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We present and analyze large-scale simulation results of a hybrid quantum-classical
variational method to calculate the ground state energy of the anti-ferromagnetic
Heisenberg model. Using a massively parallel universal quantum computer simulator,
we observe that a low-depth-circuit ansatz advantageously exploits the efficiently
preparable Néel initial state, avoids potential barren plateaus, and works for both one-
and two-dimensional lattices. The analysis reflects the decisive ingredients required for a
simulation by comparing different ansätze, initial parameters, and gradient-based versus
gradient-free optimizers. Extrapolation to the thermodynamic limit accurately yields the
analytical value for the ground state energy, given by the Bethe ansatz. We predict that a
fully functional quantum computer with 100 qubits can calculate the ground state energy
with a relatively small error.
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1 INTRODUCTION

Variational methods, in particular the variational quantum eigensolver (VQE) [1, 2], have recently
been successful in demonstrating to solve proof-of-concept problems on current quantum
computing devices [3–5]. Despite the initial success, it remains an open question which
problems would demonstrate an advantage on future quantum computers. Finding the ground
state energy of the Heisenberg model is one of the candidates.

Recent works have focused on the implementation of the VQE on quantum computers, including
the invention of efficient methods for current devices [5, 6], the reduction of the total number of
required qubits [7, 8], the testing of optimization algorithms [9, 10], and a study of the effects of noise
[11]. Also, attempts to implement the Bethe ansatz [12] on a quantum computer [13, 14] have been
made. Results for implementations of the VQE on quantum computers with up to 20 qubits [15] or
less [16–19] are available.

Despite the progress in hybrid quantum-classical variational methods, several of their
important aspects are still unexplored. Large-scale simulations of VQE for calculating the
ground state energy of the Heisenberg model have not yet been performed. It is unclear if a
single ansatz can be used for both the one- and two-dimensional lattices. A clear picture of
how the minimum energy scales by using a certain ansatz within and beyond what is
emulatable on classical hardware is missing. In this work, we present results for all these
aspects.

The rest of the paper is structured as follows. In Section 2, we briefly review the variational
principle and the Heisenberg model, and introduce the ansatz. In Section 3, we present the results of
our work for one- and two-dimensional lattices. Finally, in Section 4, we summarise our findings.
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2 THEORY

2.1 Variational Principle
The variational principle states that the energy E obtained by
using a certain parameterized wavefunction ψ(θ) for a problem
Hamiltonian H is a strict upper bound to the ground state energy
E0 of H:

E � 〈ψ θ( )|H|ψ θ( )〉≥E0. (1)
The VQE uses the variational principle, Eq. 1, to compute E0

of H on a quantum computer. The VQE algorithm is a hybrid
quantum-classical algorithm that utilizes resources from
quantum and classical computers in an iterative process. The
diagram depicted in Figure 1 shows the link between the
quantum processing unit (QPU) and the classical processing
unit (CPU). The QPU is responsible for carrying out the
computation for a certain quantum circuit that generates the
state ψ(θ), depending on a set of parameters, and returns the
corresponding bitstrings to the CPU obtained after the
measurement. The bitstrings are accumulated and processed
by the classical unit, fed to an optimizer that suggests the next
set of parameters that will lower the energy in successive
iterations.

2.2 Heisenberg Model
We analyze the Hamiltonian representing the quantum spin
model

H � ∑N
i>j

Jxxij σ
x
i · σxj + Jyyij σ

y
i · σy

j + Jzzij σ
z
i · σz

j( ), (2)

where N denotes the number of spins, and σx, σy, and σz are the
Pauli matrices. Throughout the rest of the paper, we use units
such that Z = 1 and J’s are dimensionless. If Jααij � 1 for all i, j = 1,
. . . , N, and α ∈ {x, y, z}, we call H the isotropic anti-ferromagnetic
Heisenberg model Hamiltonian. If all coefficients Jααij are chosen
randomly in the interval (0, 1], then we call H the random
Hamiltonian. We use both open and periodic boundary
conditions and map each spin to a qubit. For most of our
simulations we consider bipartite spin lattices with a single
exception of a (frustrated) triangular spin lattice.

