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In multi-component flow and/or thermal flows, when the diffusion coefficient of the
advection–diffusion equation is relatively small, the relaxation coefficient in the lattice
Boltzmann method will be close to 0.5, which will lead to numerical instability. The stability
conditions will become more severe, when there are high gradient regions in the
computational domain. In order to improve the stability of advection–diffusion lattice
Boltzmann method to simulate scalar transport in complex flow, a hybrid regularized
collision operators and a dynamic filtering method which is suitable for the convection-
diffusion lattice Boltzmann method are proposed in this paper. The advection–diffusion
lattice Boltzmann method is first tested in uniform flow with smooth and discontinuous
initial conditions. Then the scalar transport in doubly periodic shear layer flow is tested,
which is sensitive to numerical stability. The adaptive dynamic filtering method is also
tested. The results are compared to the classical finite difference method and to the lattice
Boltzmann method using the projection-based regularized and standard Bahtnagar-
Gross-Krook collision operator. The results show that the hybrid regularized collision
operator has advantages in simulating the scalar advection-diffusion problem with small
diffusion coefficient. In addition, the adaptive filtering method can also improve the
numerical stability of the lattice Boltzmann method with limited numerical dissipation.
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1 INTRODUCTION

Species transport and heat transfer flows are widely present in real-world systems with
complicated geometry (gas turbines, burners, furnaces, and so on), and accurate numerical
simulation of these processes is key to initial design. The governing equations consist of three
main components: (a) Navier–Stokes equations for the fluid, (b) heat transport equation and (c)
a set of transport equations for the species. Conventional numerical methods for solving these
equations include finite difference methods, finite volume methods, and finite element methods.
Although initially developed to solve the Navier–Stokes (NS) equation, lattice Boltzmann
method have been extended to a variety of applications and flows [1–3]. The local nature of
the time evolution of the LBM helps to simplify the numerical coding process, improve the
parallel scalability of the algorithm, and make the implementation of the complex boundary
conditions straightforward. The disadvantage of LBM is that as the number of lattice velocity sets
increases, more memory storage will be required. Despite the latter issue, the lattice Boltzmann
method has emerged as a potential alternative for simulating a range of complex flows
throughout the last decade.
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The advection-diffusion or passive scalar LBM is widely
used in the literature, especially under the assumption of
incompressible flow [4–6]. In this approach, the LBM flow
solver is used to model the conservation of mass and
momentum, while the temperature and species fields were
handled using other sets of distribution functions. And it is
assumed that the species and temperature distribution have
little effect on the density, so the effect of species and
temperature changes on the flow can be reflected by adding
body force terms in the LBM flow solver. Hosseini [7, 8]
modified the classical advection-diffusion LBM, which can
consider the effects of the changes of thermophysical
parameters and transport coefficients, and used the
modified LBM to simulate the reacting flows with detailed
thermo-chemical models.

However, when the relaxation factor in LBM is very close to
0.5, it is easy to cause instability. The origin of LBM instability
has been actively studied and remains an open topic [9, 10].
An extension of the von Neumann linear analysis showed that
modal interactions due to the error in the time and space
discretization can lead to severe linear instabilities [11]. A
linear perturbative analysis methodology has been proposed
to study the stability properties of the isothermal discrete
velocity Boltzmann equations using the Knudsen number as
parameter [12]. Linear stability analysis of isothermal lattice
Boltzmann methods has been carried out to investigate the
impact of the collision model on numerical stability [13–16].
The modal couplings depending on the exact value of the
relaxation time, mean flow quantities, or even mesh resolution
can appear and make a perfectly stable wave become unstable.
For the compressible thermal flow, a spectral study of the
compressible hybrid lattice Boltzmann method on standard
lattice has been proposed to study the effect of the choice of
numerical parameters on computational stability [17]. Suga
[18] performed a linear stability analysis of the two-
dimensional LBM for advection-diffusion equation and
derived stable regions for different dimensionless relaxation
coefficients. Hosseini [19] used the von Neumann method to
analyze the stability of the LBM for advection-diffusion
equation, and investigated the effects of different
distribution functions and different parameters such as
lattice sound velocity on the stability region. The main
consequence of the LBM instability is to create numerical
oscillations during the simulation, which are mainly
characterized by high-frequency waves propagating
throughout the computational domain. The numerical
instability become more severe when discontinuous initial
conditions, inappropriate boundary conditions, or high
gradient regions exist in the computational domain. In
order to expand the stability region of LBM, various
theoretical methods have been proposed, including:
multiple relaxation times [20], regularization techniques
[21], entropic models [22].

Compared with the method of theoretically modifying the LBM,
other studies use filtering methods to improve the stability of the
calculation. The filtering methodology has already been extensively
discussed for fluid flow simulations based on LBM, including static

[23, 24] and adaptive filtering strategies [25, 26]. Ricot [23] proposed
a high-order spatial filter to stabilize the LBM by increasing the
dissipation in the high wavenumber range where the instabilities
occur. However, the use of high-order filters will increase the stencil
of LBM and reduce computational efficiency. Marié [26] et al.
proposed a dynamical adaptive filtering method to improve
stability of LBM. In this method, the filter coefficients depend on
the local shear stress, which can improve the computational stability
without introducing excessive numerical dissipation. Moreover, the
dynamical filtering strategy canworkwith low-order stencil, which is
consistent with the LBM.

