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Nonlinear generation and manipulation of vortex beams have emerged as a research hot
topic in recent years. During nonlinear frequency conversions, orbital angular momentum
will transfer from the fundamental wave to harmonic waves. In this work, we study
theoretically the backward optical parametric oscillator pumped by vortex beams. The
orbital angular momentum conservation law has been disclosed for the counter
propagation nonlinear process. In addition, the oscillation threshold and the conversion
efficiency have been investigated in detail. Our results will be helpful for the experimental
demonstration of backward optical parametric oscillator pumped by vortex beams.
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INTRODUCTION

Light beams possessing an azimuthal phase front eilφ are called vortex beams [1], where φis the
azimuthal angle and l is an integer which indicates the topological charge of the optical vortex. Unlike
the spin angular momentum of photons, which only has two possible states ± 1, theoretically
achievable orbital angular momentum (OAM) states are infinite, that is, l is unbounded and can take
any integer value. Vortex beams have unique characteristics such as a helical wave-front and a donut-
shaped intensity profile. Such beams carry an OAM of lZ per photon. Since l is unbounded, photons
carrying OAM can carry multidimensional information. Due to the aforementioned characteristics
of vortex beams, they have been extensively used in many applications, including super-resolution
microscopy [2], optical tweezers [3, 4], and quantum information technology [5, 6]. The generation,
manipulation, and detection of optical vortices are the focus of this research area. To generate vortex
beams, the conventional ways are based on linear optics, such as vortex phase plate, spatial phase
modulator based on computational holograph, and q-plate. However, these methods can only
generate vortex beams with limited wavelength, since the devices usually have a limited operating
wavelength bandwidth. In addition to the linear methods, nonlinear frequency conversion has been
proved to be an important scheme to extend the operating wavelength of vortex beams [7–19]. For
instance, the operating wavelength of vortex beams can be extended to the visible and ultraviolet
band through frequency up-conversion processes such as third-harmonic generation (THG), sum-
frequency generation (SFG), and high harmonic generation (HHG) [9–11]. In addition, vortex
beams with tunable wavelength ranging from near-infrared to the mid-infrared can be obtained by
parametric down-conversion processes such as difference-frequency generation (DFG) [12, 13] and
optical parametric oscillation (OPO) [14–17]. Vortex beams in the mid-infrared region have the
potential to be used in the areas of molecular spectroscopy and creating chiral nanostructures [20,
21]. For the OPOs pumped by vortex beams, the researchers reported that these are commonly in a
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forward-propagating configuration, which means the interacting
waves are propagating in the same direction. As we know, in
addition to the forward-propagating OPO, counter-propagating
OPO [22, 23] is another type of configuration in which the
interacting waves are propagating in the opposite directions.
In backward OPO, the pump beam is down-converted into a
counter-propagating signal and idler waves, and the oscillation is
established by the distributed feedback due to the presence of two
counter-propagating parametric waves. For the operation of
backward OPOs, it does not require external mirrors or
surface coating to form the optical cavity and operates in a
simple single-pass geometry. Compared with conventional
OPO, backward OPO has a simpler optical setup, a narrower
linewidth, and less temperature sensitivity [24, 25]. Up to now,
there is no research report on backward OPO pumped by vortex
beams. In this work, we investigate in theory the backward OPO
pumped by vortex beams using the nonlinear coupled-wave
equations. The OAM conservation transfer law, the threshold,
and the conversion efficiency of the vortex beam pumped
backward OPO are studied.

THEORETICAL MODEL

Theoretically, the backward OPO pumped by vortex beams can
be described by the coupled-wave equation. We assume that both
the pump and the signal waves travel along the +X direction,
while the idler wave travels along the −X direction. The
polarization direction of the three beams is along the Z
direction, corresponding to the Z axis of the KTP crystal, as
shown in Figure 1.

The electric fields of the interacting waves are given by the
following equation:

Ej �
��
ωj

nj

√
Ajuj(ρ)ei(kjz+ljφ)δj−iωjt + c.c , (1)

where j � p, i, s represents the pump, idler, and the signal wave,
respectively. ρ and φ are the radius and azimuthal angle in the Z-Y
plane, respectively. δj � 1 for j � p, s, while δj � −1 for j � i.

ωj, nj, Aj, lj, and uj are the frequency, refractive index,
amplitude, topological charge, and the normalized intensity
profile of the three interacting waves, respectively. kj � 2π/λj
is the wave vector of the corresponding light field, where λj is the
wavelength. Substituting Eq. 1 into the nonlinear coupled-wave
equation [26] and considering the normalization condition∫ upp,s,iup,s,irdrdφ � 1, we can obtain

dAs

dz
� +iκApA

*
i exp(iΔkz),

dAi

dz
� −iκApA

*
s exp(iΔkz),

dAp

dz
� +iκ*AsAi exp(−iΔkz),

(2)