2.3 Ansatz
In general, the final state of a system acted upon by a
parametrized ansatz can be written in the form

|ψf θ( )〉 � U θ( )|ψ0〉, (3)

where θ are the variational parameters, U is the ansatz, and |ψ0〉
denotes the initial state. In this paper we demonstrate that the
following ansatz is sufficient to yield an accurate approximation
to the ground state energy.

U θ( ) � ∏1
l�N−1

∏l+1
k�N

Ulk θlk( )⎡⎣ ⎤⎦ ∏1
l�N−1

∏l+1
k�N

Ukl θkl( )⎡⎣ ⎤⎦, (4)

where

Upq θpq( ) � e−iθpqσ
y
pσ

x
q if p � N or q � N,

e−iθpqσ
y
pσ

x
qσ

z
N otherwise.

{ (5)

We elaborate on how to expand Eq. 4. There is an independent
index l and a dependent index k. The index l is monotonically
decreased from N − 1 to 1. For each value of l, the dependent
index k is decreased from N to l + 1. The index l is not
decremented until all the values of k are enumerated. These
values of l and k describe the indices of the qubits that the
operators in Eq. 5 act upon. In every operator, no more than three
qubits are involved. The corresponding parameters θkl are
independent for each unique combination of l and k. The
parameters θkl affect the phase of the Nth qubit. The number
of unitary operators in Eq. 4 is given byN(N − 1). The ordering of
the unitary operators is important. In this paper, the specific
combination of the operators in Eq. 5 is termed the XY-ansatz.
Any other ordering is prone to produce results which may be
different from each other. This is consistent with the findings in
recent literature [20, 21].

The motivation to keep the number of operators to a
maximum of two or three is inspired from the coupled cluster
ansatz which can be powerful enough to express relevant states
even in this restrictive form [2]. It is then intuitive to try this
approach also for the Heisenberg model. Accordingly, such an
ansatz is expressed by

|ψf θ( )〉 � e−iA θ( )|ψ0〉, (6)
where A can contain sums of products of Pauli operators. The
implementation of an ansatz, e.g. the one given by Eq. 6, is not a
simple task in general as it requires factorization of the matrix
exponential e−iA(θ) [22]. Factorization creates a series of products of
unitary operations, which results in deeper quantum circuits with a
large number of gates. In this work, we do not directly implement the
ansatz given by Eq. 6, but seek for other ansätze in a factorized form
which do not require further factorization. In effect, we create a
quantum circuit from a set of operators instead of a sum of
operators. Such an approach allows us to build low-depth
quantum circuits. Furthermore, from an experimental perspective,
it is difficult to build a quantum computing device in which all the
qubits work equally well. Some qubits may perform certain gates
more efficiently than others. In order to exploit such devices
efficiently and to accommodate for experimental imperfections,
we proposed the ansatz where all the parameterized gates are
placed on only one qubit. All operations of the parametrised
gates can be restricted to this single qubit.

For comparison with the XY-ansatz, we consider two different
ansätze. The first one is inspired by quantum chemistry. The

FIGURE 1 | (Colour online) Schematic of the hybrid quantum-classical
mechanism of a variational quantum eigensolver.
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unitary coupled cluster ansatz restricted to single and double
excitations (UCCSD) is shown to produce results with chemical
accuracy [23–26]. We consider

U θ( ) � ∏1
l�N−1

∏l+1
k�N

Ukl θkl( ), (7)

where

Ukl θkl( ) � ∏α ∏β e
−iθβα

kl
σ
β
k
σα
l if k � N or l � N,

∏α ∏β e
−iθβα

kl
σ
β
k
σα
l
σzN otherwise,

⎧⎪⎨⎪⎩ (8)

where α, β ∈ {x, y, z}. A combinatorial calculation shows that the
number of unitary operators in Eq. 7 is given by 32N!/2!(N − 2)!.
Although the total number of terms scales polynomially rather
than exponentially, further reductions are always welcome since
the redundant terms often slow down the optimization process.
Clearly, the operators in Eq. 4 are a subset of those in Eq. 7. The
differences between using these two are highlighted in the results
section.