In this paper, the advection–diffusion lattice Boltzmann
method is first tested in uniform flow with smooth and
discontinuous initial conditions. In order to test the ability
of advection-diffusion LBM in simulating scalar transport
problems in complex flow, we use the scalar transport in
doubly periodic shear layer flow as an example to compare
the results of advection-diffusion LBM using different collision
operators respectively. These collision operators are the
projection based regularized collision operator, classical
BGK collision operator and the hybrid regularized collision
operator. Further, the effect of using dynamic filtering method
to improve the stability of advection-diffusion LBM is
explored. In this filtering method, the gradient of the
transport scalar is selected as the sensitive variable. In the
region with smooth variable distribution, the intensity
coefficient of the filter is small to avoid introducing too
much artificial dissipation, while in the region with large
gradient distribution or discontinuity, the intensity
coefficient of the filter is large to suppress the development
of numerical oscillation.

The rest of the paper is organized as follows. A brief
presentation of the LBM is given in Section 2. The filtering
strategy is described in Section 3. The results of the scalar
transport in uniform flow and doubly periodic shear layer flow
obtained with the numerical method are presented in Section 4.
Finally, a brief conclusion is given.

2 LATTICE BOLTZMANN MODEL

In the context of the present study a weakly compressible 2-D
recursive regularization lattice model has been used as the flow
field solver. The same grid structure and spacing is used for
passive scalar fields.

2.1 LBM for the Flow Field
With the initial solution simply defined by initial macroscopic
fields ρ(x, t), uα(x, t) , with _m the mass source and Fa the volume
force term, the step-by-step lattice Boltzmann method that
predicts ρ(x, t + Δt), uα(x, t + Δt) following an approximate
Navier-Stokes system is given.

Step 1 : Equilibrium construction
Considering the fourth order Hermite expansion of Maxwell-

Boltzmann distribution, one can obtain the equilibrium
distribution function [27].
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feq
i � ωi

⎧⎨⎩H(0)ρ + H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ] + H(3)

iαβγ

6c6s
[ρuauβuγ]

+ H(4)
iαβγδ

24c8s
[ρuauβuγuδ]⎫⎬⎭

(1)
where wi is the weight coefficient, and cs � 1/



3

√
is the speed of

sound in lattice units. The discrete velocity vectors and weight
coefficients are defined as

ci � ( 0 1 0 − 1 0 1 − 1 − 1 1
0 0 1 0 − 1 1 1 − 1 − 1

) (2)
w0 � 4/9, wi�1~4 � 1/9, wi�5~8 � 1/36 (3)

The Hermite polynomials read

H(0)
i � 1, H(1)

iα � ciα，H(2)
iαβ � ciαciβ − c2sδαβ (4a)

H(3)
iαβγ � ciαciβciγ − c2s[ciαδβγ + ciβδγα + ciγδαβ] (4b)

H(4)
iαβγδ � ciαciβciγciδ − c2s[ciαciβδγδ + ciαciγδβδ + ciαciδδβγ + ciβciγδαδ

+ ciβciδδαγ + ciγciδδαβ] + c4s[δαβδγδ + δαγδβδ + δαδδβγ]
(4c)

The third-order Hermite polynomials supported by the D2Q9
basis are H(3)

ixxy and H(3)
iyyx, and the fourth-order Hermite

polynomials supported by the D2Q9 basis is H(4)
ixxyy.

Step 2 : Force construction
The forcing population is extended to second order [28, 29],

Fi � ωi

⎧⎨⎩H(0)aF,(0) + H(1)
iα

c2s
aF,(1)α + H(2)

iαβ

2c4s
aF,(2)αβ

⎫⎬⎭ (5)

with its Hermite moments defined as

aFαβ � −zD
feq,(3)
αβγ

zxγ
+ ρc2s

2
3

zuγ

zxγ
δαβ + ρFauβ + ρuaFβ − _muαuβ (6)

aF,(1)α � ρFa (7)
aF,(0) � _m (8)

with Dfeq,(3)
αβγ the isotropy defect of the equilibrium distribution

function. Here, for the D2Q9 lattice, the isotropy defects are
Dfeq,(3)

xxx � ρu3x and Dfeq,(3)
xxy � 0.

Step 3 : Non-equilibrium construction
Using the BGK collision operator, the non-equilibrium

distribution function is obtained as:

�f
neq

i � �fi − feq
i + Δt

2
Fi (9)

However, when the relaxation factor of the BGK form of the
LBM model is close to the critical value, the accuracy will be
reduced. The use of regularized collision operators can effectively
broaden the application range of the LBM model. For simulating
isothermal flow with standard D2Q9 model, the recursive
regularization collision operator with the third-order Hermite

expansion [30] can obtain stable result, the non-equilibrium
distribution function is obtained as:

�f
neq

i � ωi

⎧⎨⎩H(2)
iαβ

2c4S
Π

�f
neq

,(2)
αβ + H(3)

iαβγ

6c6S
(uαΠ

�f
neq

,(2)
βγ + uβΠ

�f
neq

,(2)
γα

+ uγΠ
�f
neq

,(2)
αβ )⎫⎬⎭ (10)

where the second order moment of the non-equilibrium
distribution function is

Π
�f
neq

,(2)
αβ � ∑q

i

ciαciβ(�fi − feq
i + Δt

2
Fi) (11)

Step 4 : Collision process
With the equilibrium distribution function feq

i , forcing
population Fi and non-equilibrium distribution function �f

neq
i

are given in the previous steps, compute the collided distribution
function as

fcol
i (t, x) � feq

i (t, x) + (1 − Δt
�τ
)�fneq

i (t, x) + Δt

2
Fi(t, x) (12)

It should be noted that the prefactor commonly used with
Guo’s forcing methodology [28], i.e., (1 − Δt/2τ), is modified to
Δt/2 because discrete effects are accounted for in the definition of
the second-order non-equilibrium contribution (Eq. 11).

