have done in this mini-review. We have discussed the contributions of various hypothetical new fermions to the (g − 2)μ and delineated the scale of their masses and couplings that allows to explain the possible excess compared to the SM expectation. We have considered spin-
All these new fermions can give significant contributions to the muon (g − 2) which, when confronted with the latest experimental measurement, imply that their masses should be below the TeV scale, if they have to explain the discrepancy from the SM expectation (if this discrepancy with the SM result is indeed real). As shown in the two figures that summarize our results, this implies particles with masses in the few hundred GeV range, which could be observed at the next high-luminosity run of the CERN Large Hadron Collider. If the discrepancy is instead due to additional or overlooked theoretical uncertainties, the new result will impose strong constraints on the masses and couplings of the new spin-
Author contributions
All authors contributed to the analysis and the writing of the paper.
Funding
This work is supported by the Estonian Research Council grants MOBTTP135, PRG803, MOBTT5, MOBJD323 and MOBTT86, and by the European Union through the European Regional Development Fund CoE program TK133 “The Dark Side of the Universe.” J.C.C. is supported by the STFC under grant ST/P001246/1. A.D. is supported by the Junta de Andalucia through the Talentia Senior program and by the grants A-FQM-211-UGR18, P18-FR-4314 with ERDF.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Abi B, Albahri T, Al-Kilani S, Allspach D, Alonzi L, Anastasi A, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys Rev Lett (2021) 126:141801. doi:10.1103/PhysRevLett.126.141801
2. Aoyama T, Asmussen N, Benayoun M, Bijnens J, Blum T, Bruno M, et al. The anomalous magnetic moment of the muon in the Standard Model. Phys Rep (2020) 887:1–166. doi:10.1016/j.physrep.2020.07.006
3. Borsanyi S, Fodor Z, Guenther J, Hoelbling C, Katz S, Lellouch L, et al. Leading hadronic contribution to the muon magnetic moment from lattice qcd. Nature (2021) 593:51–5. doi:10.1038/s41586-021-03418-1
4. Bennett GW, Bousquet B, Brown HN, Bunce G, Carey RM, Cushman P, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys Rev D (2006) 73:072003. doi:10.1103/PhysRevD.73.072003
6. Giudice GF, Paradisi P, Passera M. Testing new physics with the electron g-2. J High Energ Phys (2012) 11:113. doi:10.1007/JHEP11(2012)113
7. Kannike K, Raidal M, Straub D, Strumia A. Anthropic solution to the magnetic muon anomaly: The charged see-saw. J High Energ Phys (2012) 02:106. [Err: JHEP 10, 136 (2012)]. doi:10.1007/JHEP02(2012)106
8. Dermisek R, Raval A. Explanation of the muong−2anomaly with vectorlike leptons and its implications for Higgs decays. Phys Rev D (2013) 88:013017. doi:10.1103/PhysRevD.88.013017
9. Djouadi A, Gambino P, Kniehl BA. Two loop electroweak heavy fermion corrections to Higgs boson production and decay. Nucl Phys B (1998) 523:17–39. doi:10.1016/S0550-3213(98)00147-3
10. Denner A, Dittmaier S, Muck A, Passarino G, Spira M, Sturm C, et al. Higgs production and decay with a fourth standard-model-like fermion generation. Eur Phys J C (2012) 72:1992. doi:10.1140/epjc/s10052-012-1992-3
11. Djouadi A, Lenz A. Sealing the fate of a fourth generation of fermions. Phys Lett B (2012) 715:310–4. doi:10.1016/j.physletb.2012.07.060
12. Kuflik E, Nir Y, Volansky T. Implications of Higgs searches on the four generation standard model. Phys Rev Lett (2013) 110:091801. doi:10.1103/PhysRevLett.110.091801
13. Djouadi A. New fermions at e+ e- colliders. 1. Production and decay. Z Phys C - Particles Fields (1994) 63:317–26. doi:10.1007/BF01411024
14. Boudjema F, Djouadi A, Kneur JL. Excited fermions at e+ e- and e P colliders. Z Phys C - Particles Fields (1993) 57:425–49. doi:10.1007/BF01474339
15. Criado JC, Koivunen N, Raidal M, Veermäe H. Dark matter of any spin – An effective field theory and applications. Phys Rev D (2020) 102:125031. doi:10.1103/PhysRevD.102.125031
16. Criado JC, Djouadi A, Koivunen N, Raidal M, Veermäe H. Higher-spin particles at high-energy colliders. J High Energ Phys (2021) 254. doi:10.1007/JHEP05(2021)254
17. Criado JC, Djouadi A, Koivunen N, Müürsepp K, Raidal M, Veermäe H. An effective field theory of the Delta-resonance. arXiv:2106.09031v1 (2021).