The second ansatz is inspired by the problem Hamiltonian.
We consider the ansatz which for the one-dimensional lattice
Hamiltonians is given by

U θ( ) � Up θp( ) . . .U1 θ1( ), (9)
where Up is given

Up θp( ) � ∏N
k�1

Ukp θkp( ), (10)

and periodic boundary conditions are used. Each Ukp(θkp) is
given by

Ukp θkp( ) � ∏α e
−iθαkσαkσαk+1 if k � N or k + 1 � N,∏α e
−iθαkσαkσαk+1σzN otherwise.

{ (11)

For a lattice of size N in one-dimension, the ansatz in Eq. 9
has p × 3N unitary operators. The variational Hamiltonian
ansatz [27] is itself inspired from adiabatic evolution. The idea
is that a combination of ansatz and initial parameters that
mimics the adiabatic evolution can have a lower initial energy
to start the variational optimization. It has been used for
solving the Hubbard-Fermi model [28, 29] and a modified
Haldane-Shastry Hamiltonian [30].

A good choice for the initial state |ψ0〉 often yields better
variational results. In the case of antiferromagnets, a good |ψ0〉 for
the bipartite lattices is known to be the Néel state where one
sublattice is initialised with spins anti-parallel to the other
sublattice. The Néel state, for an even number of spins, is in
the magnetic sector of zero magnetization, where the ground state
for the one-dimensional isotropic anti-ferromagnetic Heisenberg
model is located. For the frustrated lattice, half of the lattice spins
are initialised anti-parallel to the other half, without regard to
their location in the lattice. The qubits representing the spins for
one group are initialised as zeros and those in the other group
(anti-parallel) as ones.

2.4 Implementation
We use the massively parallel simulator Jülich Universal
Quantum Computer Simulator (JUQCS) [31, 32] to perform
operations on the state vector. We also use Qiskit [33] for
small problem sizes. In an actual quantum device, the state
vector itself is not accessible. Instead, the quantum device will
produce an ensemble of bitstrings consisting of 0 and 1s only,
from which the expectation values of the observables can be
derived. This raises two issues. First, since the number of samples
or bitstrings can only be finite, it is not always clear if finite
sampling can accurately represent the underlying probability
distribution. Second, we need a procedure to measure the
individual terms of the Hamiltonian. While the first is an
open problem, recent works have developed efficient methods
for the second when it becomes a problem [34–38]. Fortunately,
both these problems do not hinder finding the ground state
energy of the Heisenberg model. First, on an actual quantum
device, we do not need explicit knowledge of the probability
distribution; one can calculate the expectation values directly by
sampling. From the samples we can estimate the energy with an
accuracy proportional to the square root of the number of
samples. Second, unlike in quantum chemistry, the
measurement of individual terms for the Heisenberg model is
not a problem.

The implementation of the ansatz is best understood through
an example. Consider the four-qubit circuit shown in Figure 2,
implementing the XY-ansatz for the N = 4 isotropic Heisenberg
ring (see Eq. 2). There are 12 parameters in total, and Figure 2
shows the implementation of the first three. After the initial state
preparation, gates are applied to construct the unitary operators.
The circuit in the rectangular solid box corresponds to the
implementation of the exp(−iθyx43 σz · σz) operator having a

FIGURE 2 | Circuit showing the first three parameters for a four-qubit XY-ansatz. The R+
x ,R

−
x , and R+

y ,R
−
y gates are Rx(π/2), Rx( −π/2), and Ry(π/2), Ry( −π/2),

respectively. The parameterized gate is always placed on the last qubit. Gates in the solid box correspond to the e−iθσz ·σz operator. Gates in the dashed box implement
e−iθσy ·σx ·σz . The shown circuit is unoptimized and is optimized before usage.
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variational parameter θyx43 . The terms containing σx and σy are
implemented by changing to the appropriate basis. The
rectangular dashed box highlights the implementation of the
third term in the ansatz, given by exp(−iθyx32 σy3 · σx2 · σz4).
Although the results for the special case of four qubits can be
achieved using an even smaller subset of terms in the XY-ansatz
operators containing only five parameters, for consistency and
completeness, the twelve parameters are used for all the cases. The
simulation for this example using Qiskit and JUQCS gives the
energy −8.0, which is also the theoretical value obtained by exact
diagonalization. The final state also has a 100% overlap with the
ground state. The corresponding z- and total-magnetization were
both zero, as required.