The relationship between the relaxation time �τ and the
viscosity ] is as follows:

] � c2s(�τ − Δt

2
) (13)

Step 5 : Streaming process
Transport the distribution to neighbouring nodes according to

�fi(t + Δt, x) � fcol
i (t, x − ciΔt) (14)

Step 6 : Update macroscopic variables
The density ρ and velocity u are (weighted) sums of the

distribution �fi.

ρ(t + Δt, x) � ∑q
i

�fi(t + Δt, x) + Δt

2
_m(t + Δt, x) (15)

ρuα(t + Δt, x) � ∑q
i

ciα �fi(t + Δt, x) + Δt

2
[ρFα](t + Δt, x) (16)

2.2 LBM for the Scalar Field
For a scalar field C , the governing equation of the convection-
diffusion process is:

zC

zt
+ ∇ · (Cu) � ∇ · (D∇C) + F (17)

where C represents a conserved physical quantity, such as
temperature or component concentration. The left side of
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the equation describes the convection process of the scalar C
along with the external fluid velocity u . The first term on the
right side of the equation is the diffusion term, where D is
the diffusion coefficient, and the second term F is the
source term.

The advection–diffusion LBM is based on the following
space–time evolution equation for the distribution function:

gi(x + ciΔt, t + Δt) − gi(x, t) � Ωi + (1 − Δt

2τg
)Fi(x, t) (18)

where the first item on the right-hand side is the collision source
item. The prefactor (1 − Δt/2τg) was proposed by Guo et al. to
reduce discrete effect issues [28]. For the collision operator in the
form of BGK:

Ωi(x, t) � − 1
τg

(gi(x, t) − geq
i (x, t)) (19)

The second item on the right-hand side of Eq. 17 is the source
term used to correct the error caused by the convection term [31]:

Fi(x, t) � wi
ci · zt(Cu)

c2s
(20)

The time derivative is computed by first-order Euler method.
The relationship between the relaxation time τg and the

diffusion coefficient D is as follows:

D � c2s(τg − Δt

2
) (21)

Given the reduced number of moments conserved in the
advection–diffusion model and absence of non-linear velocity
terms in the target macroscopic equation, the equilibrium
distribution function can be truncated at first order

geq
_l
� wiC(1 + ci · u

c2s
) (22)

The D2Q9 model is also used to solve the scalar transport
process in this paper, because it is more robust and accurate than
the D2Q4 or D2Q5 model when the convection is strong. The
specific values of its lattice parameters are shown in the previous
section.

The advection–diffusion LBM algorithm is divided into two
parts: collision process and streaming process.

The collision process is:

gcol
_l (x, t) � geq

_l
(x, t) + (1 − Δt

τg
)gneq

_l
(x, t) + (1 − Δt

2τg
)Fi(x, t)

(23)
Among them, gneq

_l
is the off-equilibrium distribution, in the

collision kernel of the BGK form, gneq
_l

� gi − geq
i . For the

regularized collision operator, the off-equilibrium distribution
needs to be reconstructed.

The streaming process reads:

gi(x + ciΔt, t + Δt) � gcol
_l (x, t) (24)

When the distribution function after streaming process is
obtained, the scalar value of the next time step can be
obtained from:

C � ∑
i

gi (25)

Both the BGK form and the regularized form of collision
operators can recover the correct macroscopic convection-
diffusion Eq. 16. The main idea of regularized method is to
reconstruct the off-equilibrium distribution before the collision
step [32, 33]. By using the Hermite polynomial to expand the off-
equilibrium distribution, the off-equilibrium distribution reads:

fneq � w∑n
1

1

n!(c2s )2a(n)1 : H(n) (26)

where the sum begins at n � 1 due to the conservation of scalar.
Furthermore, a(n)1 is the expansion coefficient of the off-
equilibrium distribution, which needs to be determined.

For the regularization model based on direct projection
(denoted PR-LBM), the first-order expansion coefficient a(1)1,α is
obtained by directly projecting the off-equilibrium distribution
function to the first-order tensor of Hermite polynomial:

a(1)1,α ≈ ∑q
i

H(1)
iα (gi − geq

i ) (27)

The second order expansion coefficient a(2)1,αβ can be obtained
by using the formula [34].

a(2)1,αβ ≈ ∑q
i

(ciαciβ − (1/2)(ci · ci))(gi − geq
i ) (28)

In this paper, the collision operator based on first-order direct
projection is denoted PR1st, and the collision operator based on
second-order direct projection is denoted PR2nd.