where κ � 2
cdeffS

�����
ωsωiωp

nsninp

√
is the nonlinear coupling constant,

with c being the velocity of light, deff being the effective
nonlinear coefficient, and S � ∫ usuiupei(lp+li−ls)rdrdφ being
the overlapping integral of the nonlinear process. Δk � kp + ki −
ks is the wave vector mismatch of the backward OPO process. In
order to achieve a high conversion efficiency of the counter-
propagating nonlinear process, the quasi-phase-matching
technique is desirable. Here in this work, we choose
periodically poled KTP(PPKTP) as the quasi-phase-matched
nonlinear crystal. For the KTP crystal, the difference of the
lattice constant along the X and Y principal axes leads to the
highly anisotropic domain growth velocity; thus, KTP is
favorable for the fabrication of short-pitched periodically
poled structures. Canaltas et al. demonstrated in an
experiment the first backward OPO with a short-period
PPKTP [27]. The first-order reciprocal vector provided by
the PPKTP is G � 2π/Λ, with Λ being the poling period.
Thus, the wave vector mismatch can be compensated by the
reciprocal vector, that is,Δk’ � Δk − G � 0. At this time, Eq. (2)
has the similar form as that under the plane wave approximation
[28]. The difference is that the overlapping integral S between
the interacting light fields should be considered in the nonlinear
coupling constant of Eq. (2) in the backward OPO process
involved with vortex light. In order to ensure that the
overlapping integral is non-zero, the topological charges of

FIGURE 1 | Schematic of the backward OPO pumped by vortex beams.
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the pump, signal, and idler waves should satisfy the following
relationship:

lp � ls − li . (3)
Equation 3 is the OAM conservation condition in the

backward OPO, which is different from that in conventional
OPO due to the reversed propagation direction of the idler wave.

Equation 3 presents the OAM conservation law of the
backward OPO, and in principle, there are infinite
combinations of the topological charge of the signal and idler
waves [ls, li] satisfying the OAM conservation. To determine the
OAM transfer in an optical parametric oscillator, one should
consider the threshold of each combination, which is the basic
knowledge of mode selection in the laser techniques. In previous
studies, OAM transfer in the OPO process can be controlled by
adjusting the cavity losses or the spatial overlap integral of the
interaction waves [29–31]. The purpose is to change the OPO
threshold of different combinations since the OAM preferentially
transfers to the combination with the lower threshold. Therefore,
we use the method in Ref. [28] to solve Eq. 2 to obtain the
threshold of the backward OPO pumped by vortex beams:

Pth � cε0nsninpλsλi
32L2d2

eff S
2 , (4)

where ε0 is the permittivity of vacuum and L is the nonlinear
interaction length. The Rayleigh distance of light waves is set to be
much longer than the sample length, thus the overlapping
integral is approximately constant and equal to that in the
beam waist.

According to Eq. 4, the threshold Pth for the backward OPO is
inversely proportional to the square of overlapping integral.
When the topological charge of [ls, li] the pump wave is
fixed, processes with different combinations correspond to
different overlapping integrals. Therefore, in order to control
the OAM conversion and ensure the purity of output beams, we
can control the pump power to only excite the process with the
largest overlap integral.

In the study, we assume that the pump, signal light, and idler
light are in the form of the Laguerre–Gaussianmode [1], and have
the same confocal parameters [32]:

npw
2
p

λp
� nsw

2
s

λs
� niw

2
i

λi
, (5)

wherewp, ws, wi are the beamwaist radius of the three interacting
waves, respectively. By substituting the normalized light intensity
of a Laguerre–Gaussian mode, the OAM conservation law
|lp| � |ls| + |li|, and Eq. 5 into the expression of the
overlapping integral, the overlapping integral of light field at
the beam waist is as follows:

Slp ,ls ,li �
��
2
π

√
·

�������∣∣∣∣lp∣∣∣∣!
|ls|! · |li|!

√
· γ

|ls |+1
s γ|li |+1i

wp
× ( 2

1 + γ2s + γ2i
)|lp|+1 , (6)

where γs � wp/ws , γi � wp/wi. We should be aware that the
combination with |lp| � |ls| − |li| may also satisfy the OAM
conservation condition, but the overlapping integral of the

corresponding process is smaller than that with |lp| � |ls| + |li|,
and thus the discussions are not included in this article.

RESULTS AND DISCUSSIONS

When OAM conservation in Eq. 3 is satisfied, we use Eq. 6 to
calculate the overlapping integrals of all the combinations of ls
and li when the pump light carries three different OAMs, as
shown in Figure 2. For the numerical calculations, the
temperature was set at 100°C, the beam waist was set to be
wp � 150 μm, and the pump light wavelength was 1.064 μm. We
systematically studied the backward OPO process when the
wavelength of signal wave is in the range of 1.5 − 2.128 μm.