For the classical optimisation part of the VQE, we use the
sequential least squares quadratic programming (SLSQP) [39]
optimizer in the SciPy package [40]. SLSQP is a quasi-Newton
gradient based algorithm. When using an ideal simulator, the
gradients are computed numerically using the cost-effective
forward differences formula. The calculation of the energy for
given values of the parameters involves the quantum subroutine
of VQE. Once the energies are obtained, the calculation of the
gradient is done on the classical computer. Calculation of
gradient and the next iterate is not a hard problem and
classical computers can be used. It is the calculation of the
energy for which quantum resources will be required. In our
work, the cost of gradient computation for the optimizer is
included in the total energy evaluations. For comparison, we
also use a gradient-free optimizer called constrained optimization
by linear approximation (COBYLA) [40–42].

3 RESULTS

3.1 One-Dimensional Lattices
The results for the one-dimensional isotropic Hamiltonians with
periodic boundary conditions are shown in Figure 3A. The
coloured lines show the optimization progress, i.e. the lowest
energy achieved by successive energy evaluations for different
lattice sizes. Initially, the system is in the Néel state. To take

advantage of the Néel state, all the optimization parameters are
initialised as zeros. As the optimization proceeds, the drop in
energy is visible for all lattice sizes shown. The stepped
progression is characteristic of the quasi-Newton optimization
algorithms, which calculate the gradient before deciding on the
step size. Each “step” of the staircase corresponds to a length
equal to the number of parameters, since the formula of the
forward differences for calculating the gradients requires N (N −
1) + 1 energy evaluations, where N (N − 1) is the number of
parameters. Below each optimization curve is a horizontal black
line corresponding to the energy of the ground state, obtained
numerically by the Lanczos algorithm. According to the
variational principle, the calculated energies are upper bounds
to the energy of the ground states. Starting from a lattice with 14
spins, the optimizer gave no signal for termination, but due to a
time limit of 24 h on the supercomputer [43], the calculations
stopped. Due to the different number of compute nodes, circuit
depths, and parameters, the total number of energy evaluations
differs for each lattice size. The energy optimization process can
be restarted from the last values of the parameters. An example is
shown for the lattice with 25 spins, as can be seen from the longer
curve resulting from the extra energy evaluations. In all the cases
shown, the XY-ansatz produced a final energy Ef, which is close to
the ground state energy.

The absolute difference between Ef and the corresponding
ground state energy E0 per spin for each lattice size is shown in
Figure 3B. Results up to the lattice size of 6 spins match exactly
with the ground state energy [data not shown in (A)], and the
differences show up for N ≥ 7. The points cluster in two groups,
one corresponding to lattices with an even and another one with
an odd number of spins. We observe that the final energies for the
lattices with an even number of spins are lower than for the ones
with an odd number of spins. Additionally, we note that the
ground states of the systems with an odd number of spins are
degenerate. Through the variational principle, the ground state
energies are mapped to the global minima of an energy landscape
when an ansatz can express the ground state. There may be
multiple global minima for degenerate cases. Due to this reason
the energy landscape will be different from the even spin cases.

FIGURE 3 | (Colour online) (A): Optimization progress using the XY ansatz for 11 spins (first line), 12 spins (second line) and so on, up to 26 spins (bottom line). The
small horizontal black lines represent the ground state energy. (B): Absolute difference in the variational and ground state energy per spin for different spins or lattice size.
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Therefore, we conjecture that finding the ground state of
degenerate cases using VQE is more challenging. This is also
observed in the simulations we performed.