Similar to the use of finite difference for the reconstruction of
the non-equilibrium part in the flow field LBM [35, 36], the first-
order expansion coefficient a(1)1,α can also be calculated from
macroscopic quantity. Through the Chapman-Enskog analysis,
the relationship between the expansion coefficient and the
macroscopic quantity can be obtained [37]:

a(1),FD1,α � −c2sτg∇C − 1
2
zt(Cuα) (29)

This term is assessed via the finite difference method (hence
the FD subscript). Here, we using the second-order centered finite
differences scheme to compute the gradient term ∇C , and the
explicit Euler scheme to compute the time derivative term
zt(Cuα).

A hybrid regularization method that was developed for the
fluid dynamics was proposed by Jacob et al. [38]. In this model,
the off-equilibrium coefficients are evaluated by combining two
different approximations. The first approximation is direct
projection of the off-equilibrium and the second
approximation is computed by finite difference method as to
the best approximate the viscous tensor. As shown in their article,
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excellent numerical stability is obtained by using the hybrid
regularization collision model.

In this work, inspired by the hybrid regularization method
[38] developed for the fluid dynamics, we propose a hybrid
regularization procedure for the convection-diffusion LBM.

The adjustment factor β is introduced to obtain a hybrid
regularization (denoted as HR-LBM) reconstruction of the
expansion coefficient:

a(1)1,α � β∑q
i

H(1)
iα (gi − geq

i ) + (1 − β)a(1),FD1,α (30)

where β ∈ [0, 1] is a free parameter. When β � 1, the model
corresponds to the first-order projection based regularized LBM
method (PR1st-LBM). Through numerical experiments, when
the adjustment factor is taken as β � 0.95, the hybrid
regularization reconstruction method has a good performance
in terms of stability and accuracy.

3 DYNAMICAL SPATIAL FILTERS

The so-called filtering is actually smoothing the known discrete
function in a given way, thereby filtering out high-frequency

oscillation waves. The general expression of the filtering method
can be written as:

(f(x)) � f(x) − σ∑D
j�1

∑N
n�−N

dnf(x + nxj) σ ≥ 0 (31)

whereN is the number of grid points used in the filtering stencil,
and xj are the unit vector of the D-dimensional Cartesian
coordinate. The parameter σ determines the strength of the
filter and is a constant between 0 and 1. The value of the
coefficient dn satisfies dn � d−n, so as to ensure that the
filtering operation will not introduce dispersion error [39].
Considering the issues of computational cost, a standard 3-
point stencil filter is used in this paper. The parameters of the
filter are: d0 � 1/2, d1 � d−1 � −1/4 .

The traditional filtering method is carried out for the
variables in the macroscopic equation. For the LBM, since
its evolution process is based on the distribution function, in
addition to filtering the macroscopic variables, the
distribution function or the collision operator can also be
filtered. However, to filter the distribution function or the
collision operator, each discrete velocity needs to be filtered
once. In order to reduce the computational cost, this paper
studies the effect of filtering macroscopic variables on the
stability and accuracy of LBM. The LBM algorithm for
filtering macroscopic variables is: firstly, by performing the
standard collision and streaming process, a new distribution
function is obtained, and then the macroscopic variables are
calculated by Eq. 24. At last, the resulting macroscopic
variables are filtered using Eq. 29.

In this paper, we consider a dynamic filtering method
applicable to the scalar convection-diffusion equation. The
dynamic computation of the filter coefficient is directly
inspired from the work by Marié et al. [26] in which G(x)
stands for the viscous stress tensor. The main idea is to
associate the filter coefficient with the gradient of the
transport scalar, and the filter coefficient has the following form:

σd(x) � σ0(1 − e−(|G(x)|/G0))2 (32)
where |G(x)| is the norm of the gradient of the transport scalar,
and σ0 is the strength of the static filter, which is a constant. G0 is

FIGURE 1 | Scalar distribution profile for y � 200 at t � 200 with Pe = 1 for different collision operators.

FIGURE 2 | Scalar distribution profile for y � 200 at t � 200 with Pe =
1000 for different collision operators.
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a reference value for the magnitude of the gradient, which is used
to define the sensitivity of the dynamic filter to large gradients and
discontinuous. In order to better capture the numerical
oscillations, we use the first-order finite difference method to
calculate the gradient of the transport scalar.

The estimation of the reference value for the magnitude of the
gradientG0 plays an important role in dynamic filtering. If the value
of G0 is too small, there will be obvious filtering effects in the entire
computing domain, and the dynamic filter will be represented as a
static filter with σd(x) ≈ σ0. If the value of G0 is too large, then
σd(x) is close to 0 in the whole calculation domain, and the dynamic
filter will basically not work. The value ofG0 can be evaluated under
empirical criteria based on the physical problems. One way to
evaluate G0 is to multiply the difference between the maximum
and minimum of the scalar distribution in the computational
domain by a coefficient ϵ ,namely:

G0 � ϵ × (Gmax − Gmin) (33)

4 RESULTS AND DISCUSSION

4.1 Advection–Diffusion in Uniform Flow
At first, we performed simple advection–diffusion numerical
experiments in uniform flow with smooth and discontinuous
initial conditions to evaluate the scheme. We use the BGK, PR1st,
PR2nd and the HR collision operators.

4.1.1 Advection-Diffusion of a Gaussian Hill
Here, the advective-diffusion process of the Gaussian hill is used
to test the scalar field LBM. The filtering strategy is not used in
this test. The initial concentration profile is taken as:

C(x, t � 0) � C0 exp( − (x − x0)2
2σ2m

) (34)

where σm is the initial mean squared deviation. In the presence of
uniform velocity u , the time evolution of the Gaussian hill has an
analytical solution, given as:

C(x, t) � σ20
σ2
m + σ2

D

C0 exp( − (x − x0 − ut)2
2(σ2m + σ2

D) ) (35)

with σD � 




2Dt

√
, D is diffusion coefficient.