18. Criado JC, Djouadi A, Koivunen N, Müürsepp K, Raidal M, Veermäe H. Confronting spin-3/2 and other new fermions with the muon g-2 measurement. Phys Lett B (2021) 820:136491. doi:10.1016/j.physletb.2021.136491
19. Rizzo TG. Exotic fermions inE6and the anomalous magnetic moments of leptons. Phys Rev D (1986) 33:3329–33. doi:10.1103/PhysRevD.33.3329
20. Nardi E, Roulet E, Tommasini D. Global analysis of fermion mixing with exotics. Nucl Phys B (1992) 386:239–66. doi:10.1016/0550-3213(92)90566-T
21. Vendramin IE. E 6-lepton mixing and lepton magnetic moment. Nuov Cim A (1988) 100:757–62. doi:10.1007/BF02813322
22. Kephart TW, Pas H. Muon anomalous magnetic moment in string inspired extended family models. Phys Rev D (2002) 65:093014. doi:10.1103/PhysRevD.65.093014
23. Csikor F, Fodor Z. Constraints on mirror fermion mixing angles from anomalous magnetic moment data. Phys Lett B (1992) 287:358–62. doi:10.1016/0370-2693(92)90996-H
24. Chavez H, Martins Simoes JA. The muon in an left–right symmetric model with mirror fermions. Nucl Phys B (2007) 783:76–89. doi:10.1016/j.nuclphysb.2007.05.026
25. Aboubrahim A, Ibrahim T, Nath P. Leptonic g − 2 moments, CP phases and the Higgs boson mass constraint. Phys Rev D (2016) 94:015032. doi:10.1103/PhysRevD.94.015032
26. Crivellin A, Hoferichter M, Schmidt-Wellenburg P. Combined explanations of (g − 2)μ, e and implications for muon EDM. Phys Rev D (2018) 98:113002. doi:10.1103/PhysRevD.98.113002
27. Renard FM. Limits on masses and couplings of excited electrons and muons. Phys Lett B (1982) 116:264–8. doi:10.1016/0370-2693(82)90339-2
28. del Aguila F, Mendez A, Pascual R. On the g − 2 and the pp → Z → eeγ Events. Phys Lett B (1984) 140:431–4. doi:10.1016/0370-2693(84)90786-X
29. Choudhury SR, Ellis RG, Joshi GC. Limits on excited spin-3/2 leptons. Phys Rev D (1985) 31:2390–2. doi:10.1103/PhysRevD.31.2390
30. Mery P, Moubarik SE, Perrottet M, Renard FM. Constraints on nonstandard effects from present and future muon g − 2 measurements. Z Phys C - Particles Fields (1990) 46:229–52. doi:10.1007/BF01555999
31. Rakshit S. Muon anomalous magnetic moment constrains models with excited leptons. arXiv:hep-ph/0111083 (2001).
32. Drees M, Godbole R, Roy P. Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics. Singapore: World Scientific (2004).
33. Ellis JR, Hagelin JS, Nanopoulos DV. Spin-zero leptons and the anomalous magnetic moment of the muon. Phys Lett B (1982) 116:283–6. doi:10.1016/0370-2693(82)90343-4
34. Grifols JA, Mendez A. Constraints on supersymmetric particle masses from (g − 2) μ. Phys Rev D (1982) 26:1809–11. doi:10.1103/PhysRevD.26.1809
35. Barbieri R, Maiani L. The muon anomalous magnetic moment in broken supersymmetric theories. Phys Lett B (1982) 117:203–7. doi:10.1016/0370-2693(82)90547-0
36. Kosower DA, Krauss LM, Sakai N. Low-energy supergravity and the anomalous magnetic moment of the muon. Phys Lett B (1983) 133:305–10. doi:10.1016/0370-2693(83)90152-1
37. Chattopadhyay U, Nath P. Upper limits on sparticle masses fromg−2and the possibility for discovery of supersymmetry at colliders and in dark matter searches. Phys Rev Lett (2001) 86:5854–7. doi:10.1103/PhysRevLett.86.5854
38. Carena M, Giudice G, Wagner C. Constraints on supersymmetric models from the muon anomalous magnetic moment. Phys Lett B (1997) 390:234–42. doi:10.1016/S0370-2693(96)01396-2
39. Martin SP, Wells JD. Muon anomalous magnetic dipole moment in supersymmetric theories. Phys Rev D (2001) 64:035003. doi:10.1103/PhysRevD.64.035003
40. Chakraborti M, Heinemeyer S, Saha I. Improved (g − 2)μ measurements and wino/higgsino dark matter. arXiv:2103.13403 (2021).
41. Moroi T. Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys Rev D (1996) 53:6565–75. [Erratum: Phys.Rev.D 56, 4424 (1997)]. doi:10.1103/PhysRevD.53.6565
42. Djouadi A, Drees M, Ellwanger U, Godbole R, Hugonie C, King S, et al. Benchmark scenarios for the NMSSM. J High Energ Phys (2008) 07:002. doi:10.1088/1126-6708/2008/07/002
43. Arcadi G, Djouadi A, Queiroz F. Models with two Higgs doublets and a light pseudoscalar:a portal to dark matter and the possible (g − 2)μ excess. Phys Lett B (2021) 834:137436. doi:10.1016/j.physletb.2022.137436
Keywords: muon (g-2), new fermions, fermilab, review, new physics, particle physics, anomalous magnetic and dielectric properties
Citation: Djouadi A, Criado JC, Koivunen N, Müürsepp K, Raidal M and Veermäe H (2022) New fermions in the light of the (g − 2)μ. Front. Phys. 10:964131. doi: 10.3389/fphy.2022.964131
Received: 08 June 2022; Accepted: 03 October 2022;
Published: 20 October 2022.
Edited by:
Mariana Frank, Concordia University, CanadaReviewed by:
Giacomo Cacciapaglia, UMR5822 Institut de Physique Nucleaire de Lyon, FranceCopyright © 2022 Djouadi, Criado, Koivunen, Müürsepp, Raidal and Veermäe. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: A. Djouadi, YWRqb3VhZGlAdWdyLmVz