Figure 4A shows the energy optimization progress using two
different sets of initial parameters. The legend indicates the lattice
size. The lines can be separated into two groups, top (dashed) and
bottom (solid). The bottom group corresponds to the case where
the parameters were initialised as zeros, thus taking advantage of
the Néel state and starting from a lower energy value. The top
group of lines corresponds to parameters initialised as randomly
distributed values in the interval (0, 2π], not taking advantage of
the Néel state and starting from a much higher energy, often close
to E = 0. For all lattice sizes, initializing the parameters as zeros
yields large drops in energy for the first few iterations, and Ef is
close to the ground state energy. After the significant drop, the
(relative) progress slows down as the energy landscape becomes
flatter near a minimum, and a large number of iterations is
required to decrease the energy further. On the other hand,
random initializations of the parameters do not yield
significantly big drops in the energy in any of the cases. A
prohibitively large number of energy evaluations seems
required to obtain the same accuracy as when parameters are
initialised as zeros. From a practical perspective, starting from
random parameters does not appear to be very useful for the
current problem.

Figure 4B shows the energy optimization progress using the
UCCSD inspired ansatz given by Eq. 7. Similar to plot (A), plot
(B) shows the trend corresponding to the two different
initializations of the parameters. Initializing all parameters as
zeros is observed to have a significant initial drop in the energy,
contrary to the random parameters. Interestingly, energy
optimization progresses for cases with random initial
parameters appear to be slower in proportion to the increasing
lattice size, i.e. larger N have a slower drop in energy. This effect
appears to be consistent with what is termed in the recent
literature as the barren-plateau [44–47]. The larger lattice
sizes, which require a larger number of parameters, lead to
vanishingly small gradients. Given that vanishingly small
gradients appear when one approaches a minimum, it is

difficult to determine whether the random parameters landed
in a local minimum of the energy landscape or at a barren-
plateau. One way to find this out would be to restart multiple
times with new sets of random parameters, but given that the
barren-plateau effect is something that one aims to avoid, which
is possible by initializing all parameters as zeros in this case, we
skip such an approach.

In both plots (A) and (B) in Figure 4, for parameters initialised
as zeros, Ef is very close to the ground state energy. This is
understandable as the terms in the XY-ansatz are a subset of the
terms given in Eq. 7. However, the difference between the two lies
in the number of energy evaluations required to reach the ground
state energy. The energies obtained with the XY-ansatz have the
same (or comparable) values as the energies obtained with the
UCCSD inspired ansatz, but much less energy evaluations with
fewer parameters.

Despite the success of initializing the parameters as zeros, it
should be noted that such an approach does not necessarily give
the lowest possible energy given the ansatz. We performed
random initializations with one hundred sets of random
parameters for the smaller lattices. The results are shown in
Figure 5A. We count and plot the number of cases in which the
energy found by starting the optimiser using random initial
parameters obtained a final energy equal to or lower than that
obtained when starting from the Néel state. We observe that the
cases drop sharpy as the lattice size increases. However, finding
even a single energy lower than that found when starting from the
Néel state shows that the minimum energy reached by initializing
all parameters as zeros, although being very close to the ground
state energy, is still only a local minimum and usually not a global
minimum.

Figure 5B shows the energy optimization progress using the
ansatz given by Eq. 9. The lines can again be divided into two
groups. The shorter lines on the left correspond to p = 1 and the
long lines on the right to p = 5. The lines for p = 5 are longer
simply because in this case there are five times more parameters
than for p = 1, and so five times more energy evaluations are
required to compute the gradient per iteration. For this ansatz,
the parameters need to be initialised randomly since initializing

FIGURE 4 | (Colour online) (A): Progress comparison when initializing with zeros (solid lines) versus random values (dashed lines) as parameters for the XY-ansatz.
(B): Same as (A), except for using the ansatz given by Eq. 7. Legend depicts the lattice size for both (A,B). The small horizontal black lines represent the ground state
energy.
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them with zeros (for the tested cases with N ≤ 10) results in the
optimizer being trapped in a local minimum at the first
iteration. It is observed that simply increasing the number of
parameters in the circuit is no guarantee for improving the
minimum energy. While for the lattice with 19 spins a lower
energy is reached with p = 1 than with p = 5, the opposite is the
case for the lattice with 20 spins. While a larger parameter space
may facilitate a broader spectrum of states, the energy landscape
may be the cause of this observation as local minima may
surround the global minimum and impede reaching it. Since
a random initialization would not be able to take advantage
offered by the Néel state, and would thus require a much larger
number of energy evaluations to converge to Ef, we restrict our
study to only one such random initialization.