To avoid the contribution of the boundary conditions, the
computation takes place in a periodic domain with Nx × Ny �
400 × 400 lattice nodes. The initial center of the Gaussian hill is
at location x � (200, 200) , and the initial width of the Gaussian
hill is σm � 10 . The velocity is u � (U0, U0), we choose U0 � 0.1,
the corresponding diffusion coefficient D is determined by the
Péclet number defined as Pe � U0σm/D. In this test, we examine
both the diffusion-dominated (Pe = 1) and the advection-
dominated (Pe � 1000) regimes. Four collision operators BGK,
PR1st, PR2nd and HR (β � 0) are used for calculation.

We will use the L2 error norm to quantitatively study the
calculation accuracy of the model. Given the reference quantity
Ca(x, t), and its numerical equivalent C(x, t), we define the L2
error norm as:

EC �




















∑x(C(x, t) − Ca(x, t))2∑x(Ca(x, t))2

√
(36)

The sum runs over the entire spatial domain where C is
defined.

Figure 1 shows the concentration profile for y � 200 at t �
200 with Pe = 1. It can be seen that the BGK and PR2nd
collision operators obtain almost the same results, which have
significant errors. However, the results of the PR1st and HR
collision operator agree well with the analytical solution.
Figure 2 show the concentration profile for y � 200 at t �
200 with Pe = 1000. It can be seen that all the four collision
operators obtain results agree well with the analytical solution.
Error comparison for Pe � 1 and Pe � 1000 between different
collision operators is given in Table 1. The similarity of the

TABLE 1 | Error comparison for Pe � 1, 1000 between different collision operators.

Pe BGK PR1st PR2nd HR (β � 0.5) HR (β � 0)

1 2.2573 × 10−2 1.0054 × 10−2 2.3335 × 10−2 3.4286 × 10−3 1.7807 × 10−3

1000 1.1564 × 10−3 1.0842 × 10−3 1.1574 × 10−3 3.1075 × 10−3 8.3536 × 10−3

FIGURE 3 | Scalar distribution profile for D � 1, 0.1, and 0.01 at
t � 2000 for the different schemes.

TABLE 2 | Error comparison for D � 1, 0.1 and 0.01 between different collision
operators.

D BGK PR1st PR2nd HR (β � 0)

1 4.4067 × 10−3 4.4014 × 10−3 4.4067 × 10−3 4.3189 × 10−3

0.1 6.3048 × 10−3 6.3072 × 10−3 6.3048 × 10−3 6.3122 × 10−3

0.01 1.0749 × 10−2 1.0758 × 10−2 1.0749 × 10−2 1.4068 × 10−2
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BGK and PR2nd collision operators can also be seen from
the table.

4.1.2 Advection-Diffusion of a Rectangular Pulse
In order to test the scalar field LBM with discontinuous initial
condition problems, the one-dimensional advection-diffusion of
a rectangular pulse is simulated in this section. The simulations
are carried out using four different collision operators, BGK,
PR1st, PR2nd and HR. Firstly, we make the test without using the
filtering method.

The initial rectangular pulse is described as:

C(x, 0) � { 1, 1.5W≪x≪ 2.5W
0, otherwise

(37)

where W is the pulse width. L � 10 × W is the length of
computational domain. In this problem, the velocity vector is
u and the diffusion coefficient is D . The analytical solution of C
is given as

C(x, 0) � 1
2
[erf(2W − x + ut

2




Dt

√ ) + erf(−W + x − ut

2




Dt

√ )] (38)

Here, erf(x) � 2

π

√ ∫x

0
e−η2dη is the error function.

When the diffusion coefficient of the convection-diffusion
equation is relatively large, even if the initial flow field has
discontinuous distribution, the discontinuity will become
smooth due to the strong dissipation effect of the equation

itself. We first take the diffusion coefficient
D � 1, 0.1, and 0.01, the velocity is u � 0.05. The results
show that the four collision operators achieve almost the
same results. Because the differences between analytical,
BGK, PR1st, PR2nd and HR (β � 0) collision operators are
small, only the results of HR collision operator are given in
Figure 3. There is no difference can be seen from the figure,
and the errors of the results are further compared in Table 2.
We can see that the errors of the results obtained by the four
collision operators are basically the same.

If the diffusion coefficient of the convection-diffusion
equation is relatively small, when the initial condition has
discontinuous, due to the small dissipation effect of the
equation itself, oscillation will occur near the discontinuity.
In this example, we choose diffusion coefficient D � 1 × e−6,
and the velocity is u � 0.05. LBM with all the four collision
operators BGK, PR1st, PR2nd and HR are tested. Figure 4
shows the concentration profile at t � 2000. It can be seen that
the BGK and PR2nd collision operators obtain almost the
same results, which the solution is superimposed with high-
frequency waves, but the results of the collision operators in
the PR1st form gradually diverge with the calculation. For the
HR collision operator, there is no high frequency wave in
other regions except for a small overshoot near the
discontinuities. It can be seen from Figure 4D that when
the β � 0.95, the transition region at the discontinuity is the
narrowest.