As shown in Figure 2A, when the signal wavelength of the
output signal is near the degenerate point, the overlapping
integral of S1,0,−1 and S1,1,0 is close; hence, both processes may
oscillate. As the signal wavelength decreased from the degeneracy
point, the S1,1,0 increases while the S1,0,−1 decreases gradually,
which means S1,1,0 is more preferentially to oscillate than S1,0,−1.
Thus, the OAM of the pump wave tends to transfer to the signal
wave. Figures 2B,C have the same trends. When the signal light
wavelength is in the range of 1.7–1.9 μm, S1,1,0, S2,1,−1, and S3,2,−1
are obviously larger than the other [ls, li] combinations when lP is
1,2, and 3, respectively. From Figure 2C, we can see that the
overlap integral of S3,1,−2 and S3,−1,2 is higher than that of S3,0,−3
and S3,3,0, and this can be explained as follows. At the degenerated
point, the beam waist of the signal and the idler waves are the
same. For S3,1,−2 and S3,−1,2, the signal and the idler waves are both
vortex beams, while for S3,0,−3 and S3,3,0, the parametric waves,
respectively, possess a Gaussian profile and a vortex one.
According to the calculation, the overlap integral between the
two vortex beams is larger than that between a Gaussian beam
and a vortex beam; hence, the overlap integral for S3,1,−2 and
S3,−1,2 is larger than the situation for S3,0,−3 and S3,3,0. Next, we will
make a detailed analysis of the threshold of the backward OPO
when the wavelength of the signal wave is set to be λs � 1.8 μm.
Eq. 4 is used to obtain the relationship between the OPO
threshold and the sample length when the topological charge
of the pump wave is lp � 3, and the relationship is plotted in
Figure 3A.

As can be seen from Figure 3A, the oscillation threshold
decreases with the increase in the length of the nonlinear crystal.
Meanwhile, the difference in the threshold value among the
different [ls, li] combinations becomes smaller. The results
imply that the threshold difference between different
combinations [ls, li] of the backward OPOs can be controlled
by varying the length of the nonlinear crystal. Figure 3B shows
the pump threshold of the processes with the largest overlap
integrals with different interaction lengths and different
topological charges of the pump wave, which follows the same
trend as that in Figure 3A. Moreover, the oscillation threshold
increases with the increase in the topological charges of the pump.
In Figure 3B, we list the threshold of the combination [ls, li]
when lp � 0, 1, 2, 3, respectively, and then we can control the
pump power for more precise excitation of the required
backward OPO.
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The conversion efficiency η is a key parameter, and under a
stable oscillation state, it is determined by the following formula,
which can be obtained by solving Eq. 2:

∫π
2

0

dθ���������
1 − ηsin2θ

√ � π

2
·

���
Pp

Pth

√
, (7)

where Pp is the power of the pump wave and θ is the incident
angle of the pump wave [28]. Here, we assume that the length of
PPKTP is 1 cm, and the relationship between the conversion
efficiency and the peak power of the pump wave with different
topological charge of the pump wave is shown in Figure 4.

According to Figure 4, we can see that when the input power
of the pump light exceeds the threshold, the conversion efficiency
increases rapidly. Since only the [ls, li] combination with the
largest overlapping integral is considered in the calculation of Eq.
7, and when the pump power is too high, processes with a high
threshold may also oscillate. Thus, the purity of the output vortex

FIGURE 2 | Overlapping integral of different combinations [ls, li], which is normalized by set S0,0,0 to be 1 at the degeneracy point. The topological charge of the
pump wave is (A) lp � 1, (B) lp � 2, and (C) lp � 3 .

FIGURE 3 | Relationship between the OPO threshold and the sample
length. (A) Situations for all [ls, li ] combinations when the topological charge of
the pump wave is set to be lp � 3. (B) Situations in which the [ls, li ]
combination takes the largest overlap integral with different topological
charge of the pump wave.

FIGURE 4 | Relationship of the conversion efficiency varying with the
pump power. The solid lines represent the single mode excitation (the lowest
oscillation threshold is reached), and the dotted lines represent the multiple
mode excitation.
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light will be reduced, and the efficiency curve may not be accurate
(dotted lines). In the experiment, it would be better if we
controlled the input power in the solid line area; thus, we can
ensure a high purity OAM state of the signal wave.

For practical realization of the backward OPO pumped by
vortex beams, a high-energy pulsed laser light source together
with a sub-micrometer periodically poled KTP is required. In our
theoretical investigations, we choose a long-pulsed laser as the
pump rather than ultrashort pulses because oscillationmay not be
observed due to the appearance of stimulated Raman scattering at
pulses shorter than 20 pico-seconds [27]. The main difficulty of
the practical demonstration is the nonlinear crystal. For backward
OPO, a sub-micrometer QPM structure is required; however,
fabrication of such a structure is still a big challenge. Up to now,
there are only a few reports on the experimental demonstration of
backward OPOs with Gaussian beams as the pump.

CONCLUSION

In this study, we have investigated the backward OPO pumped by
vortex beams using the nonlinear coupled-wave equations. The OAM
conservation law was determined to be lp � ls − li, which is different
from that of the conventional forward-propagating OPO. To figure
out the OAM transfer during the backward OPO process, we studied
the oscillation threshold for different topological charge combinations
of the signal and the idler waves, which is closely related to the
overlapping integral, the length of the nonlinear crystal, and the
topological charge of the pump wave. In addition, the conversion

efficiency of the oscillationwas numerically calculated. Our results can
help understand the OAM transfer in the backward OPO, and obtain
the output vortex beam with a pure OAM component. Further work
will be focused on the experimental demonstration of the backward
OPO pumped by vortex beams.
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