Figure 6A shows the energy optimization progress for the
random case of the anti-ferromagnetic one-dimensional ring.
Using the XY-ansatz, the parameters were initialised as zeros.
Except for the ring with 10 spins, none of the optimization
processes signalled convergence, and the optimization could

be continued to reduce the energy further if required. A quick
drop in the initial energy is also observed for the random case,
and all the energies are reasonably close to the ground state
energy.

Figure 6B shows the energy optimization progress using the
gradient-based optimizer SLSQP (solid lines) and the gradient-
free optimizer COBYLA (dashed lines). We only show the results
for the even lattice sizes. The results for the odd lattice sizes are
similar. The gradient-based method gives lower energies at each
energy evaluation and finds a much lower minimum faster than
the gradient-free method. This result confirms the commonly
accepted notion that for noiseless functions, gradient-based
methods are superior.

3.2 Two-Dimensional Lattices
We apply the XY-ansatz without any changes. Results for an
isotropic ladder Hamiltonian with open boundary conditions are
shown in Figure 7A. The results show the energy optimization
progress for ladders of size 3 × 2 up to size 13 × 2. For example,

FIGURE 6 | (Colour online) (A): Energy optimization progress using the XY-ansatz for different Hamiltonians with random coupling interactions for the different
numbers of spins shown in legend. (B): Energy optimization progress using gradient-based (solid lines) and gradient-free (dashed lines) optimizers for rings with isotropic
couplings between the spins with 12 spins (first pair of the lines from top), 14 spins (second pair of lines from the top), and so on up to 20 spins (last pair of lines at the
bottom). The short horizontal black lines represent the ground state energy.

FIGURE 5 | (Colour online) (A): The number of cases where the final energy obtained using random initial parameters was either equal to or lower than the energy
obtained by setting zeros as initial parameters. (B): Optimization progress for the ansatz given by Eq. 9 for p = 1 (group of shorter lines on the left) and p = 5 (group of
longer lines on the right). The legend shows the lattice size. The short horizontal black lines represent the ground state energy.
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the 8 × 2 ladder, where the optimizer did not converge even after
two runs of continued optimization, reported Ef/N = −2.212 as
compared to the ground state energy per spin E0/N = −2.229.

Figure 7B shows results for three cases with square lattices and
a 5 × 6 (frustrated) triangular lattice. The 4 × 4 and 5 × 5 lattices
had open boundary conditions and the final energies were Ef/N =
−2.218 and Ef/N = −2.298 as compared to E0/N = −2.297 and E0/
N = −2.351, respectively. The optimized (unoptimized) circuit
depths were 805 (1398) and 1939 (3531), respectively. For the
frustrated lattice, Ef/N = −1.817 as compared to E0/N = −1.986.
The results for the frustrated lattice show a slightly larger gap in
the energy obtained and the ground state. This could either be
explained by assuming that the ansatz is less suitable for the case
with the frustrated lattice or that the energy obtained when
initializing all parameters as zeros corresponds to a local
minimum far away from the global minimum.

The case of the square lattice of size 6 × 6 with periodic
boundary conditions poses a specific difficulty with the parameter
optimization. The problem is that the XY-ansatz for 36 spins has
1260 parameters, and only one iteration can be performed as the

evaluation of the gradient is possible only once within 24 h, the
time per job on the supercomputer. Since the quasi-Newton
methods require multiple iterations without losing the internal
variables that systematically improve the convergence per
iteration, the optimization is ill-suited for larger problems that
cannot undergo multiple iterations in one run. However, this
problem can be avoided by saving the internal variables of the
optimizer, but this approach is beyond the scope of this work.
Despite such a drawback, we proceeded with the first few
iterations without saving the internal variables and were able
to see a reasonable drop in the initial energy. The circuit depth
after optimizing the circuit was reduced from 7458 to 3985. The
final energy was Ef/N = −2.631 as compared to E0/N = −2.715.