FIGURE 4 | Scalar distribution profile for D � 1 × 10−6 at t � 2000 for different schemes: (A) BGK, (B) PR1st, (C) PR2nd, (D) HR.
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In order to investigate the influence of the filtering strategy
and choose the proper values of σ0 and ϵ, we use the BGK
collision operator combined with the filtering method to simulate
the advection-diffusion of a rectangular pulse. The diffusion
coefficients are taken as D � 1 × e−6 and D � 1 × e−3
respectively, and the velocity is u � 0.05. Specifically, σ0 and ϵ
take the two values of 0.1 and 0.2, so there are four combinations.
Scalar distribution profile is shown in Figure 5, we can see that
the four sets of filter coefficients can well suppress the oscillation
generated at the discontinuity. When the initial discontinuity is
transported by convection, its sharp distribution profile is
smoothed by the filter, thus reducing the filter intensity
coefficient σ as depicted in Figure 6. These observations show
that the numerical dissipation effects introduced by the
dynamical filter with four sets of filter coefficients are similar,

with minor differences. When the diffusion coefficient is large,
the filter with σ0 � 0.1 and ϵ � 0.2 can be selected, and when the
diffusion coefficient is small, the filter with σ0 � 0.2 and ϵ � 0.1
can be selected.

4.2 Advection-Diffusion in Doubly Periodic
Shear Layer Flow
To show the ability of the advection–diffusion LBM and the
filtering method, we used a simple test: the scalar transport
in doubly periodic shear layer flow. It is a well-known test
case which allows to quantify the stability of numerical
schemes as a first step [9]. This flow is composed of two
longitudinal shear layers, located at y � L/4 and y � 3L/4 , in
a 2D doubly periodic domain with (x, y) ∈ [0, L]2. The
periodic boundaries can avoid additional disturbance
from the boundary. A transverse perturbation is
superimposed to the flow, leading to the roll-up of the
shear layers, and the generation of two counter-rotating
vortices by the Kelvin-Helmholtz instability mechanism. We
set the initial scalar field along with the flow field, which
means that C � 1 between the shear layers, and in other
location C � 0.

The initial conditions are fully defined through

ux � { u0 tanh[kp(yp − 1/4)], yp ≤ 1/2
u0 tanh[kp(3/4 − yp)], yp ≥ 1/2

(39)
uy � u0δ

p sin[2π(xp + 1/4)] (40)
C � { C0(1 + tanh[kp(yp − 1/4)]), yp ≤ 1/2

C0(1 + tanh[kp(3/4 − yp)]), yp ≥ 1/2
(41)

where (xp, yp) � (x/L, y/L) , and u0 is the characteristic speed.
kp is related to the width of the shear layers while δp controls
the amplitude of the transverse perturbation. The critical
parameters of this test case are the width of the shear layers,
and the Reynolds number which is the ratio between
convective and diffusive phenomena. Here the case of thin
shear layers is considered, i.e., (kp, δp) � (80, 0.05). The
characteristic speed is u0 � 0.1. Reynolds number is here
fixed to a moderate value of Re � u0L/] � 30000. The Péclet
number is defined by: Pe � u0L/D. It is also useful for the

FIGURE 5 | Scalar distribution profile for at t � 20000 for different σ0 and ϵ (A) D � 1 × 10−6 , (B) D � 1 × 10−3.

FIGURE 6 | Time trace of the maximum value of the coefficient σ for
different σ0 and ϵ (A) D � 1 × 10−6 , (B) D � 1 × 10−3.
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discussion to define the convective time as tC � L/u0. The flow
evolution was simulated up to tC for various resolutions from
64 × 64 to 512 × 512 Cartesian grid. In this test, the

filter strength parameter is selected as σ0 � 0.2,
and the coefficient of reference gradient norm is taken as
ϵ � 0.1.

FIGURE 7 | Vorticity contours in the double shear layer, for different grids with the BGK collision model. From left to right: 128 × 128, 256 × 256, and 512 × 512.

FIGURE 8 | Vorticity contours in the double shear layer, for different grids with the recursive regularization collision model. From left to right: 64 × 64, 128 × 128, and
256 × 256.

FIGURE 9 | Comparison of velocity fields obtained by the third and fourth order expansion of the equilibrium distribution function: (A) velocity profiles along the
diagonal lines, (B) contour of the velocity difference.
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4.2.1 Validation of the Velocity Field
In order to validate the flow-field, we successively simulated
the rollup of the double shear layer. Both the BGK and the
recursive regularization collision operator are used.

Figure 7 presents dimensionless vorticity contours
ωz/|ωmax

z | obtained with the BGK collision operator after
one convective time period t � tC. Regarding the coarse
mesh grid (128 × 128), numerical oscillations are too strong
for the simulation to remain stable. For the fine mesh grid (256
× 256), although the simulation is stable, but there are two
spurious secondary vortices are observed. For the finest mesh
grid (512 × 512), it does not show any premise of stability
issues.

Figure 8 presents dimensionless vorticity contours
obtained with the recursive regularization collision
operator after one convective time period t � tC. They all
show convergence, despite the inevitable loss of accuracy of
the gradients. The algorithm does converge even with the
coarsest mesh grid (64 × 64), and there are no spurious
secondary vortices. When using the recursive
regularization collision operator, the 256 × 256 mesh grid
can already obtain relatively accurate flow field information.
Therefore, we use this grid resolution to calculate the
coupling problem of LBM for fluid mechanics and LBM
for scalar transport.

Furthermore, we compare the velocity fields obtained under
the third order and fourth order equilibrium distribution
function expansions. The result is given in Figure 9. We
can see that the difference between the velocity fields
obtained from the third and fourth order expansions is
very small.

4.2.2 Tests of Advection-Diffusion of Scalar
In this subsection, the passive scalar transport problem in
periodic double shear layer is studied. Because the results
obtained by the PR2nd and the BGK are similar, we only give
the results of BGK. At first, to better understand the stability of
the proposed schemes, the minimum number of grids required
for three LBM collision operators that can obtain stable result for
different Péclet number are investigated. The flow evolution was
simulated up to tC for three various resolutions 128 × 128, 256 ×
256 and 512 × 512 Cartesian grid. The results are given inTable 3.

In the following parts of this section, the passive scalar
transport problem in periodic double shear layer is studied in
detail with two specific Péclet numbers. The computation grid is
256 × 256, and the velocity field is computed by recursively
regularized LBM. The scalar transport equation is solved by using
the advection-diffusion LBM with the three collision operators
BGK, PR1st and HR respectively. We examine both the medium
and extremely large Péclet number regimes.

For comparison, the solution obtained with a classical finite-
difference solver is also given. The LBM and FD solver use the
same time-step, and first order forward Euler integration is used.
Second order central difference operator is used for convection
and diffusion.

Since the analytical solution is not available, we take the
unfiltered BGK collision operator for a well resolved grid
(1024 × 1024) as the reference solution.

4.2.2.1 Test Case With Medium Diffusion Coefficient
First, we consider the case where the equation itself has a medium
diffusion coefficient. Here, the diffusion coefficient D � 0.005 , the
corresponding Péclet number is Pe � 5120. For the case with

TABLE 3 | Grid needed to obtain stable result for different model for given Péclet number.

Péclet number 5.12 × 103 5.12 × 104 5.12 × 105

BGK 128 × 128 512 × 512 Unstable
PR1st 128 × 128 Unstable Unstable
HR 128 × 128 128 × 128 128 × 128

FIGURE 10 | Scalar concentration contour plot in the double shear layer at Pe � 5120 for the FD scheme (A) and HR collision operator (B) without filtering.
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relatively large diffusion coefficient, even if the filteringmethod is not
used, the finite difference scheme and the LBM with three collision
operators can obtain stable results. Figure 10 shows the contours of
the scalar distribution of the results calculated by the FDmethod and
the HR collision operator without using the filtering method. Here,
the results of PR1st andHR collision operators are basically the same
as BGK. For brevity, only the scalar concentration contour of HR is
given. It can be seen from the figure that both the FDmethod and the
LBM can well simulate the transport process of the passive scalar
along the flow field. The results show that the high gradient regions

are distributed smoothly and the details of scalar mixing as the
vortex rolls up are well captured. Figure 11A shows the scalar
distribution along the counter-diagonal of the computational
domain when no filtering method is used. It can be seen that the
results of the LBM of the three collision operators are almost
identical, and are basically consistent with the results of the FD
scheme.

Next, we consider the effect of using the filtering method on
the FD scheme and LBM. Here, because the results of the three
collision operators are basically the same, only the HR collision

FIGURE 11 | Scalar distribution profile at Pe � 5120 along the counter-diagonal of the domain for the different schemes: (A)without filter, (B) comparison of results
with and without filter.

FIGURE 12 | Filter coefficient contour plot in the double shear layer at Pe � 5120: (A) the FD scheme, (B) HR collision operator, and (C) filter coefficient profiles
along the counter-diagonal of the domain.
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FIGURE 13 | Unfiltered (left) and filtered (right) results at Pe � 5.12 × 108. From top to bottom: (A, B) FD unfiltered and filtered, (C, D) BGK unfiltered and filtered,
(E, F) PR1st unfiltered and filtered, (G, H) HR unfiltered and filtered.
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operator is selected as the representative of the LBM. Figure 11B
presents a comparison of the scalar distribution along the
counter-diagonal of the computational domain with and
without the filter. It can be seen that for the example with a
relatively large diffusion coefficient, the results using the filtering

method are basically consistent with the results without filtering.
The adaptive filtering method does not bring significant
numerical dissipation.

For a quantitative measure of the error of HR model with
and without the filter, the scalar distribution along the

FIGURE 14 | Scalar distribution profile at Pe � 5.12 × 108 along the counter-diagonal of the domain for different schemes: (A,B) BGK unfiltered and filtered, (C,D)
HR unfiltered and filtered, (E) PR1st with filter, (F) FD scheme with filter.
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counter-diagonal of the computational domain against a
reference solution is compared. The L2 error of the
unfiltered HR model is EC � 4.3537 × 10−2 , and the L2 error
of the filtered HR model is EC � 4.7510 × 10−2.

Figure 12 shows the filter coefficients contour plot and the
distribution profile along the counter-diagonal of the
computational domain after using the filter with the FD
method and the HR collision operator. We can see the results
of the two schemes are basically consistent, and both show good
adaptive filtering characteristics.