3.3 Extrapolation
The energies obtained for the one-dimensional lattices can be
fitted to a line for extrapolation, as shown in Figure 8A. The slope
of the line that gives the energy per spin in the thermodynamic
limit, is −1.7783, which can be compared to the exact value
−1.7726, known from the Bethe ansatz [48]. The reported value

FIGURE 8 | (Colour online) (A): Least squares fitting to the variational energies obtained for the one-dimensional isotropic rings of different sizes. The slope of the
line, − 1.7783, gives the energy for the infinite ring case. (B): Absolute differences of the variational and ground state energies for different lattice sizes for the isotropic
rings using the ansatz from Eq. 9 with p = 1 (green triangles), p = 5 (red inverted triangles), the ansatz from Eq. 7 (orange squares), and the XY-ansatz (blue dots).

FIGURE 7 | (Colour online) (A): Energy optimization progress for isotropic ladders with open boundary conditions. The top line is for a lattice with 3 × 2 spins, the
second for one with 4 × 2 spins and so on until the bottom line which is for a lattice with 13 × 2 spins. (B) Energy optimization progress for two-dimensional square lattices
of size 4 × 4 and 5 × 5 with open boundary conditions and 6 × 6 with periodic boundary conditions. The dashed line is for a frustrated triangular lattice of dimensions 5 × 6
with open boundary conditions. The short horizontal black lines represent the ground state energy.
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only differs from the exact value by 5.7 × 10−3. Note that while the
variational theorem guarantees that the energy obtained is a strict
upper bound to the ground state, this is not necessarily the case
when estimating the value in the thermodynamic limit by means
of a fitted extrapolation.

One measure of an ansatz’s ability to scale up beyond what
classical computers can simulate is to predict, given the available
data, the expected difference between the VQE and exact energies.
Such a calculation can be performed by extrapolating the
available data. Figure 8B shows data for four different ansätze,
namely the ansatz from Eq. 9 with p = 1 (green triangles), p = 5
(red inverted triangles), the ansatz from Eq. 7 (orange squares),
and the XY-ansatz (blue dots). Although some of the orange
squares are lower than the corresponding blue dots, indicating
that a lower energy was obtained using the ansatz from Eq. 7
compared to using the XY-ansatz, the difference is small, and the
XY-ansatz is the preferred choice because its number of
parameters is significantly smaller. For both the p values
tested, the obtained data for the ansatz from Eq. 9 puts it out
of competition with the XY-ansatz. Moreover, there is no clear
pattern that may help predict the behaviour for the ansatz from
Eq. 9 beyond the available data. Linear fitting is performed for the
XY-ansatz, and the slope is equal to 2.0829 × 10−2 with the
intercept −8.6202 × 10−2. Using the given slope, we predict that
for a 100-spin ring, the expected energy per spin will be higher
than the ground state energy per spin by a value of
approximately 0.02.

4 CONCLUSION

We calculated the minimum energy for various implementations
of the Heisenberg model for the one- and two-dimensional,
isotropic, frustrated, and randomly-coupled lattices, using
gradient-based and gradient-free optimizers, and different
ansätze. The herein proposed XY-ansatz shows reasonable
results if all the simulation variables are optimized, i.e. a
suitable initial state combined with a good quality optimizer
and a good choice of initial parameters.

Given an ansatz, there is currently no analytical method to
ascertain if its global minimum corresponds to the ground state
energy. Thus, we rely on optimization algorithms to navigate
through the multi-dimensional rugged energy landscapes. In
many such landscapes, there appear multiple local minima close

to the ground state energy. For the cases where the exact ground
state energy was not obtained using the XY-ansatz, it remains an
open question if the global minimum of the energy landscape
corresponds to the ground state energy. Thus, an improvement
of the optimization algorithms appears to be essential for the
further success of hybrid variational methods.

For the variational simulations performed in this work,
initializing the variables as zeros instead of random numbers
produced better results. For the anti-ferromagnetic
Heisenberg model, it is known that the Néel state is an
efficient initial state, and starting from zeros takes
advantage of this knowledge. Therefore, in general, it is the
knowledge or insight about a particular problem Hamiltonian
that is relevant for an improved performance of the
variational methods.
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