4.2.2.2 Test Case With Small Diffusion Coefficient
We now consider the case where the equation itself has a small
diffusion coefficient. Here, the diffusion coefficientD � 5 × 10−8 ,
the corresponding Péclet number is Pe � 5.12 × 108. In this test,
the extremely small value of diffusion coefficient is chosen to
highlight the stability issues. For the case with small diffusion
coefficient, when the filtering method is not used, whether it is the
finite difference scheme or the LBM using any one of the three
collision operators, the calculation results have a certain degree of
numerical oscillation. The left side of Figure 13 shows the
contours of the scalar distribution calculated by the FD
scheme and LBM without the filtering method. It can be seen
that the LBM with HR collision operator can simulate the
transport process of the scalar along the flow field well,
although there are small oscillations near the region with high
gradient.

For the results of the BGK collision operator, there are high-
frequency oscillation waves in almost the entire computational
domain. However, the simulation of the FDmethod and the LBM
with PR1st collision operator cannot proceed to one convective
time period, and the results tend to diverge. Figure 14 shows the
scalar distribution along the counter-diagonal of the
computational domain without and with filtering. It can be
seen from Figures 14A,C that when the filtering method is
not used, the result of LBM with the BGK collision operator
has obvious numerical oscillations on the entire curve, while the
result of HR collision operator only has a certain overshoot.

After using the filtering method, the stability of both the FD
method and the LBMhas been improved. The right side ofFigure 13
shows the contours of the scalar distribution calculated by the FD
scheme and LBM with the filtering method. It can be seen that for
the FDmethod and the PR1st collision operator, thefilteringmethod
significantly reduces the magnitude of the numerical oscillation.
After using the filteringmethod, the simulation can be carried out for
one convective time period without divergence, but there are still
obvious numerical oscillations in the whole computational domain.

It can be seen from Figures 14E,F that when the filtering
method is used, scalar distribution along the counter-diagonal of
the computational domain of the FD method and the PR1st
collision operator still have obvious numerical oscillations.
Figures 14A,B show that, for the BGK collision operator, the
filtering method can obviously suppress the high frequency
oscillation in the computational domain, and a satisfactory

FIGURE 15 | Filter coefficient contour plot in the double shear layer at Pe � 5.12 × 108 for different schemes: (A) FD scheme, (B) BGK collision operator, (C) PR1st
collision operator, (D) HR collision operator.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 87562814

Zhang et al. AD-LBM With Filter

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


result is obtained. For a quantitative measure of the error of BGK
model with and without the filter, the scalar distribution along the
counter-diagonal of the computational domain against a
reference solution is compared. The L2 error of the unfiltered
BGKmodel is EC � 2.3644 × 10−1 , and the L2 error of the filtered
BGK model is EC � 2.2889 × 10−1.

Figures 14C,D show that, for the HR collision operator, the
filtering method suppresses the overshoot phenomenon near the
region with high gradient and further reduces the amplitude of
numerical oscillation. For the HR model with and without the
filter, the scalar distribution along the counter-diagonal of the
computational domain against a reference solution is compared.
The L2 error of the unfiltered HR model is EC � 2.1628 × 10−1 ,
and the L2 error of the filtered HR model is EC � 2.1985 × 10−1.

Figure 15 shows the filter coefficients contour plot after using
the filter with the FD method and LBM. It can be seen from the
figure that for the BGK and HR collision operators the distribution
of the filter coefficients is very smooth, and the filtering method
only has an obvious effect in the scalar mixing region in the shear
layer. This is principally because the scalar component
distributions of the BGK and HR collision operators are
relatively smooth. For the FD method and the PR1st collision
operator, since there are obvious numerical oscillations in the
computational domain, the filter coefficients also have obvious
distributions in the flow region outside the shear layer.

5 CONCLUSION

The advection-diffusion lattice Boltzmann models with BGK,
PR1st, PR2nd and HR collision operators for scalar transport in
uniform and complex flow are tested. In addition, an adaptive
dynamic filtering method with a filter coefficient based on the
gradient of the transport scalar is also tested. Mass andmomentum
conservation are addressed within a lattice Boltzmann flow solver,
whereas the scalar conservation is addressed via the advection-
diffusion lattice Boltzmannmodels. In the test of scalar transport in
uniform flow, the LBM with PR2nd collision operator obtains
almost the same result as the BGK collision operator, which both
have significant errors when the diffusion coefficient is large in the
test of Gaussian hill and have similar high frequency oscillation
when the diffusion coefficient is small in the test of rectangular
pulse. In its stability range, the accuracy of the PR1st collision
operator is similar to that of the HR, but there will be serious

numerical oscillation in the case of rectangular pulse with small
diffusion coefficient. In the test of advective-diffusion in complex
flow, we can see that, for the case with medium diffusion
coefficient, the results of the LBM with the different collision
operators are almost identical, and are basically consistent with
the results of the FD scheme. However, when the diffusion
coefficient is extremely small, the different collision operators
and the FD scheme have different performances. The LBM with
BGK collision operator can obtain a result with high-frequency
oscillation waves in the domain. The simulation of the FD method
and the LBM with PR1st collision operator cannot obtain stable
results. The transport process of the scalar along the flow field can
be simulated well by the LBM with HR collision operator.
Introducing a local filter such as the one proposed in this study
stabilizes the simulations of both LBM and FD scheme. Then for
the simulation of high Péclet number flow, the dynamical filtering
strategy should be seen as an enhanced stabilization procedure for
the lattice Boltzmann method where the amount of numerical
dissipation is locally controlled in space.
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